Current IF 1.9
Latest issue (RSS 2.0)
Contact Editorial Office at
bulletin@geology.cz

Bulletin of Geosciences
Published by ©
Czech Geological Survey,
W. Bohemia Museum Pilsen
Individual sponsors
ISSN: 1802-8225 (online),
1214-1119 (print)

Chemical properties of the graptolite periderm from the Holy Cross Mountains (Central Poland)
Published in: Bulletin of Geosciences, volume 95, issue 2; pages: 205 - 213; Received 6 September 2019; Accepted in revised form 17 April 2020; Online 16 May 2020
Keywords: graptolites, chemical structure, infrared spectroscopy, Holy Cross Mountains,
Abstract
Graptolite periderm in the Silurian shales from the Holy Cross Mountains of the Central Poland was examined by means of reflectance measurements and micro-FTIR spectroscopy. Mean graptolite reflectance (Rr) reaches 0.70-0.77%, and the vitrinite reflectance equivalent (VRE) is 0.67-0.72%. Graptolite periderm is composed predominantly of aromatic groups and rings with lesser amount of aliphatic and carbonyl/carboxyl groups. Chemical composition does not vary significantly between the samples from the two considered localities (the Prągowiec ravine and Bardo Stawy), which corresponds to the narrow range of graptolite reflectance. However, the samples from the Prągowiec ravine are characterized by higher hydrocarbon potential. It is found that many similarities occur in the chemical structure of the graptolite periderm and vitrinite within the reflectance range of Rr ≈ 0.7-1.5%. With increasing reflectance the length of the aliphatic chains (as inferred from the CH2/CH3 ratio) in the graptolite periderm decreases, and the relative content of the aromatic groups [as indicated by the CHar/(CH2 + CH3) ratio] begins to increase at Rr ≈ 1.6%. This is accompanied by growth of the coherent domains and improvement in the structural order.References
Beyssac, O., Goffe, B., Petitet, J.P., Froigneux, E., Moreau, M. & Rouzaud, J.N. 2003. On the characterization of disordered and heterogenous carbonaceous materials by Raman spectroscopy. Spectrochimica Acta Part A 59, 2267-2276.
Bustin, R.M. & Guo, Y. 1999. Abrupt changes (jumps) in reflectance values and chemical compositions of artificial charcoals and inertinite in coals. International Journal of Coal Geology 38, 237-260.
Bustin, R.M., Link, C. & Goodarzi, F. 1989. Optical properties and chemistry of graptolite periderms following laboratory simulated maturation. Organic Geochemistry 14, 355-364.
Caricchi, C., Corrado, S., Di Paolo, L., Aldega, L. & Grigo, D. 2016. Thermal maturity of Silurian deposits in the Baltic Syneclise (on-shore Polish Baltic Basin): contribution to unconventional resources assessment. Italian Journal of Geosciences 135, 383-393.
Chen, Y., Mastalerz, M. & Schimmmelmann, A. 2012a. Characterization of chemical functional groups in macerals across different coal ranks via micro-FTIR spectroscopy. International Journal of Coal Geology 104, 22-33.
Chen, Y., Caro, L.D., Mastalerz, M., Schimmmelmann, A. & Blandon, A. 2012b. Mapping the chemistry of resinite, funginite and associated vitrinite in coal with micro-FTIR. Journal of Microscopy 249, 69-81.
Chen, Y., Furmann, A., Mastalerz, M. & Schimmmelmann, A. 2014. Quantitative analysis of shales by KBr-FTIR and micro-FTIR. Fuel 116, 538-549.
Chen, Y., Zou, C., Mastalerz, M., Hu, S., Gasaway, C. & Tao, X. 2015. Applications of Micro-Fourier Transform Infrared Spectroscopy (FTIR) in the Geological Sciences-A Review. International Journal of Molecular Sciences 16, 30223-30250.
Cole, G.A. 1994. Graptolite-chitinozoan reflectance and its relationship to other geochemical maturity indicators in the Silurian Qusaiba Shale, Saudi Arabia. Energy & Fuels 8, 1443-1459.
D’Angelo, J., Zodrow, E. & Camargo, A. 2010. Chemometric study of functional groups in Pennsylvanian gymnosperm plant organs (Sydney Coalfield, Canada): Implications for chemotaxonomy and assessment of kerogen formation. Organic Geochemistry 41, 1312-1325.
Dutta, S., Hartkopf-Fröder, C., Witte, K., Brocke, R. & Mann, U. 2013. Molecular characterization of fossil palynomorphs by transmission micro-FTIR spectroscopy: Implications for hydrocarbon source evaluation. International Journal of Coal Geology 115, 13-23.
Ferrari, A.C. & Robertson, J. 2000. Interpretation of Raman spectra of disordered and amorphous carbon. Physical Review B 61, 14095-14107.
Ganz, H. & Kalkreuth, W. 1987. Application of infrared spectroscopy to the classification of kerogen-types and the evaluation of source rock and oil shale potentials. Fuel 66, 708-711.
Geng, W., Nakajima, T., Takanashi, H. & Ohki, A. 2009. Analysis of carboxyl group in coal and coal aromaticity by Fourier transform infrared (FT-IR) spectrometry. Fuel 88, 139-144.
Goodarzi, F. 1984. Organic petrography of graptolite fragments from Turkey. Marine and Petroleum Geology 1, 202-210.
Goodarzi, F. 1985. Dispersion of optical properties of graptolite periderms with increased maturity in early Paleozoic sediments. Fuel 64, 1735-1740.
Goodarzi, F. & Norford, B.S. 1985. Graptolites as indicator of the temperature histories of rocks. Journal of Geological Society London 142, 1089-1099.
Goodarzi, F. & Norford, B.S. 1987. Optical properties of graptolite periderm - a review. Bulletin of Geological Society Denmark 35, 141-147.
Goodarzi, F. & Norford, B.S. 1989. Variation of graptolite reflectance with depth of burial. International Journal of Coal Geology 11, 127-141.
Guo, Y. & Bustin, R.M. 1998a. Micro-FTIR spectroscopy of liptinite macerals in coal. International Journal of Coal Geology 36, 259-275.
Guo, Y. & Bustin, R.M. 1998b. FTIR spectroscopy and reflectance of modern charcoals and fungal decayed woods: implications for studies of inertinite in coals. International Journal of Coal Geology 37, 29-53.
Guo, Y., Renton, J.J. & Penn, J.H. 1996. FTIR microspectroscopy of particular liptinite- (lopinite-) rich, Late Permian coals from Southern China. International Journal of Coal Geology 29, 187-197.
Ibarra, J.V., Munoz, E. & Moliner, R. 1996. FTIR study of the evolution of coal structure during the coalification process. Organic Geochemistry 24, 725-735.
ISO 7404-5 2009. Methods for the Petrographic Analysis of Coals - Part 5: Method of Determining Microscopically the Reflectance of Vitrinite. International Organization for Standardization.
Jarvie, D.M. 2012. Shale resource systems for oil and gas: part 1 - shale-gas resource systems. American Association of Petroleum Geologists Memoir 97, 69-87.
Kelemen, S.R. & Fang, H.R. 2001. Maturity trends in Raman spectra from kerogen and coals. Energy & Fuels 14, 653-658.
Komorek, J. 2016. Internal structure of vitrinite and sporinite in the view of micro-FTIR spectroscopy using the example of coal from the seam 405 (USCB). Archives of Mining Sciences 61, 729-748.
Kremer, B. 2001. Acritarchs from the Upper Ordovician of southern Holy Cross Mountains, Poland. Acta Palaeontologica Polonica 46, 595-601.
Lin, R. & Ritz, P. 1993. Studying the chemistry of individual macerals using IR microspectroscopy, and the structural implications on oil vs. gas/condensate proneness and ’low-rank’ generation. Organic Geochemistry 20, 695-706.
Link, C.M., Bustin, R.M. & Goodarzi, F. 1990. Petrology of graptolites and their utility as indices of thermal maturity in Lower Paleozoic strata in northern Yukon, Canada. International Journal of Coal Geology 15, 113-135.
Lis, G.P., Mastalerz, M., Schimmmelmann, A., Lewan, M.D. & Stankiewicz, B.A. 2005. FTIR absorption indices for thermal maturity in comparison with vitrinite reflectance Ro in type-II kerogens from Devonian black shales. Organic Geochemistry 36, 1533-1552.
Luo, Q., Goodarzi, F., Zhong, N., Wang, Y., Qiu, N., Skovsted, C.B. , Suchý, V., Schovsbo, N.H., Morga, R., Xu, Y., Hao, J., Liu, A., Wu, J., Cao, W. , Min, X. & Wu, J. 2020. Graptolites as fossil geo-thermometers and source material of hydrocarbons: An overview of four decades of progress. Earth-Science Reviews 200, art. 103000.
Machnikowska, H., Krztoń, A. & Machnikowski, J. 2002. The characterization of coal macerals by diffuse reflectance infrared spectroscopy. Fuel 81, 245-252.
Maletz, J. 2017. Graptolite Paleobiology. Topics in Palaeobiology. 323 pp. Wiley-Blackwell.
Maletz, J., Bates, D.E.B., Brussa, E.D., Cooper, R.A., Lenz, A.C., Riva, J.F., Toro, B.A. & Zhang, Y.D. 2014. Treatise on Invertebrate Paleontology, Part V, revised. Chapter 12: Glossary of the Hemichordata. Treatise Online 62, 1-23.
Masiak, M., Podhalańska, T. & Stempień-Sałek, M. 2003. Ordovician-Silurian boundary in the Bardo Syncline, Holy Cross Mountains, Poland - new data on fossil assemblages and sedimentary succession. Geological Quarterly 47, 311-330.
Mastalerz, M. & Bustin, R.M. 1996. Application of reflectance micro-Fourier Transform infrared analysis to the study of coal macerals: an example from the Late Jurassic to Early Cretaceous coals of the Mist Mountain Formation, British Columbia, Canada. International Journal of Coal Geology 32, 55-67.
Mastalerz, M. & Bustin, R.M. 1997. Variation in the chemistry of macerals in coals of the Mist Mountain Formation, Elk Valley coalfield, British Columbia, Canada. International Journal of Coal Geology 33, 43-59.
Modliński, Z. & Szymański, B. 2001. The Silurian of the Nida, Holy Cross Mts. and Radom areas, Poland - a review. Geological Quarterly 45, 435-454.
Morga, R. 2019. About the microstructure of the graptolite periderm - examples from the Holy Cross Mountains (Poland). IOP Conference Series: Earth and Environmental Sciences 362, art. 012076.
Morga, R. & Kamińska, M. 2018. The chemical composition of graptolite periderm in the gas shales from the Baltic Basin of Poland. International Journal of Coal Geology 199, 10-18.
Morga, R. & Pawlyta, M. 2018. Microstructure of graptolite periderm in Silurian gas shales of Northern Poland. International Journal of Coal Geology 189, 1-7.
Mroczkowska-Szerszeń, M., Ziemianin, K., Brzuszek, P., Matyasik, I. & Jankowski, L. 2015. The organic matter type in the shale rock samples assessed by FTIR-ATR analyses. Nafta-Gaz 71, 361-369.
Mustafa, K., Sephton, M., Watson, J., Spathopoulos, F. & Krzywiec, P. 2015. Organic geochemical characteristics of black shales across the Ordovician-Silurian boundary in the Holy Cross Mountains, central Poland. Marine and Petroleum Geology 66, 1042-1055.
Painter, P.C., Snyder, R.W., Starsinic, M., Coleman, M.M., Kuehn, D.W. & Davis, A. 1981. Concerning the application of FT-IR to the study of coal: A critical assessment of band assignments and the application of spectral analysis programs. Applied Spectroscopy 35, 475-485.
Petersen, H.I. & Nytoft, H.P. 2006. Oil generation capacity of coals as a function of coal age and aliphatic structure. Organic Geochemistry 37, 558-583.
Petersen, H.I., Schovsbo, N.H. & Nielsen A.T. 2013. Reflectance measurements of zooclasts and solid bitumen in Lower Paleozoic shales, southern Scandinavia: Correlation to vitrinite reflectance. International Journal of Coal Geology 114, 1-18.
Quirico, E., Rouzaud, J.-N., Bonal, L. & Montagnac, G. 2005. Maturation grade of coals as revealed by Raman spectroscopy: Progress and problems. Spectrochimica Acta Part A 61, 2368-2377.
Schito, A., Corrado, S., Trolese, M., Aldega, L., Caricchi, C., Cirilli, S., Grigo, D., Guedes, A., Romano, C., Spina, A. & Valentim, B. 2017. Assessment of thermal evolution of Paleozoic successions of the Holy Cross Mountains (Poland). Marine and Petroleum Geology 80, 112-132.
Schovsbo, N.H., Nielsen, A.T., Klitten, K., Mathiesen, A. & Rasmussen, P. 2011. Shale gas investigations in Denmark: Lower Palaeozoic shales on Bornholm. Geological Survey of Denmark and Greenland Bulletin 23, 9-14.
Smolarek, J., Marynowski, L., Spunda, K. & Trela, W. 2014. Vitrinite equivalent reflectance of Silurian black shales from the Holy Cross Mountains, Poland. Mineralogia 45, 79-96.
Sobkowiak, M. & Painter, P. 1992. Determination of the aliphatic and aromatic CH contents of coals by FT-i.r.: studies of coal extracts. Fuel 71, 1105-1125.
Suchý, V., Šafanda, J., Sýkorová, I., Stejskal, M., Machovič, V. & Melka, K. 2004. Contact metamorphism of Silurian black shales by a basalt sill: geological evidence and thermal modelling in the Barrandian Basin. Bulletin of Geosciences 79, 133-147.
Suchý, V., Sýkorová, I., Stejskal, M., Šafanda, J., Machovič, V. & Novotná, M. 2002. Dispersed organic matter from Silurian shales of the Barrandian Basin, Czech Republic: optical properties, chemical composition and thermal maturity. International Journal of Coal Geology 53, 1-25.
Teichműller M. 1978. Nachweis von Graptolithen - Periderm in geschieferten Gesteinen mit Hilfe kohlenpetrologischer Methoden. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 7, 430-447.
Tomczykowa, E 1958. Fauna z łupków graptolitowych syluru niecki bardziańskiei Gór Świętokrzyskich. Geological Quarterly 2, 321-346.
Towe, K.M. & Urbanek, A. 1972. Collagen-like structure in Ordovician graptolite periderm. Nature 237, 443-445.
Trela, W. & Salwa, S. 2007. Lithostratigraphy of the Lower Silurian in Bardo Stawy (southern Holy Cross Mountains): relation to sea level change and oceanographic circulation. Przegląd Geologiczny 55, 971-978.
Tuinstra, F. & Koenig, J.L. 1970. Raman spectrum of graphite. Journal Chemical Physics 53, 1126-1130.
Wang, S.H. & Griffiths, P.R. 1985. Resolution enhancement of diffuse reflectance IR spectra of coals by Fourier selfdeconvolution, 1, C-H stretching and bending modes. Fuel 64, 229-236.
Wang, S., Tang, Y., Schobert, H., Jiang, D., Guo, X., Huang, F., Guo, Y. & Su, Y. 2013. Chemical compositional and structural characteristics of Late Permian bark coals from Southern China. Fuel 126, 116-121.
Więcław, D., Kotarba, M., Kosakowski, P., Kowalski, A. & Grotek, I. 2010. Habitat and hydrocarbon potential of the lower Paleozoic source rocks in the Polish part of the Baltic region. Geological Quarterly 54, 159-182.