Current IF 1.9
Latest issue (RSS 2.0)
Contact Editorial Office at
bulletin@geology.cz

Bulletin of Geosciences
Published by ©
Czech Geological Survey,
W. Bohemia Museum Pilsen
Individual sponsors
ISSN: 1802-8225 (online),
1214-1119 (print)

Stromatactis cavities in sediments and the role of coarse-grained accessories
Published in: Bulletin of Geosciences, volume 81, issue 2; pages: 123 - 146; Received 31 January 2006; Accepted in revised form 11 April 2006;
Keywords: sedimentation experiments, polydisperse suspensions, stromatactis cavities, crinoid columnals, carbonate sediments,
Abstract
The analysis of previous experimental work made on the simulation of stromatactis-like cavities in rapidly settling suspensions of particulate matter substantiates the continuation of experiments toward identifying the conditions of cavity formation. It has been suggested that the most promising directions in this experimental work involve the simplification of complex factors (e.g., variables that derive from the properties of particles and media, as well as the sedimentation dynamics of slurries). Our new hydrodynamic concept of stromatactis formation addresses the traditional key arguments of previous authors on the origins of stromatactis systems. The direct production of stromatactis-type cavities during the sedimentation of fine particulate, polydisperse, multimodal aquatic suspended matter can be characterized in terms of competition between fluids escaping from compressed, diluted domains, and the dynamic effects of the dense packing of solid particles on their boundaries, the latter gradually overtaking from the former, until a middle layer of sediment is sufficiently stabilized and the first internal sedimentation from residual suspensions begins. With the earliest stabilization of the grain-supported, skeleton-like structures in the sediment, low domical but surprisingly stable vaults develop above the cavity zones. Underneath the coalescing arched structures, there often remain places in which grains can still be fluidized, and which consequently enable the further widening of these primary cavities. The specific grain size distribution is derived from natural counterparts, an attribute combined with the high internal friction angle, and increases the final sediment cohesion and stability. This process is particularly effective when highly polydisperse-multimodal sediment materials have highly angular, rugged, or potentially cohesive grains. When the relatively coarsest- and finest-grained fractions are present in increased amounts, the energy dissipation of the dense turbulent slurry is enhanced, and the stromatactis-producing mid-layer is gradually sealed by a relatively impermeable, non-stromatactis, very fine-grained cover in the upper part of the deposit. Two categories of experiments are discussed in this paper. The first is aimed at explaining how moderately large particles can interact with each other. In this category of experiments, moderately graded tridisperse mixtures of angular or highly textured particles tended to produce firmly packed clusters with ensuing domical vaulting above cavities. The second group of experiments is based on combinations of bidisperse mixtures of large grains with polydisperse nearly-unimodal matrices of small angular grains. These two components, if used separately, have close to zero capacity for producing any type of stromatactis-like cavities. However, once they were combined, even modest amounts of these large grains led to the growth of spacious cavity systems, particularly if artificial crinoid columnals were present. The comparison of our experimental results with natural examples suggest that crinoid columnals must be regarded as an important, although not indispensable accelerator of stromatactis cavity production.References
Aranson, I.S. & Tsimring, L.S. 2005. Patterns and collective behavior in granular media: theoretical concepts. http://mti.msd.anl.gov/resources/AransonTsimringReview/aranson_tsimring.pdf, dated 15 July 2005, 1–49.
Armstrong, A.K. & MacKevett, E.M. Jr. 1982. Stratigraphy and diagenetic history of the lower part of the Triassic Chitistone Limestone, Alaska. U.S. Geological Survey Professional Paper 1212–A, 1–26.
Aubrecht, R., Szulc, J., Michalík, J., Schlögl, J. & Wagreich, M. 2002a. Middle Jurassic stromatactis mudmound in the Pieniny Klippen Belt (Western Carpathians). Facies 47, 113–126.
Aubrecht, R., Krobicki, M., Wierzbowski, A., Matyja, A. & Schlögl, J. 2002b. Jurassic stromatactis mud mounds in the Pieniny Klippen Belt (Western Carpathians) – petrography and stratigraphy, 1–16. In Bucur, I.I.&Filipescu, S. (eds) Research advances in calcareous algae and microbial carbonates. Proc. 4th IFAA Reg. Meeting Cluj-Napoca. Cluj University Press.
Awazu, A. 2000. Size segregation and convection of granular mixtures almost completely packed in a thin rotating box. Physical Review Letters 84(20), 4585–4588.
Barbieri, R., Ori, G.G. & Cavalazzi, B. 2004. A Silurian cold-seep ecosystem from the Middle Atlas, Morocco. Palaios 19(6), 527–542.
Batchelor, G.K. & Rensburg, R.W.J. van 1986. Structure formation in bidisperse formation. Journal of Fluid Mechanics 166, 379–407.
Bathurst, R.G.C. 1959. The cavernous structure of some Mississippian stromatactis reefs in Lancashire, England. Journal of Sedimentary Petrology 29, 365–376.
Bathurst, R.G.C. 1980. Stromatactis–origin related to submarine cemented crusts in Palaeozoic mud mounds. Geology 8, 131–134.
Bathurst, R.G.C. 1982. Genesis of stromatactis cavities between submarine crusts in Palaeozoic carbonate mud buildups. Journal of the Geological Society of London 139, 165–181.
Bernet-Rollande, M.C., Maurin, A.F. & Monty, C.L.V. 1981. De la bactérie au réservoir carbonaté. Pétrole et Techniques (La revue de l’Association française des Techniciens et Professionnels du Pétrole) 283, 96–98.
Berres, S. & Bürger, R. 2003. On gravity and centrifugal settling of polydisperse suspensions forming compressible sediments. International Journal of Solids and Structures 40, 4965–4987.
Berres, S., Bürger, R., Karlsen, K.H. & Tory, E.M. 2003. Strongly degenerate parabolic-hyperbolic systems modeling polydisperse sedimentation with compression. SIAM Journal on Applied Mathematics 64(1), 41–80.
Blanchette, F. & Bush, J.W.M. 2005. Particle concentration evolution and sedimentation-induced instabilities in a stably stratified environment. Physics of Fluids 17, 073302
Bosence, D.W.J. & Bridges, P. 1995. Origin and evolution of carbonate mud-mounds, 3–9. In Monty, C.L.V., Bosence, D.W.J., Bridges, P.H. & Pratt, B.R. (eds) Carbonate mudmounds: their origin and evolution. International Association of Sedimentologist, Special Publications 23.
Boulvain, F. 1993. Sédimentologie et diagenese des monticules micritiques “F2j” du Frasnien de l’Ardenne. Service Géologique de Belgique, Papier Professionel 2(260), 1–427.
Boulvain, F. 2001. Facies architecture and diagenesis of Belgian Late Frasnian carbonate mounds. Sedimentary Geology 145, 269–294.
Boulvain, F., Cornet, P., da Silva, A.-C., Delaite, G., Demany, B., Humblet, M., Renard, M. & Coen-Aubert, M. 2004. Reconstructing atoll-like mounds from the Frasnian of Belgium. Facies 50(2), 313–326.
Bourque, P.A. & Gignac, H. 1983. Sponge-constructed stromatactis mud mounds, Silurian of Gaspé, Québec. Journal of Sedimentary Petrology 53, 521–532.
Bourque, P.A., Neuweiler, F. & Boulvain, F. 2004. The mud-mound system: products and processes. 32nd Int. Geol. Congress, Florence, Italy. CD-ROM Abstracts 2, pp. 1079.
Bourrouilh, R., Bourque, P.-A., Dansereau, P., Bourrouilh-Le, J.F.G. & Weyant, P. 1998. Synsedimentary tectonics, mud-mounds and sea-level changes on a Palaeozoic carbonate platform margin: a Devonian Montagne Noire example (France). Sedimentary Geology 118(1), 95–118.
Breu, A.P.J., Ensner, H.M., Kruelle, C.A. & Rehberg, I. 2003. Reversing the Brazil-nut effect: competition between percolation and condensation. Physical Review Letters 90(1), 014302.
Cardoso, S.S. & Woods, A.W. 1995. On convection and mixing driven by sedimentation. Journal of Fluid Mechanics 285, 165–180.
Chlupáč, I., Havlíček, V., Kříž, J., Kukal, Z. & Štorch, P. 1998. Palaeozoic of the Barrandian (Cambrian to Devonian). 183 pp. Publication of the Czech Geological Survey, Prague.
da Silva, A.-C. & Boulvain, F. 2004. From palaeosols to carbonate mounds: facies and environments of the middle Frasnian platform in Belgium. Geological Quarterly 48(3), 253–266.
Desbordes, B. & Maurin, A.F. 1974. Troix exemples d’études du Frasnien de l’Alberta, Canada. Notes et Mémoires de la Compagnie Française des Pétroles (Paris) 11, 293–336.
Dieken, G. 1996. Karbonatmikrofazies, Paläoökologie und Genese der Stromatactis-Strukturen des Suchomasty- und des basalen Acanthopyge-Kalksteins im Barrandium (Tschechische Republik). Aachener Geowissenschaftliche Beiträge 19, 1–148.
Dupont, E. 1881. Sur l’origine des calcaires dévoniens de la Belgique. Bulletin de l’Académie royale des Sciences, des Lettres et des Beaux-Arts de Belgique, 3° série, 2(9–10), 264–280.
Duran, J., Kolb, E. & Vanel, L. 1998. Static friction and arch formation in granular materials. Physical Review E (The American Physical Society) 58(1), 805–812.
Dzubiella, J. & Löwen, H. 2002. Pattern formation in driven colloidal mixtures: tilted driving forces and re-entrant crystal freezing. Journal of Physics Condensed Matter 14, 9383–9395.
Flajs, G. & Hüssner, H.M. 1993. A microbial model for the Lower Devonian stromatactis mud mounds of the Montagne Noire (France). Facies 29, 179–194.
Gargett, A., Wells, J., Tejada-Martínez, A.E. & Grosch, C.E. 2004. Langmuir supercells: a mechanism for sediment resuspension and transport in shallow seas. Science 10(December 2004), 1925–1928.
Gnoli, M., Jaanuson, V., Leone, F. & Serpagli, E. 1981. A Lower Devonian stromatactis-bearing carbonate mound from southern Sardinia. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 1981(6), 339–345.
Gray, T.E., Alexander, J. & Leeder, M.R. 2005. Quantifying velocity and turbulence structure in depositing sustained turbidity currents across breaks in slope. Sedimentology 52, 467–488.
Gutteridge, P. 2003. The reef at High Tor. Mercian Geologist 15(4), 235–237.
Heckel, P.H. 1972. Possible inorganic origin for stromatactis in calcilutite mounds in the Tully Limestone, Devonian of New York. Journal of Sedimentary Petrology 42, 1–7.
Hilali, A., Lachkem, H. & Boulvain, F. 1999. Comparaison des Kess-kess de Hmar Lakhdad (Emsien, Maroc) et des monticules micritiques du Massif de Philippeville (Frasnien, Belgique). Geologica Belgica 1(1998), 17–31.
Hill, R., Lee, E.H. & Tupper, S.J. 1947. The theory of wedge indentation of ductile materials. Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences 188(1013), 273–289.
Hladil, J. 2005a. Stromatactis in glass of water: An experiment simulating formation of particular cavities in limestone sediments (in Czech). Vesmír 84(7), 388–394.
Hladil, J. 2005b. The formation of stromatactis-type fenestral structures during the sedimentation of experimental slurries – a possible clue to a 120-year-old puzzle about stromatactis. Bulletin of Geosciences 80(3), 193–211.
Hoyal, D.C., Bursik, M.I. & Atkinson, J.F. 1999. Settlingdriven convection: a mechanism of sedimentation from stratified fluids. Journal of Geophysical Research 104(C4), 7953–7966.
Huppert, H.E., Kerr, R.C., Lister, J.R. & Turner, J.S. 1991. Convection and particle entrainment driven by differential sedimentation. Journal of Fluid Mechanics 226, 349–369.
James, N.P. 1984. Reefs. Geoscience Canada Reprint Series 1, 229–244.
Kaufmann, B., Reinhold, C. & Schauer, M. 1999. Concentric-zoned calcite cements of Middle Devonian carbonate mounds of the Mader Basin (eastern Anti-Atlas, Morocco) – a combined cathodoluminescence and microprobe study. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 214, 95–110.
Kaufmann, B. & Wendt, J. 2000. Calcite cement successions in Middle Devonian (Givetian) carbonate mud buildups of the southern Ahnet Basin (Algerian Sahara). Carbonates Evaporites 15, 149–161.
Kerr, R.C. 1991. Erosion of stable density gradient by sedimentation-driven convection. Nature 353, 423–425.
Kerr, R.C. & Lister, J.R. 1992. Further results for convection driven by the differential sedimentation of particles. Journal of Fluid Mechanics 243, 227–245.
Krause, F.F., Scotese, C.R., Nieto, C., Sayegh, S.G., Hopkins, J.C. & Meyer, R.O. 2004. Paleozoic stromatactis and zebra carbonate mud-mounds: global abundance and paleogeographic distribution. Geology 32, 181–184.
Kukal, Z. 1971. Open-space structures in the Devonian limestones of the Barrandian (central Bohemia). Časopis pro mineralogii a geologii 16, 345–362.
Lees, A. & Miller, J. 1985. Facies variation in Waulsortian buildups. Part 2. Mid-Dinantian buildups from Europe and North America. Geological Journal 20, 159–180.
Lees, A. & Miller, J. 1995. Waulsortian banks, 191–271. In Monty, C.L.V., Bosence, D.W.J., Bridges, P.H. & Pratt, B.R. (eds) Carbonate mud-mounds: their origin and evolution. International Association of Sedimentologist, Special Publications 23.
Lowenstein, T.K., Demicco, R.V., Timofeeff, M.N., Hardie, L.A. & Brennan, S.T. 2003. Ramifications of secular variations in seawater chemistry. Geological Society of America, 2003 Seattle Annual Meeting, Abstracts with Programs 35(6), 203.
Luding, S. & Herrmann, H.J. 1999. Cluster-growth in freely cooling granular media. Chaos 9, 673–681.
Mackenzie, F.T. & Pigott, J.D. 1981. Tectonic controls of Phanerozoic sedimentary rock cycling. Journal of the Geological Society of London 138, 183–196.
Matyszkiewicz, J. 1997. Stromatactis cavities and stromatactis-like cavities in the Upper Jurassic carbonate buildups at Mlynka and Zabierzów (Oxfordian, Southern Poland). Annales Societatis Geologorum Poloniae 67(1), 45–56.
May, A. 2005. Die Stromatoporen des Devons und Silurs von Zentral-Böhmen (Tschechische Republik) und ihre Kommensalen. Zitteliana B25, 117–250.
Michalowski, R.L. & Park, N. 2004. Admissible stress fields and arching in piles of sand. Géotechnique (Institution of Civil Engineers, London) 54(8), 529–538.
Monty, C.L.V. 1995. The rise and nature of carbonate mudmounds: an introductory actualistic approach, 11–48. In Monty, C.L.V., Bosence, D.W.J., Bridges, P.H. & Pratt, B.R. (eds) Carbonate mud mounds: their origin and evolution. International Association of Sedimentologists, Special Publication 23.
Monty, C.L.V., Bosence, D.W.J., Bridges, P.H. & Pratt, B.R. (eds) 1995. Carbonate mud-mounds: their origin and evolution. 543 pp. International Association of Sedimentologists, Special Publication 23.
Mounji, D. & Bourque, P.-A. 1998. The Devonian mound-like structures of the Maider Basin, Moroccan Sahara: mud mounds or pop-up structures? GACMAC-APGGQ Annual meeting, Québec, Abstracts with Program 23, ID220, A129.
Neuweiler, F. & Bernoulli, D. 2005. Mesozoic (Lower Jurassic) red stromatactis limestones from the Southern Alps (Arzo, Switzerland): calcite mineral authigenesis and syneresis-type deformation. International Journal of Earth Sciences 94, 130–146.
Neuweiler, F., Bourque, P.A. & Boulvain, F. 2001. Why is stromatactis so rare in Mesozoic carbonate mud mounds? Terra Nova 13, 338–346.
Neuweiler, F., Gautret, P., Thiel, V., Lange, R., Michaelis, W. & Reitner, J. 1999. Petrology of Lower Cretaceous carbonate mud mounds (Albian, N. Spain): insights into organomineralic deposits of the geological record. Sedimentology 46, 837–859.
Peacock, D.C.P. 2003. A simple experiment to demonstrate overpressured fluids and soft sediment deformation. NAGT Journal of Geoscience Education 51(4), 410–414.
Pratt, B.R. 1982. Stromatolitic framework of carbonate mudmounds. Journal of Sedimentary Petrology 52, 1203–1227.
Pratt, B.R. 1998. Effects of synsedimentary earthquakes on cavity development in deep-water reefal mud-mounds. GACMAC-APGGQ Annual meeting, Québec, Abstracts with Program 23, ID554, A130.
Precali, R., Giani, M., Mariani, M., Grilli, F., Ferrari, C.R., Pečar, O. & Paschini, E. 2005. Mucilaginous aggregates in the northern Adriatic in the period 1999–2002: Typology and distribution. Science of the Total Environment 353, 10–23.
Sandberg, P.A. 1983. An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy. Nature 305, 19–22.
Schmid, D.U., Leinfelder, R.R. & Nose, M. 2001. Growth dynamics and ecology of Upper Jurassic mounds, with comparisons to Mid-Palaeozoic mounds. Sedimentary Geology 145, 343–376.
Schmid, D.U. & Copper, P. 2004. Stromatactis fabric and dynamics revealed by computer-based 3D reconstruction. In Pena dos Reis, R., Callapez, P. & Dinis, P. (eds) 23rd IAS Meeting of Sedimentology, Coimbra – September 15–17, 2004, Abstract Book. Coimbra, 248 pp.
Schnautz, T., Brito, R., Kruelle, C.A. & Rehberg, I. 2005. A horizontal Brazil-nut effect and its reverse. Physical Review Letters 95(2), 028001.
Shiraki, M. 1996. Upper Devonian sponge-algal mudmounds, southern flank of Miette reef complex, Jasper National Park, Alberta, Canada. Master’s thesis, Department of Earth and Planetary Sciences, McGill University, Montreal (http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq29785.pdf), 104 pp.
Simo, J.A. & Lehmann, P.J. 2000. Diagenetic history of Pipe Creek Jr. Reef, Silurian, north-central Indiana, U.S.A. Journal of Sedimentary Research 70(4), 937–951.
Sivhed, U., Erlström, M., Bojesen-Koefoed, J.A. & Löfgren, A. 2004. Upper Ordovician carbonate mounds on Gotland, central Baltic Sea: Distribution, composition and reservoir characteristics. Journal of Petroleum Geology 27(2), 115–140.
Stanley, S.M. & Hardie, L.A. 1998. Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeography, Palaeoclimatology, Palaeoecology 144, 3–19.
Steiner, J. 1967. The sequence of geological events and the dynamics of the Milky Way Galaxy. Journal of the Geological Society of Australia 14(1), 99–131.
Velebilová, L. & Šarf, P. 1996. Application of microfacies analysis in the Lower Devonian of the Barrandian, central Bohemia. Journal of the Czech Geological Society 41(1–2), 105–115.
Wallace, M.W. 1987. The role of internal erosion and sedimentation in the formation of stromatactis mudstones associated lithologies. Journal of Sedimentary Petrology 57, 695–700.
Webb, G.E. 1996. Was Phanerozoic reef history controlled by the distribution of non-enzymatically secreted reef carbonates (microbial carbonate and biological induced cement)? Sedimentology 43, 947–971.
Weiland, R.H., Fessas, Y.P. & Ramarao, B.V. 1984. On instabilities arising during sedimentation of two-component mixtures of solids. Journal of Fluid Mechanics 142, 383–389.
Wendt, J., Kaufmann, B. & Belka, Z. 2001. An exhumed Palaeozoic underwater scenery: the Visean mud mounds of the eastern Anti-Atlas (Morocco). Sedimentary Geology 145, 215–233.
Wet, C.B. de, Frey, H.M., Gaswirth, S.B., Mora, C.I., Rahnis, M. & Bruno, C.R. 2004. Origin of meter-scale submarine cavities and herringbone calcite cement in a Cambrian microbial reef, Ledger Formation (U.S.A.). Journal of Sedimentary Research 74(6), 914–923.
Wilber, R.J. & Neumann, A.C. 1993. Effects of submarine cementation on microfabrics and physical properties of carbonate slope deposits, northern Bahamas, 79–94. In Rezak, R. & Lavoie, D.L. (eds) Carbonate microfabrics. Frontiers in Sedimentary Geology 6.
Williams, R.A., Amarasinghe, W.B.K., Simons, S.J.R. & Xie, C.G. 1991. Sedimentation behaviour of complex polydisperse suspensions. Powder Technology 65(1–3), 411–432.
Woods, A.D. 2002. The role of subcutaneous fluid escape in the formation of a cavity system within a mid-Ordovician (Whiterockian) mud mound at Meiklejohn Peak, southwestern Nevada. http://gsa.confex.com/gsa/2002AM/finalprogram/abstract_40553.htm, 2002 GSA Denver Meeting Paper.