Current IF 1.9
Latest issue (RSS 2.0)
Contact Editorial Office at
bulletin@geology.cz

Bulletin of Geosciences
Published by ©
Czech Geological Survey,
W. Bohemia Museum Pilsen
Individual sponsors
ISSN: 1802-8225 (online),
1214-1119 (print)

Hexactins in the ‘protomonaxonid’ sponge Choiaella and proposal of Ascospongiae (class nov.) asa formal replacement for the Protomonaxonida
Published in: Bulletin of Geosciences, volume 96, issue 3; pages: 265 - 277; Received 22 November 2020; Accepted in revised form 19 May 2021; Online 6 June 2021
Keywords: Porifera, Cambrian, evolution, protomonaxonid, Choiaella, sponge,
Abstract
The protomonaxonid sponges are a controversial early group with supposed ties to the demosponges, but the groupalso possesses features that imply a much earlier-branching position in sponge evolution. A new species, Choiaellahexactinophora sp. nov., shows a typical protomonaxonid body plan but also contains small hexactin-based spicules,a skeletal element today restricted to the class Hexactinellida, but which has been proposed to be plesiomorphicfor Porifera and lost in the other living classes. This finding from the Castle Bank fauna (Middle Ordovician of theBuilth Inlier, Wales, UK) confirms continuity of the protomonaxonid lineage, as hexactins are also known fromfossils interpreted to be among the earliest members of the group. The presence of hexactins effectively rules outa demosponge affinity, and supports previous interpretations requiring the protomonaxonids to be treated as an earlybranchingsponge clade rather than assigning them to an extant class. To facilitate this, this paper proposes a formalreplacement of the majority of the group as the Ascospongiae nov., an extinct class within Porifera.References
Beresi, M.S., Botting, J.P. & Clarkson, E. 2010. A new demosponge, Choiaella scotica, from the Caradoc (Ordovician) of Wallace’s Cast, Southern Uplands. Scottish Journal of Geology 46, 77-83.
Botting, J.P. 2004. An exceptional Caradoc sponge fauna from the Llanfawr Quarries, central Wales and phylogenetic implications. Journal of Systematic Palaeontology 2, 31-63.
Botting, J.P. 2016. Diversity and ecology of sponges in the Early Ordovician Fezouata Biota, Morocco. Palaeogeography, Palaeoclimatology, Palaeoecology 460, 75-86.
Botting, J.P. & Butterfield, N.J. 2005. Reconstructing early sponge relationships by using the Burgess Shale fossil Eiffelia globosa, Walcott. Proceedings of the National Academy of Sciences of the United States of America 102, 1554-1559.
Botting, J.P. & Muir, L.A. 2008. Unravelling causal components of the Ordovician Radiation: the Builth Inlier (central Wales) as a case study. Lethaia 41, 111-125.
Botting, J.P. & Muir, L.A. 2013. Fauna and ecology of the holothurian bed, Llandrindod, Wales, UK (Darriwilian, Middle Ordovician), and the oldest articulated holothurian. Palaeontologia Electronica 15.1.9A, 1-28.
Botting, J.P. & Muir, L.A. 2018. Early sponge evolution: a review and phylogenetic framework. Palaeoworld 27, 1-29.
Botting, J.P. & Peel, J.S. 2016. Early Cambrian sponges of the Sirius Passet Biota, North Greenland. Papers in Palaeontology 2, 463-487.
Botting, J.P. & Zhang, Y. 2013. A new leptomitid-like sponge from the Early Ordovician of China with heteractinid spicules. Bulletin of Geosciences 88, 207-217.
Botting, J.P., Muir, L.A., Sutton, M.D. & Barnie, T. 2011. Welsh gold: A new exceptionally preserved pyritized Ordovician biota. Geology 39(9), 879-882.
Botting, J.P., Muir, L.A., Xiao, S., Li, X. & Lin, J.P. 2012. Evidence for spicule homology in calcareous and siliceous sponges: biminerallic spicules in Lenica sp. from the Early Cambrian of South China. Lethaia 45, 463-475.
Botting, J.P., Muir, L.A. & Lin, J.P. 2013. Relationships of the Cambrian Protomonaxonida (Porifera). Palaeontologia Electronica, 16.2.9A, 1-23.
Botting, J.P., Yuan, X. & Lin, J.P. 2014. Tetraradial symmetry in early poriferans. Chinese Science Bulletin 59, 639-644.
Botting, J.P., Zhang, Y.D. & Muir, L.A. 2017. Discovery of missing link between demosponges and hexactinellids confirms palaeontological model of sponge evolution. Scientific Reports 7(5286), 1-7.
Botting, J.P., Stewart, S.E., Muir, L.A. & Zhang, Y. 2019. Taxonomy and evolution of the protomonaxonid sponge family Piraniidae. Palaeontologia Electronica 22.3.76, 1-27.
Caron, J.B., Gaines, R.R., Mángano, M.G., Streng, M. & Daley, A.C. 2010. A new Burgess Shale-type assemblage from the “thin” Stephen Formation of the southern Canadian Rockies. Geology 38, 811-814.
Chu, Y., Gong, L. & Li, X. 2020. Leucosolenia qingdaoensis sp. nov. (Porifera, Calcarea, Calcaronea, Leucosolenida, Leucosoleniidae), a new species from China. ZooKeys 906, 1-11.
Clites, E.C., Droser, M.L. & Gehling, J.G. 2012. The advent of hard-part structural support among the Ediacara biota: Ediacaran harbinger of a Cambrian mode of body construction. Geology 40, 307-310.
Cong, P.Y., Harvey, T.H., Williams, M., Siveter, D.J., Siveter, D.J., Gabbott, S.E., Li, Y.J., Wei, F. & Hou, X.G. 2018. Naked chancelloriids from the lower Cambrian of China show evidence for sponge-type growth. Proceedings of the Royal Society B: Biological Sciences 285, 20180296, 7 pp.
Cunningham, J.A., Liu, A.G., Bengtson, S. & Donoghue, P.C. 2017. The origin of animals: can molecular clocks and the fossil record be reconciled? BioEssays 39, 1-12.
Davies, J.R., Fletcher, C.J.N., Waters, R.A. & Wilson, D. 1997. Geology of the country around Llanilar and Rhayader: memoir for 1: 50 000 geological sheets 178 and 179 (England and Wales). Memoir (Sheet) British Geological Survey 178. 284 pp. HM Stationery Office, London.
Debrenne, F. & Reitner, J. 2001. Sponges, cnidarians, and ctenophores, 301-325. In Zhuravlev, A. Yu. & Riding, R. (eds) The ecology of the Cambrian radiation. Columbia University Press, New York.
de Laubenfels, M.W. 1955. Porifera, E21-E112. Treatise on Invertebrate Paleontology. Part. E. Geological Society of America and University of Kansas Press, Lawrence.
de Laubenfels, M.W. 1958. Nomenclature of Porifera, especially concerning the so-called “Glass Sponges? or Hyalospongea. Journal of Paleontology 32, 611-616.
Dohrmann, M. & Wörheide, G. 2017. Dating early animal evolution using phylogenomic data. Scientific Reports 7, 1-6.
Dohrmann, M., Kelley, C., Kelly, M., Pisera, A., Hooper, J.N.A. & Reiswig, H.M. 2017. An integrative systematic framework helps to reconstruct skeletal evolution of glass sponges (Porifera, Hexactinellida). Frontiers in Zoology 14(18), 1-31.
Dzik, J. 2002. Early diversification of organisms in the fossil record, 219-48. In Palya, G., Zucchi, C. & Caglioti, L. (eds) Fundamentals of Life. Elsevier Science S.A., Paris.
Finks, R.M. & Rigby, J.K. 2004. Paleozoic Demosponges, 9-171. In Finks, R.M., Reid, R.E.H. & Rigby, J.K. (eds) Treatise on Invertebrate Paleontology, Part E, Porifera, Revised, Volume 3. Geological Society of America and University of Kansas Press, Boulder, Colorado & Lawrence, Kansas.
Finks, R.M., Reid, R.E.H. & Rigby, J.K., 2004. Treatise on Invertebrate Paleontology, Part E, Porifera, Vol. 3, Revised, 872 pp. Geological Society of America and University of Kansas Press, Boulder, Colorado, and Lawrence, Kansas.
García-Bellido, D.C., Gozalo, R., Chirivella Martorell, J.B. & Linan, E. 2007. The demosponge genus Leptomitus and a new species from the Middle Cambrian of Spain. Palaeontology 50, 467-478.
Gazave, E., Lapébie, P., Ereskovsky, A.V., Vacelet, J., Renard, E., Cárdenas, P. & Borchiellini, C. 2011. No longer Demospongiae: Homoscleromorpha formal nomination as a fourth class of Porifera, 3-10. In Maldonado, M., Turon, X., Becerro, M.A. & Jesús Uriz, M. (eds) Ancient Animals, New Challenges. Springer, Dordrecht.
Goryanskii, V.Yu. 1977. Pervaya nakhodka ostatkov gubki v nizhnem kembrii Vostochnoi Sibiri [First discovery of sponge remains from the Lower Cambrian in eastern Siberia]. Ezhdegod-nik vsesoyuznogo paleontologicheskogo obschestva 20, 274-278. [in Russian]
Grant, R.E. 1836. Animal kingdom, 107-118. In Todd, R.B. (ed.) The cyclopedia of anatomy and physiology, vol. 1. Sherwood, Gilbert and Piper, London.
Gray, J.E. 1867. Notes on the arrangement of sponges, with the description of some new genera. Proceedings of the Zoological Society of London 1867, 492-558.
Jell, P.A. & Cook, A.G. 2011. Musaspongia amnicola, a new sponge from the Lower Devonian of Victoria. Proceedings of the Royal Society of Victoria 123, 138-142.
Keupp, H. & Schweigert, G. 2012. Neochoiaella n. gen. (Demospongeae, Choiaellidae)-a second poriferan Lazarus taxon from the Solnhofen Plattenkalk (Upper Jurassic, Southern Germany)? Paläontologische Zeitschrift 86, 269-274.
Lévi, C. 1956. Étude de Halisarca de Roscoff. Embryology et systématique des Démosponges. Archives de Zoologie Expérimentale et Générale 93, 1-181.
Manuel, M., Borchiellini, C., Alivon, E., Le Parco, Y., Vacelet, J. & Boury-Esnault, N. 2003. Phylogeny and evolution of calcareous sponges: monophyly of Calcinea and Calcaronea, high level of morphological homoplasy, and the primitive nature of axial symmetry. Systematic Biology 52, 311-333.
Muir, L.A. & Botting, J.P. 2015. An outline of the distribution and diversity of Porifera in the Ordovician Builth Inlier (Wales, UK). Palaeoworld 24, 176-190.
Murdock, D.J. 2020. The ’biomineralization toolkit’ and the origin of animal skeletons. Biological Reviews 95, 1372-1392.
Nadhira, A., Sutton, M.D., Botting, J.P., Muir, L.A., Gueriau, P., King, A., Briggs, D.E., Siveter, D.J. & Siveter, D.J. 2019. Three-dimensionally preserved soft tissues and calcareous hexactins in a Silurian sponge: implications for early sponge evolution. Royal Society Open Science 6(7), 190911, 7 pp.
Nettersheim, B.J., Brocks, J.J., Schwelm, A., Hope, J.M., Not, F., Lomas, M., Schmidt, C., Schiebel, R., Nowack, E.C., De Deckker, P. & Pawlowski, J. 2019. Putative sponge biomarkers in unicellular Rhizaria question an early rise of animals. Nature Ecology & Evolution 3(4), 577-581.
Rauff, H. 1894, Palaeospongiologie. Palaeontographica 40, 233-346 pp, 17 pl.
Reiswig, H.M. 2006. Classification and phylogeny of Hexactinellida (Porifera). Canadian Journal of Zoology 84, 195-204.
Reitner, J. & Wörheide, G. 2002. Non-lithistid fossil Demospongiae-origins of their palaeobiodiversity and highlights in history of preservation, 52-70. In Hooper, J.N.A. & Van Soest, R.M.W. (eds) Systema Porifera: A Guide to the Classification of Sponges. Kluwer Academic/Plenum Publishers, New York.
Reitner, J. & Mehl, D. 1996. Monophyly of the Porifera. Verhandlungen des naturwissenschaftlichen Vereins in Hamburg 36, 5-32.
Rigby, J.K. 1978. Porifera of the Middle Cambrian Wheeler Shale, from the Wheeler Amphitheater, House Range, in western Utah. Journal of Paleontology 52, 1325-1345.
Rigby, J.K. 1986. Sponges of the Burgess Shale (Middle Cambrian), British Columbia. Palaeontographica Canadiana 2, 1-105.
Rigby, J.K. & Collins, D. 2004. Sponges of the Middle Cambrian Burgess and Stephen Shale Formations, British Columbia. Royal Ontario Museum Contributions in Science 1, 1-164.
Rigby, J.K. & Hou, X.-G. 1995. Lower Cambrian demosponges and hexactinellid sponges from Yunnan, China. Journal of Paleontology 69, 1009-1019.
Steiner, M., Mehl, D., Reitner, J. & Erdtmann, B.D. 1993. Oldest entirely preserved sponges and other fossils from the Lowermost Cambrian and a new facies reconstruction of the Yangtze platform (China). Berliner geowissenschaftliche Abhandlungen 9, 293-329.
Tabachnick, K.R. 2002. Family Rossellidae Gray, 1867, 1441-1505. In Hooper, J.N.A. & Van Soest, R.W.M. (eds) Systema Porifera: A Guide to the Classification of Sponges. Kluwer Academic/Plenum Publishers, New York.
Tang, Q., Wan, B., Yuan, X., Muscente, A.D. & Xiao, S. 2019. Spiculogenesis and biomineralization in early sponge animals. Nature Communications 10(3348), 1-10.
Van Soest, R.W. & Hooper, J.N., 2002. Order Halichondrida Gray, 1867, 721-723. In Hooper, J.N.A. & Van Soest, R.W.M. (eds) Systema Porifera: A Guide to the Classification of Sponges. Kluwer Academic/Plenum Publishers, New York.
Walcott, C.D. 1920. Middle Cambrian Spongiae. Cambrian geology and paleontology IV. Smithsonian Miscellaneous Collections 67, 261-364.
Wang, Q.J., Peng, J., Wen, R.Q., Du, G.Y., Zhang, H., Wang, D.Z. & Wang, Y.F. 2019. Hamptonia jianhensis sp. nov. from the Cambrian (Stage 4) Balang Fauna of Guizhou, China. Historical Biology 32, 1-9.
Wu, W., Yang, A., Janussen, D., Steiner, M. & Zhu, M. 2005. Hexactinellid sponges from the Early Cambrian black shale of South Anhui, China. Journal of Paleontology 79, 1043-1051.
Wu, W., Zhu, M. & Steiner, M. 2014. Composition and tiering of the Cambrian sponge communities. Palaeogeography, Palaeoclimatology, Palaeoecology 398, 86-96.
Yang, X., Zhao Y. & Wu, W. 2003. Discovery of the Early and Middle Cambrian Choiidae from Guizhou, SW China. Acta Micropalaeontologica Sinica 21, 286-295.
Zong, R.W., Liu, Q., Wei, F. & Gong, Y.M. 2017. Fentou Biota: a Llandovery (Silurian) shallow-water exceptionally preserved biota from Wuhan, Central China. The Journal of Geology 125, 469-478.
Zumberge, J.A., Love, G.D., Cárdenas, P., Sperling, E.A., Gunasekera, S., Rohrssen, M., Grosjean, E., Grotzinger, J.P. & Summons, R.E. 2018. Demosponge steroid biomarker 26-methylstigmastane provides evidence for Neoproterozoic animals. Nature Ecology & Evolution 2, 1709-1714.