
Graptolite reflectance (Rr) is one of the most important 
indices of thermal maturity of pre-Upper Silurian rocks, 
in which vitrinite does not appear (e.g. Goodarzi 1984, 
1985; Goodarzi & Norford 1985, 1987, 1989; Link et al.  
1990; Cole 1994; Petersen et al. 2013; Luo et al. 2020). 
It is commonly employed in the recognition of the 
unconventional hydrocarbon deposits, which frequently 
occur in the Cambrian–Silurian organic-rich shales (e.g. 
Więcław et al. 2010, Schovsbo et al. 2011, Jarvie 2012, 
Petersen et al. 2013). However, the chemical structure 
of the graptolite periderm (or fusellum sensu Maletz  
et al. 2014) is still not fully resolved. Periderm of living 
graptolites was composed of collagen-like fibrils but 
their corresponding fossil counterparts lack protein and 
they underwent the coalification process similar to plant 
remains (Towe & Urbanek 1972, Link et al. 1990). Deep 
insight into graptolite paleobiology was given by Maletz 
et al. (2017).  Research on the chemistry of the fossilized 
graptolite periderm (Bustin et al. 1989; Suchý et al. 2002, 
2004; Caricchi et al. 2016; Morga & Kamińska 2018; 
Luo et al. 2020) were mostly performed on graptolite 
specimens, reflectance (Rr) of which exceeded values of 
0.8–1%, and still little is known about chemistry of low 
reflectance graptolites. The purpose of this investigation 
is to determine, for the first time, chemical properties of 

the graptolite periderms from the Holy Cross Mountains 
(Rr < 0.8%), and compare them to those known from  
the previous studies. The research is a continuation of the  
microstructural examination performed on the same 
samples (Morga 2019).

Geological setting

Four samples were collected from the outcrops of the 
Silurian rocks in Bardo Stawy and the Prągowiec ravine 
in the Holy Cross Mountains (HCM), Central Poland. 
Both localities are situated within the Bardo Syncline – 
in its southern and northern limb, respectively, ca 35 km 
SEE of the town of Kielce (Fig. 1). Due to outstanding 
geological and paleontological importance, they are 
very well-described (Tomczykowa 1958, Modliński & 
Szymański 2001, Masiak et al. 2003, Trela & Salwa 
2007, Smolarek et al. 2014, Mustafa et al. 2015, Schito 
et al. 2017). The Silurian rocks exhibited in Bardo Stawy 
belong to Llandovery series, while those in the Prągowiec 
ravine to Wenlock–Lower Ludlow. Two samples were 
taken in each locality, in the uppermost and lowermost 
parts of the Silurian strata, from a fresh rock to minimize 
the effects of weathering. Silurian rocks in Bardo Stawy 
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are mainly graptolitic dark grey shales with intercalations 
of radiolarian shales, while those at the Prągowiec ravine 
are mainly calcareous clay shales and siltstones, passing 
into graptolite-rich dark grey clay shales. They contain 
macroscopically visible graptolite remains. Geological 
setting and graptolite assemblages of Bardo Stawy 
were given in detail by Modliński & Szymański (2001), 
Masiak et al. (2003), and Trela & Salwa (2007), whereas 
broad description of the Prągowiec ravine geology and 
palaeontology one can find in Tomczykowa (1958) as well 
as Modliński & Szymański (2001).

Methods

Morphological and optical features of graptolites under 
reflected light were described in detail by Teichmüller 
(1978), Goodarzi (1984, 1985), Goodarzi & Norford 
(1985, 1987), and Link et al. (1990), among others.

Graptolite reflectance was measured on polished 
sections parallel to the bedding by the use of a Zeiss 
Axioskop microscope, in immersion oil (no = 1.518 at  
23 °C) in 32 to 54 randomly chosen spots per sample. 
Only the well-preserved, homogenous areas were chosen. 
All other aspects of the measuring procedure followed 
the ISO 7404–5 (2009) standard. Based on that mean 
values (Rr) and standard deviations were calculated. All  
reflectance measurements were performed on non-granular  
graptolites (sensu Goodarzi 1984) to avoid pos sible scat-
tering of the light beam on a granular tissue (Fig. 2).

Micro-FTIR analysis was carried out in reflectance 
mode, with the use of a Bio-Rad FTS-6000 spectrometer, 
equipped in the Bio-Rad UMA 500 microscope. Number 
of measurement points per sample varied between 
10 and 12. Spectra were obtained within the range of 
6000–750 cm–1, at a resolution of 4 cm–1. Interferograms 
were collected by co-adding of 512 scans, using a gold 
plate as a background. Fourier and Kramers-Krönig 
transformations of spectra were performed. Absorption 
bands were identified based on the works of Painter et al. 
(1981), Wang & Griffiths (1985), Sobkowiak & Painter 
(1992), Guo et al. (1996), Ibarra et al. (1996) as well as  
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Figure 1. Geological sketch of the Holy Cross Mountains with the 
location of the sampling points (modified from Kremer 2001).

Figure 2. Microphotographs of 
graptolite periderm in the stud ied 
samples (section parallel to bed-
ding, reflected light, immersion 
oil); A – sample P1, non-granular 
morphology with poorly visible 
lamellar struc ture; B – sample 
P2, non-granular morph ology; 
C – sample B2, non-granular 
morphology; D – sample P2, 
granular morphology.

A

C

B

D



207

Rafał Morga • Graptolite periderm from the Holy Cross Mountains (Central Poland)

Bustin & Guo (1999). Curve-fitting procedure was em- 
ployed regarding the aliphatic (2800–3000 cm–1) and  
C=O + C=C (1500–1800 cm–1) regions using GRAMS 
32 software. The number of the bands and their initial 
positions were determined using the second derivative 
of the spectra and the data from the references (Painter 
et al. 1981; Wang & Griffiths 1985; Lin & Ritz 1993; 
Ibarra et al. 1996; Guo & Bustin 1998a, b; Geng et al. 
2009; Chen et al. 2012a). Combination of Lorentzian and 
Gaussian curves was applied. The goodness of fit was 
checked by the χ2 test. To demonstrate chemistry of the 
graptolite periderm the following ratios of the spectral 
band integration areas were used:
1)  CHar (3000–3100 cm–1) / [CH2 + CH3 (2800–3000 cm–1)],  

to show relative content of aromatic and aliphatic 
hydrogen functional groups i.e. aromaticity of the 
structure (Machnikowska et al. 2002, Lis et al. 2005, 
Chen et al. 2012a).

2)  CH2 (2920–2940 cm–1) / CH3 (2955–2975 cm–1), 
related to the of the length of aliphatic chains (Wang & 
Griffiths 1985, Lin & Ritz 1993, Ibarra et al. 1996, Guo 
& Bustin 1998a).

3)  C=O (1650–1800 cm–1) / C=Car (1500–1650 cm–1) 
(Mastalerz & Bustin 1996, 1997).

4)  ̒Aʼ factor, a measure of the hydrocarbon-generating 
potential (Ganz & Kalkreuth 1987), was determined as: 

–   ̒A1ʼ: [CH2 + CH3 (3000–2800 cm–1)] / [CH2 + CH3 
(3000–2800 cm–1) + C=C (1630 cm–1)] (Chen et al. 
2012a, b; Wang et al. 2013); 

–   ̒A2ʼ: [CH2 + CH3 (3000–2800 cm–1)] / [CH2 + CH3 
(3000–2800 cm–1) + C=C (1500–1650 cm–1)] (Guo & 
Bustin 1998a, DʼAngelo et al. 2010, Dutta et al. 2013). 

5)  ̒Cʼ factor, being a proxy of the maturation level (Ganz 
& Kalkreuth 1987), was calculated as:

–   ̒C1ʼ: C=O (1710 cm–1) / [C=O (1710 cm–1) + C=C  
(1600 cm–1)] (Ganz & Kalkreuth 1987; Chen et al. 
2012a, b); 

–   ̒C2ʼ: C=O (1650–1800 cm–1) / [C=O (1650–1800 cm–1) 
 + C=C (1500–1650 cm–1)] (Guo & Bustin 1998a, 
DʼAngelo et al. 2010, Dutta et al. 2013).
The ʻAʼ and ʻCʼ factors were determined by two 

methods to make it possible to compare the results with 
those given by different authors. Due to the presence 
of clay minerals, carbonates and quartz influencing the 
micro-FTIR spectra in the aromatic CHar out-of-plane 
deformation region (750–900 cm–1), this band was not 
taken into account in calculation of the spectral ratios.

Results and discussion

Graptolite particles under reflected light show two 
types of morphology: non-granular (Fig. 2A–C), which 
predominates, and granular – rarely observed (Fig. 2D). 
Non-granular fragments sometimes display, poorly 
visible, lamellar structure, typical for the fusellar tissue 
(Goodarzi 1984; Goodarzi & Norford 1985, 1987; Bustin 
et al. 1989), (Fig. 2A). Granular fragments (Fig. 2D) 
probably compose the common canal (Goodarzi 1984; 
Goodarzi & Norford 1985, 1987; Bustin et al. 1989), 
which is sometimes filled with fine-grained pyrite. 

The mean values of graptolite reflectance (Rr) range 
between 0.70% and 0.77% (s = 0.07–0.08%) (Tab. 1), 
indicating maturity corresponding to the oil window 

Sample Rr [%] VRE [%] CHar/(CH2 + CH3) CH2/CH3 C=O/C=C ‘A1’ ‘A2’ ‘C1’ ‘C2’

P1 0.70 0.67 0.050 2.08 0.44 0.79 0.60 0.22 0.31

n = 42 0.07  0.011 0.28 0.21 0.09 0.10 0.11 0.10

P2 0.74 0.70 0.058 1.97 0.41 0.76 0.57 0.29 0.29

n = 54 0.08  0.012 0.18 0.11 0.09 0.08 0.12 0.06

B1 0.74 0.70 0.055 2.06 0.48 0.46 0.28 0.29 0.33

n = 45 0.07  0.017 0.31 0.15 0.15 0.13 0.11 0.06

B2 0.77 0.72 0.054 1.62 0.51 0.49 0.29 0.37 0.32

n = 32 0.07  0.021 0.15 0.12 0.18 0.09 0.15 0.07

Table 1. Mean reflectance (Rr), Vitrinite Reflectance Equivalent (VRE) and the selected micro-FTIR spectral parameters of the graptolite periderm. 

Abbreviations: Rr – mean reflectance of the graptolite periderm; VRE – Vitrinite Reflectance Equivalent; CHar/(CH2 + CH3) – relative content of the 
aromatic (3000–3100 cm–1) and aliphatic (2800–3000 cm–1) hydrogen functional groups; CH2/CH3 – relative intensity of the CH2 (2920–2940 cm–1) 
and CH3 (2955–2975 cm–1) bands; C=O/C=C – relative content of the C=O groups (1650–1800 cm–1) and C=C aromatic rings (1500–1650 cm–1);  
ʻA1ʼ – the ʻAʼ factor calculated as [CH2 + CH3 (3000–2800 cm–1)] / [CH2 + CH3 (3000–2800 cm–1) + C=C (1630 cm–1)]; ʻA2ʼ – the ʻAʼ factor 
calculated as [CH2 + CH3 (3000–2800 cm–1)] / [CH2 + CH3 (3000–2800 cm–1) + C=C (1500 –1650 cm–1)]; ʻC1ʼ – the ʻCʼ factor calculated as  
C=O (1710 cm–1) / [C=O (1710 cm–1) + C=C (1600 cm–1)]; ʻC2ʼ – the ʻCʼ factor calculated as C=O (1650–1800 cm–1) / [C=O (1650–1800 cm–1) + C=C 
(1500–1650 cm–1)]; n – number of measurements; italics – the standard deviation is given.
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zone. Relatively low number of measurements (32–54) 
is due to the limited amount of homogenous areas on the 
graptolite particles. The Vitrinite Reflectance Equivalent 
(VRE) values, calculated after Petersen et al. (2013), 
vary from 0.67% to 0.72% (Tab. 1). The results of  
Rr measurements conform to the data presented by 
Smolarek et al. (2014). Similar or higher values were 
obtained by Schito et al. (2017). The results are also in 
line with the Tmax determinations (431–441 oC) made by 
Smolarek et al. (2014), Mustafa et al. (2015) and Schito et 
al. (2017). The oil window zone is also confirmed by the 
occurrence of scarce oil droplets, which reveal spherical 
shape and yellow colour under the fluorescent light.

Several bands of absorption are displayed in a typical 
micro-FTIR spectrum of the graptolite periderm (Fig. 3).  
They are assigned to OH groups (3400–3580 cm–1), 
aromatic CHar stretching vibrations (3000–3100 cm–1), 
and aliphatic CH2 + CH3 stretching vibrations (2800–3000 
cm–1). Curve-fitting procedure revealed the occurrence 
of six or seven bands within the aliphatic region (Fig. 4):  
2985–2990 cm–1 – symmetric stretching vibrations of  
CH groups (very weak, found only in some of the spectra);  
2955–2960 cm–1 – asymmetric stretching vibrations  
of CH3 groups; 2920–2930 cm–1 – asymmetric  
stretch ing vibrations of CH2 groups; 2890–2905 cm–1 – 
stretching vibrations of CH groups; 2865–2875 cm–1 – 
symmetric stretching vibrations of CH3 groups; 2845–2855 
cm–1 – symmetric stretching vibrations of CH2 groups;  

2825–2830 cm–1 – a very weak band, not assigned (Ibarra 
et al. 1996). 

Six bands of absorption were identified in the C=O + 
C=C region (1500–1800cm–1) (Fig. 5): 1760–1765 cm–1 –  
C=O stretching vibrations of esters; 1710–1715 cm–1 – 
C=O stretching vibrations of carboxylic acids; 1660–1670 
cm–1 – conjugated C=O stretching vibrations (quinones 
and ketones) 1615–1620 cm–1, 1570–1580 cm–1 and  
1535–1545 cm–1 – C=C aromatic ring stretching vibra-
tions.

In addition, bands assigned to aliphatic CH2 + CH3 
deformation (~1350–1470 cm–1), aromatic ether, ester or 
phenolic C–O stretching vibrations (~1100–1300 cm–1), 
aliphatic ether C–O stretching vibrations (~1030–1080 
cm–1), and aromatic CHar out-of-plane deformation  
(~750–900 cm–1) are observed. Bands corresponding to 
clay minerals (illite, kaolinite) (~1000–1150 cm–1 and  
~900 cm–1), carbonates (mostly calcite) (~1430–1440 
cm–1 and ~880 cm–1), quartz (~1050–1100 cm–1 and  

~780–800 cm–1), as well as pyrite (~1000–1150 cm–1) 
(Chen et al. 2014, 2015) are also detected. 

The CHar/(CH2 + CH3) ratio reaches 0.050–0.058 
(Tab. 1, Fig. 6), being higher than the values determined 
for the Silurian graptolites from the Baltic Basin of 
Northern Poland of similar (Caricchi et al. 2016) or even 
higher reflectance (Morga & Kamińska 2018). The CH2/
CH3 ratio decreases from 2.08 to 1.62 with the increasing 
reflectance, which demonstrates shortening of the ali-
phatic chains (Tab. 1, Fig. 7). These values correspond 
well with the ones determined for the Silurian graptolites 

Figure 3. Representative micro-FTIR spectra of the graptolite periderm 
(samples P1 and B2).

Figure 4. Curve-fitting of the aliphatic (2800–3000cm–1) region for 
sample (sample P1).
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(Suchý et al. 2002, 2004; Caricchi et al. 2016) as well as 
chitinozoans and scolecodonts (Dutta et al. 2013). Much 
lower values were observed in graptolites showing higher 
reflectance (Morga & Kamińska 2018). The C=O/C=C 
ratio is low (0.41–0.51) which reveals that weathering  
did not affect the chemical structure of the graptolite 

periderm (Tab. 1). In general, the ratio is lower in com-
parison to the graptolites having higher reflectance and 
examined from the core samples (Morga & Kamińska 
2018). The ʻA1ʼ factor varies between 0.46 and 0.79, 
while the ʻA2ʼ factor between 0.28 and 0.60 (Tab. 1). 
Much higher values indicating higher hydrocarbon 
potential are observed regarding the samples from the 
Prągowiec ravine. Com parable results were gained for 
graptolites (Caricchi et al. 2016, Morga & Kamińska 
2018), chitinozoans and scole codonts (Dutta et al. 2013). 

The ʻC1ʼ factor changes from 0.22 to 0.37 and the 
ʻC2ʼ factor from 0.29 to 0.33 (Tab. 1), falling within the 
ranges documented for the higher reflectance graptolites 
(Morga & Kamińska 2018), and being lower than 
those found by Caricchi et al. (2016). In general, these 
values are similar to those obtained for chitinozoans and 
scolecodonts (Dutta et al. 2013). Considering the ‘A2’ and 
‘C2’ factors (Guo & Bustin 1998a, D’Angelo et al. 2010), 
the graptolite periderm represents kerogen type II or III 
(or can be treated as transitive type II/III) (Fig. 8), as was 
found in the previous studies (Bustin et al. 1989, Morga & 
Kamińska 2018).

The graptolite periderm in the studied samples is 
composed predominantly of aromatic groups and rings 
with lesser amount of aliphatic and carbonyl/carboxyl 
groups. The CH2/CH3 ratio indicates that aliphatic  
chains are relatively long in comparison to vitrinites and 
liptinites from coals (Guo & Bustin 1998a, Lin & Ritz 
1993, Mastalerz & Bustin 1996, Komorek 2016, among  
others). 

Figure 6. Relationship between the CHar/(CH2 + CH3) ratio and the 
mean reflectance (Rr) of the graptolite periderm (data referring to  
Rr = 1.30–1.83% after Morga & Kamińska 2018).

Figure 7. Relationship between the CH2/CH3 ratio and the mean reflec t - 
ance (Rr) of the graptolite periderm (data referring to Rr = 1.30–1.83%  
after Morga & Kamińska 2018).

Figure 5. Curve-fitting of the C=O + C=C (1500–1800cm–1) region for 
sample (sample B2).
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The results obtained for the two analysed localities 
(Prągowiec ravine, Bardo Stawy) are mostly consistent. 
The only distinct difference is in the ‘A1’ and ‘A2’ factors, 
higher values of which indicate much higher hydrocarbon 
potential of shales collected in the Prągowiec ravine, 
even though the reflectance values are similar. It should 
be mentioned, however, that the ‘A’ factor does not 
show close relationship with thermal maturity indices 
such as Rr or Tmax, as was revealed from shale studies 
(Mroczkowska-Szerszeń et al. 2015, Caricchi et al. 2016). 

Besides, chemical features of the graptolite periderm may 
not fully reflect the hydrocarbon potential of the whole 
rock. Furthermore, TOC content in shales occurring in 
both localities is very varied. It ranges from 0.3% to 2.0% 
for Bardo Stawy and from 0.5% to 1.2% for the Prągowiec 
ravine (Mustafa et al. 2015, Schito et al. 2017). This 
means that the values of some geochemical parameters are 
dependent on the place of sampling in the rock profile of 
the two studied localities. 

Many similarities between chemical structure of the 
graptolite periderm and vitrinite of the adequate rank 
(Vitrinite Reflectance Equivalent – VRE was used for 
comparison) are well-established. This regards principally 
the CHar/(CH2 + CH3) ratio (Machnikowska et al. 2002, 
Chen et al. 2012a) and the CH2/CH3 ratio (Lis et al. 2005, 
Petersen & Nytoft 2006, Chen et al. 2012a), the ‘A1’ 
factor (Chen et al. 2012a). Such relation was previously 
suggested by Bustin et al. (1989) and Morga & Kamińska 
(2018). To some extent it is also indicated by the kerogen 
type of the graptolite periderm, which is frequently 
detected as transitive – II/III, although typical marine 
kerogen is of type II, and type III (represented by vitrinite) 
represents a terrestrial origin.

It is observed that within the whole graptolite reflec t-
ance range (Rr = 0.70–1.83%) analysed in this and prev-
ious study (Morga & Kamińska 2018) the CHar/(CH2 +  
CH3) ratio stays stable and begins to increase only at 
higher reflectance (Rr > 1.6%), showing weak increase 
in aromaticity (Fig. 6). On the other hand, the CH2/CH3 
ratio strongly decreases with increasing Rr, which reflects 

Figure 8. Kerogen type diagram of the graptolite periderm according to 
‘A2’ and ‘C2’ factors obtained from the micro-FTIR spectra (after Guo & 
Bustin 1998a, D’Angelo et al. 2010).

Figure 9. Relationship between the ID1/IG ratio and the the CHar/(CH2 + 
CH3) ratio for the graptolite periderm (data referring to Rr = 1.30–1.83% 
after Morga & Kamińska 2018).

Figure 10. Relationship between the G band FWHM and the the CH2/CH3  
ratio for the graptolite periderm (data referring to Rr = 1.30–1.83% after 
Morga & Kamińska 2018).
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shortening of the aliphatic chains (Fig. 7). Adequate rela-
tionship was found for vitrinite (Chen et al. 2012a).

The microstructural examination showed that the 
graptolite periderm from the Holy Cross Mountains is 
a poorly organized carbonaceous matter (Morga 2019). 
The study also proved that microstructure does not vary 
significantly between the samples from the two considered 
localities. The micro-FTIR derived spectral ratios can 
be compared to the micro-Raman spectral parameters 
obtained on the same sample set (Morga & Pawlyta 2018, 
Morga 2019). It is seen that aromaticity of the graptolite 
periderm, demonstrated by the CHar/(CH2 + CH3) ratio, 
tends to increase with the increasing ID1/IG ratio (Fig. 9), 
which is a measure of the diameter of the coherent domains 
(La) in the carbonaceous materials (Tuinstra & Koenig 
1970, Ferrari & Robertson 2000 among others). The ID1/IG 
ratio increases with increasing La, when it is below 2 nm 
(which is the case here – see Morga & Pawlyta 2018), and 
decreases when La exceeds 2 nm (Ferrari & Robertson 
2000). At CH2/CH3 = 1.3, the full width at half maximum 
(FWHM) of the Raman G band, which arises from the E2g 
stretching vibrations in aromatic layers (Beyssac et al. 
2003), begins to decrease with decreasing CH2/CH3 ratio 
(Fig. 10), which reflects improvement in the structural 
ordering (Kelemen & Fang 2001, Quirico et al. 2005). 
Therefore, it can be concluded that with increasing Rr 
the graptolite periderm (similarly to vitrinite) undergoes 
significant chemical and microstructural alteration. The 
aromaticity increases and the aliphatic chains become 
shorter. This is accompanied by growth of the coherent 
domains and increase in the structural order.

Conclusions

Graptolite periderm in the Silurian shales from the Holy 
Cross Mountains of Poland (Rr = 0.70–0.77%; VRE = 0.67–
0.72%) is composed predominantly of aromatic groups 
and rings with lesser amount of aliphatic and carbonyl/
carboxyl groups. Chemical composition does not vary 
significantly between the samples from the two considered 
localities (the Prągowiec ravine and Bardo Stawy), which 
corresponds to the narrow range of graptolite reflectance. 
However, the samples from the Prągowiec ravine are 
characterized by higher hydrocarbon potential. It is found 
that many similarities occur in the chemical structure of 
the graptolite periderm and vitrinite within the reflectance 
range of Rr ≈ 0.7–1.5%. With increasing reflectance, the 
length of the aliphatic chains (as inferred from the CH2/
CH3 ratio) in the graptolite periderm decreases, and the 
relative content of the aromatic groups [as indicated by the 
CHar/(CH2 + CH3) ratio] begins to increase at Rr ≈ 1.6%. 
This is accompanied by growth of the coherent domains 
and improvement in the structural order.
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