Current IF 1.9
Latest issue (RSS 2.0)
Contact Editorial Office at
bulletin@geology.cz

Bulletin of Geosciences
Published by ©
Czech Geological Survey,
W. Bohemia Museum Pilsen
Individual sponsors
ISSN: 1802-8225 (online),
1214-1119 (print)

Not quite social - possible cases of gregarious behaviour of immatures of various lineages of Insecta in 100-million-year-old amber
Published in: Bulletin of Geosciences, volume 97, issue 1; pages: 69 - 87; Received 4 September 2020; Accepted in revised form 11 November 2021; Online 9 January 2022
Keywords: eusociality; sub-sociality; gregarism; fossilised behaviour; Cretaceous,
Abstract
The evolution of sociality in insects is a highly discussed topic in biology. Fossil findings are rarely included into the consideration, although they have a great potential to add also behavioural aspects to evolutionary reconstructions and can provide information about the minimum age of specific lifestyles in deep time. We briefly summarise concepts of reconstructing behaviour based on fossils and give a short overview of the concept of eusociality. The focus of this paper is the description of new findings of fossilised cases of aggregations in Cretaceous Myanmar amber. All specimens enclosed in these amber pieces are immatures. These findings come from four different lineages of Insecta: Neuroptera, Dermaptera, Orthoptera and Collembola. Some of these groups are usually not considered as typical examples for social interactions, but several grades of aggregation behaviour can be observed in all of these groups in different species living today. Active aggregation behaviour (or gregarious behaviour) can be seen as part and prerequisite of further social behaviour. Therefore, the investigation of this aspect can add new insights for a more comprehensive understanding of the evolution of complex strategies of social behaviour.References
Arillo, A.A. 2007. Paleoethology: fossilized behaviours in amber. Geologica Acta 5(2), 159–166.
Aspöck, U. & Aspöck, H. 2007. Verbliebene Vielfalt vergangener Blüte. Zur Evolution, Phylogenie und Biodiversität der Neuropterida (Insecta: Endopterygota). Denisia 20, Kataloge der Oberöstereichischen Landesmuseen Neue Serie 66, 451–516.
Babcock, L.E. 2003. Trilobites in Paleozoic predator-prey systems, and their role in reorganization of early Paleozoic ecosystems, 55–92. In Kelley, P., Kowalewski, M. & Hansen, T.A. (eds) Predator-prey interactions in the fossil record. Springer, Boston, MA.
Badano, D., Engel, M.S., Basso, A., Wang, B. & Cerretti, P. 2018. Diverse Cretaceous larvae reveal the evolutionary and behavioural history of antlions and lacewings. Nature Communications 9, art. 3257.
Barden, P. & Grimaldi, D.A. 2016. Adaptive radiation in socially advanced stem-group ants from the Cretaceous. Current Biology 26(4), 515–521.
Bell, W.J., Roth, L.M. & Nalepa, C.A. 2007. Cockroaches: Ecology, Behavior, and Natural History. 230 pp. JHU Press, Baltimore.
Benoit, J.B., Elnitsky, M.A., Schulte, G.G., Lee, R.E. & Denlinger, D.L. 2009. Antarctic collembolans use chemical signals to promote aggregation and egg laying. Journal of Insect Behavior 22(2), 121–133.
Béthoux, O., Galtier, J. & Nel, A. 2004. Earliest evidence of insect endophytic oviposition. Palaios 19(4), 408–413.
Boucot, A.J. 1990. Evolutionary paleobiology of behavior and coevolution. 725 pp. Elsevier, Amsterdam.
Boucot, A.J. & Poinar, G.O., Jr 2010. Fossil behavior compendium. 424 pp. CRC Press, Boca Raton.
Bromley, R.G. 1996. Trace fossils: biology, taxonomy and applications. 361 pp. Chapman & Hall, London.
Browne, F.G. 1971. Austroplatypus, a new genus of the Platypodidae (Coleoptera) infesting living Eucalyptus trees in Australia. Commonwealth Forestry Review 50, 49–50.
Burrows, M. & Wolf, H. 2002. Jumping and kicking in the false stick insect Prosarthria teretrirostris: kinematics and motor control. Journal of Experimental Biology 205(11), 1519–1530.
Camacho, L., Keil, C. & Dangles, O. 2014. Factors influencing egg parasitism in sub-social insects: insights from the treehopper Alchisme grossa (Hemiptera, Auchenorrhyncha, Membracidae). Ecological Entomology 39(1), 58–65.
Cantil, L.F., Sánchez, M.V., Bellosi, E.S. & Genise, J.F. 2018. Beyond Coprinisphaera: fossil nests of dung beetles. Lethaia 51, 444–455.
Christiansen, K. & Nascimbene, P. 2006. Collembola (Arthropoda, Hexapoda) from the mid Cretaceous of Myanmar (Burma). Cretaceous Research 27, 318–363.
Cigliano, M.M., Braun, H., Eades, D.C. & Otte, D. 2021. Orthoptera Species File. Version 5.0/5.0. [08/2021]. http://Orthoptera.SpeciesFile.org
Costa, J.T. 2018. The other insect societies: overview and new directions. Current Opinion in Insect Science 28, 40–49.
Crespi, B.J. 1992. Eusociality in Australian gall thrips. Nature 359(6397), 724–726.
Curtis, J. 1833. British Entomology, Volume 10. 434–481pp. John Cumberland, London.
Danforth, B.N., Conway, L. & Ji, S. 2003. Phylogeny of eusocial Lasioglossum reveals multiple losses of eusociality within a primitively eusocial clade of bees (Hymenoptera: Halictidae). Systematic Biology 52(1), 23–36.
Dressler, R.L. 1982. Biology of the orchid bees (Euglossini). Annual Review of Ecology and Systematics 13(1), 373–394.
Ducke, A. 1907. Nouveau genre de Sphégides. Annales de la Société entomologique de France 76, 28–30.
Dury, G.J., Bede, J.C. & Windsor, D.M. 2014. Preemptive circular defence of immature insects: definition and occurrences of cycloalexy revisited. Psyche: A Journal of Entomology 2014, art. 642908, 1–13.
Eickwort, G.C. 1981. Presocial insects. 199–279. In Hermann H.R. (ed.) Social insects, Vol. 2. Academic Press, New York.
Ellis, P.E. 1953. Social aggregation and gregarious behaviour in hoppers of Locusta migratoria migratorioides (R. & F.). Behaviour 5, 225–260.
Engel, M.S. 2009. Gregarious behaviour in Cretaceous earwig nymphs (Insecta, Dermaptera) from southwestern France. Geodiversitas 31(1), 129–135.
Engel, M.S. & Grimaldi, D.A. 2014. New mid-Cretaceous earwigs in amber from Myanmar (Dermaptera). Novitates Paleoentomologicae 6, 1–16.
Evenhuis, N.L. 2021. The insect and spider collections of the world website. Accessed March 16, 2021. http://hbs.bishopmuseum.org/codens/
Falk, J., Wong, J.W.Y., Ko¨lliker, M. & Meunier, J. 2014. Sibling cooperation in earwig families provides insights into the early evolution of social life. The American Naturalist 183, 547–557.
Fang, Y., Wang, B., Zhang, H., Wang, H., Jarzembowski, E.A., Zheng, D., Zhang, Q., Li, S. & Liu, Q. 2015. New Cretaceous Elcanidae from China and Myanmar (Insecta, Orthoptera). Cretaceous Research 52, Part B, 323–328,
Fatka, O., Budil, P. & Grigar, L. 2015. A unique case of healed injury in a Cambrian trilobite. Annales de Paléontologie 101(4), 295–299.
Field, L.H. 1980. Observations on the biology of Deinacrida connectens (Orthoptera: Stenopelmatidae), an alpine weta. New Zealand Journal of Zoology 7(2), 211–220.
Fischer, T.C. & Hörnig, M.K. 2019. Mating moths (Tineidae, Ditrysia, Lepidoptera) preserved as frozen behavior inclusion in Baltic Amber (Eocene). Palaeontologia Electronica 22(1), 1–11.
Flemming, B.W. 2004. 75 Jahre Senckenberg am Meer – Aktualismus als Forschungsprinzip. Natur und Museum 134(1), 1–20.
Forskal, P. 1775. Descriptiones Animalium Avium, Amphibiorum, Piscium, Insectorum, Vermium; quae in Itinere Orientall observati Petrus Forskal. Prof. Haun. Post morten Acutoris editt Carsten Nieburhr. 164 pp. Hauniae.
Froggatt, W.W. 1906. Notes on the hymenopterous genus Megalyra Westw., with descriptions of new species. Proceedings of the Linnean Society of New South Wales 31, 399–407.
Froggatt, W.W. 1907. Australian insects. 449 pp. William Brooks and Company, Sydney.
Fu, D., Ortega-Hernández, J., Daley, A.C., Zhang, X. & Shu, D. 2018. Anamorphic development and extended parental care in a 520 million-year-old stem-group euarthropod from China. BMC Evolutionary Biology 18(1), art. 147.
Genise, J.F., Sánchez, M.V., Bellosi, E.S., Cantil, L.F., Krause, J.M., González, M.G., Sarzetti, L.C., Verde, M., Puerta, P. & Frana, J. 2017. Cricket oviposition trace fossils in palaeosols and their stratigraphic significance: The South American Palaeosol Ichnofossil Ages (SAPIAs). Palaeogeography, Palaeoclimatology, Palaeoecology 481, 64–76.
Ghosh, C.C. 1913. Life-history of Helicomitus dicax, Walker. Journal of the Bombay Natural History Society 22, 643–648.
Gibbs, J., Brady, S.G., Kanda, K. & Danforth, B.N. 2012. Phylogeny of halictine bees supports a shared origin of eusociality for Halictus and Lasioglossum (Apoidea: Anthophila: Halictidae). Molecular Phylogenetics and Evolution 65(3), 926–939.
Gomes-Filho, A. 2000. Aggregation behavior in the Neotropical owlfly Cordulecerus alopecinus (Neuroptera: Ascalaphidae). Journal of the New York Entomological Society 108(3), 304–314.
Goulson, D. 2003. Bumblebees: their behaviour and ecology. 235 pp. Oxford University Press, USA.
Greenwood, M. & Chapman, R.F. 1984. Differences in numbers of sensilla on the antennae of solitarious and gregarious Locusta migratoria L. (Orthoptera: Acrididae). International Journal of Insect Morphology and Embryology 13(4), 295–301.
Grimaldi, D.A. 1996. Captured in amber. Scientific American 274(4), 84–91.
Grimaldi, D.A., Engel, M.S., & Nascimbene, P.C. 2002. Fossiliferous Cretaceous amber from Myanmar (Burma): its rediscovery, biotic diversity, and paleontological significance. American Museum Novitates 3361, 1–71.
Gröhn, C. 2015. Einschlüsse im baltischen Bernstein. 424 pp. Wachholtz Verlag-Murmann Publishers, Hamburg.
Günther, K. & Herter, K. 1974. 11. Ordnung Dermaptera (Ohrwürmer), 1–158. In Helmcke, J.G., Starck, D. & Wermuth, H. (eds) Handbuch der Zoologie 4 (2) 2/11. De Gruyter, Berlin.
Haas, F. 2003. 12. Ordnung Dermaptera, Ohrwürmer, 173–180. In Dathe H.H. (ed.) Lehrbuch der Speziellen Zoologie, Band I: Wirbellose Tiere, 5. Teil: Insecta. Spektrum Akademischer Verlag, Heidelberg, Berlin.
Harari, A.R., Ben-Yakir, D. & Rosen, D. 1994. Mechanism of aggregation behavior in Maladera matrida Argaman (Coleoptera: Scarabaeidae). Journal of Chemical Ecology 20(2), 361–371.
Haug, C., Shannon, K.R., Nyborg, T. & Vega, F.J. 2013. Isolated mantis shrimp dactyli from the Pliocene of North Carolina and their bearing on the history of Stomatopoda. Bolétin de la Sociedad Geológica Mexicana 65, 273–284.
Haug, C., Herrera-Flórez, A.F., Müller, P. & Haug, J.T. 2019. Cretaceous chimera–An unusual 100-million-year old neuropteran larva from the “experimental phase” of insect evolution. Palaeodiversity 12, 1–11.
Haug, G.T., Haug, C., Pazinato, P.G., Braig, F., Perrichot, V., Gröhn, C., Müller, P. & Haug, J.T. 2020. The decline of silky lacewings and morphological diversity of long-nosed antlion larvae through time. Palaeontologia Electronica 23(2), art. a39.
Haug, J.T. & Haug, C. 2017. Species, populations and morphotypes through time – challenges and possible concepts. BSGF – Earth Sciences Bulletin 188, art. 20.
Haug, J.T., Haug, C. & Ehrlich, M. 2008. First fossil stomatopod larva (Arthropoda: Crustacea) and a new way of documenting Solnhofen fossils (Upper Jurassic, Southern Germany). Palaeodiversity 1, 103–109.
Haug, J.T., Haug, C., Kutschera, V., Mayer, G., Maas, A., Liebau, S., Castellani, C., Wolfram, U., Clarkson, E.N.K. & Waloszek, D. 2011. Autofluorescence imaging, an excellent tool for comparative morphology. Journal of Microscopy 244, 259–272.
Haug, J.T., Waloszek, D., Maas, A., Liu, Y. & Haug, C. 2012. Functional morphology, ontogeny and evolution of mantis shrimp-like predators in the Cambrian. Palaeontology 55, 369–399.
Haug, J.T., Caron, J.-B. & Haug, C. 2013. Demecology in the Cambrian: synchronized molting in arthropods from the Burgess Shale. BMC Biology 11, art. 64.
Haug, J.T., Nagler, C., Haug, C. & Hörnig, M.K. 2017. A group of assassin fly pupae preserved in a single piece of Eocene amber. Bulletin of Geosciences 92, 283–295.
Haug, J.T., Müller, P. & Haug, C. 2018. The ride of the parasite: a 100-million-year old mantis lacewing larva captured while mounting its spider host. Zoological Letters 4, art. 31.
Haug, J.T., Müller, P. & Haug, C. 2019a. A 100-million-year old predator: a fossil neuropteran larva with unusually elongated mouthparts. Zoological Letters 5, art. 29.
Haug, J.T., Müller, P. & Haug, C. 2019b. A 100-million-year old slim insectan predator with massive venom-injecting stylets – a new type of neuropteran larva from Burmese amber. Bulletin of Geosciences 94, 431–440.
Haug, J.T., Baranov, V., Schädel, M., Müller, P., Gröhn, P. & Haug, C. 2020a. Challenges for understanding lacewings: how to deal with the incomplete data from extant and fossil larvae of Nevrorthidae? (Neuroptera). Fragmenta entomologica 52, 137–167.
Haug, J.T., Pazinato, P.G., Haug, G.T. & Haug, C. 2020b. Yet another unusual new type of lacewing larva preserved in 100-million-year old amber from Myanmar. Rivista Italiana di Paleontologia e Stratigrafia 126, 821–832.
Hawes, T.C., Worland, M.R., Bale, J. S. & Convey, P. 2008. Rafting in Antarctic collembola. Journal of Zoology 274(1), 44–50.
Heads, S.W., Thomas, M.J., & Wang, Y. 2018. A new genus and species of Elcanidae (Insecta: Orthoptera) from Cretaceous Burmese amber. Zootaxa 4527(4), 575–580.
Henry, C.S. 1972. Eggs and rapagula of Ululodes and Ascaloptynx (Neuroptera: Ascalaphidae): a comparative study. Psyche: A Journal of Entomology 79(1–2), 1–22.
Henry, C.S. 1977. The behavior and life histories of two North American ascalaphids. Annals of the Entomological Society of America 70(2), 179–195.
Herrera-Flórez, A.F., Braig, F., Haug, C., Neumann, C., Wunderlich, J., Hörnig, M.K. & Haug, J.T. 2020. Identifying the oldest larva of a myrmeleontiformian lacewing – a morphometric approach. Acta Palaeontologica Polonica 65, 235–250.
Hölldobler, B. & Wilson, E.O. 1990. The ants. 746 pp. Harvard University Press, Cambridge.
Hörnig, M.K., Sombke, A., Haug, C., Harzsch, S. & Haug, J.T. 2016. What nymphal morphology can tell us about parental investment – a group of cockroach hatchlings in Baltic Amber documented by a multi-method approach. Palaeontologia Electronica 19(1), art. 5a.
Hörnig, M.K., Haug, J.T. & Haug, C. 2017. An exceptionally preserved 110 million years old praying mantis provides new insights into the predatory behaviour of early mantodeans. PeerJ 5, art. e3605.
Hörnig, M.K., Haug, C., Schneider, J.W. & Haug, J.T. 2018. Evolution of reproductive strategies in dictyopteran insects-clues from ovipositor morphology of extinct roachoids. Acta Palaeontologica Polonica 63, 1–24.
Hörnig, M.K., Fischer, T.C. & Haug, J.T. 2019. Caught in the act of hatching–a group of heteropteran nymphs escaping from their eggs preserved in Dominican amber. Palaeodiversity 12(1), 123–134.
Hsieh, S. & Plotnick, R.E. 2020. The representation of animal behaviour in the fossil record. Animal Behaviour 169, 65–80.
Inward, D., Beccaloni, G. & Eggleton, P. 2007. Death of an order: a comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches. Biology Letters 3(3), 331–335.
Jolivet, P., Vasconcellos-Neto, J. & Weinstein, P. 1990. Cycloalexy: a new concept in the larval defense of insects. Insecta Mundi 394, 133–142.
Karny, H. 1911. U¨ber Thrips-Gallen und Gallen-Thripse. Zentralblatt fu¨r Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene, Abteilung II 30, 556–572.
Kerp, H. & Bomfleur, B. 2011. Photography of plant fossils—new techniques, old tricks. Review of Palaeobotany and Palynology 166, 117–151.
Kielan-Jaworowska, Z. & Barsbold, R. 1972. Narrative of the Polish–Mongolian paleontological expeditions, 1967–1971. Palaeontologica Polonica 27, 5–13.
Kočárek, P. 2020. A diminutive elcanid from mid-Cretaceous Burmese amber, Ellca nevelka gen. et sp. nov., and the function of metatibial spurs in Elcanidae (Orthoptera). Cretaceous Research 116, art. 104574.
Kramer, J., Thesing, J. & Meunier, J. 2015. Negative association between parental care and sibling cooperation in earwigs: A new perspective on the early evolution of family life? Journal of Evolutionary Biology 28, 1299–1308.
Lamb, R.J. 1976. Parental behaviour in the Dermaptera with special reference to Forficula auricularia (Dermaptera: Forficulidae). Canadian Entomologist 108, 609–619.
Latreille, P.A. 1802. Histoire Naturelle des Fourmis et Recueil de Mémoirs et d’Observations sur les Abeilles, les Areignées, les Faucheurs et autres Insectes, Vol. 8. 445 pp. Barrois, Paris.
Latreille, P.A. 1804. Tableau méthodique des insectes, 129–200. In Société de Naturalistes et d’Agriculteurs (ed.) Nouveau dictionnaire d’Histoire naturelle 24. Déterville, Paris.
Linnaeus, C. 1758. Systema Naturae per Regna Tria Naturae, Secundum Classes, Ordines, Genera, Species, cum Characteribus, Differentiis, Synonymis, Locis, 10th edition. 824 pp. Laurentius Salvius, Holmiae.
Liu, X., Zhang, W., Winterton, S.L., Breitkreuz, L.C. & Engel, M.S. 2016. Early morphological specialization for insect-spider associations in Mesozoic lacewings. Current Biology 26, 1590–1594.
Liu, X., Shi, G., Xia, F., Lu, X., Wang, B. & Engel, M.S. 2018. Liverwort mimesis in a Cretaceous lacewing larva. Current Biology 28, 1475–1481.
McFarlane, I.E., Steeves, E., Alli, I. 1983. Aggregation of larvae of the house cricket, Acheta domesticus (L.), by propionic acid present in the excreta. Journal of Chemical Ecology 9(9), 1307–1315.
Malicky, H. 1984. Ein Beitrag zur Autökologie und Bionomie der aquatischen Netzflüglergattung Neurorthus (Insecta, Neuroptera, Neurorthidae). Archiv für Hydrobiologie 101(1–2), 231–246.
Manica, A., McMeechan, F.K. & Foster, W.A. 2001. An aggregation pheromone in the intertidal collembolan Anurida maritima. Entomologia experimentalis et applicata 99(3), 393–395.
Mao, Y., Engel, M.S., Ren, D. & Gao, T. 2020. A new species of Astreptolabis in mid-Cretaceous amber from northern Myanmar, with the discovery of the first male of Astreptolabidinae (Dermaptera). ZooKeys 911, 101–112.
Mas, F. & Kölliker, M. 2008. Maternal care and offspring begging in social insects: chemical signalling, hormonal regulation and evolution. Animal Behaviour 76(4), 1121–1131.
Matzke, D. & Klass, K.D. 2005. Reproductive biology and nymphal development in the basal earwig Tagalina papua (Insecta: Dermaptera: Pygidicranidae), with a comparison of brood care in Dermaptera and Embioptera. Entomologische Abhandlungen 62(2), 99–116.
Miller, W. 2007. Trace fossils: concepts, problems, prospects. 611 pp. Elsevier, Amsterdam.
Na, Y., Sun, C., Li, T. & Li, Y. 2014. The insect oviposition firstly discovered on the Middle Jurassic Ginkgoales leaf from Inner Mongolia, China. Acta Geologica Sinica 88(1), 18–28.
Nagel, M.G. & Cade, W.H. 1983. On the role of pheromones in aggregation formation in camel crickets, Ceuthophilus secretus (Orthoptera: Gryllacrididae). Canadian Journal of Zoology 61(1), 95–98.
Nowak, M.A., Tarnita, C.E. & Wilson, E.O. 2010. The evolution of eusociality. Nature 466(7310), 1057–1062.
Paterson, J.R., Hughes, N.C. & Chatterton, B.D., Rábano, I., Gozalo, R., García-Bellido, D. 2008. Trilobite clusters: What do they tell us? A preliminary investigation. Advances in Trilobite Research 9, 313–318.
Penalver, E. & Grimaldi, D.A. 2010. Latest occurrences of the Mesozoic family Elcanidae (Insecta: Orthoptera), in Cretaceous amber from Myanmar and Spain. Annales de la Société entomologique de France 46(1–2), 88–99.
Pérez-de la Fuente, R., Engel, M.S., Azar, D. & Penalver, E. 2019. The hatching mechanism of 130-million-year-old insects: an association of neonates, egg shells and egg bursters in Lebanese amber. Palaeontology 62(4), 547–559.
Peris, D., Labandeira, C.C., Barron, E., Delclos, X., Rust, J. & Wang, B. 2020. Generalist pollen-feeding beetles during the mid-Cretaceous. iScience 23(3), art. 100913.
Petrulevičius, J.F., Wappler, T., Nel, A. & Rust, J. 2011. The diversity of Odonata and their endophytic ovipositions from the Upper Oligocene Fossillagerstätte of Rott (Rhineland, Germany). ZooKeys 130, 67–89.
Pickett, K.M. & Carpenter, J.M. 2010. Simultaneous analysis and the origin of eusociality in the Vespidae (Insecta: Hymenoptera). Arthropod Systematics and Phylogeny 68(1), 3–33.
Pitman, G.B. & Vité, J.P. 1969. Aggregation behavior of Dendroctonus ponderosae (Coleoptera: Scolytidae) in response to chemical messengers. The Canadian Entomologist 101(2), 143–149.
Poinar, G.O., Jr & Poinar, R. 1999. The amber forest: a reconstruction of a vanished World. 239 pp. Princeton University Press, Princeton.
Poinar, G.O., Jr, Gorochov, A.V. & Buckley, R. 2007. Longioculus burmensis, n. gen., n. sp. (Orthoptera: Elcanidae) in Burmese amber. Proceedings of the Entomological Society of Washington 109(3), 649–655.
Poinar G.O., Jr, Su, Y.N. & Brown, A.E. 2020. A new genus of crickets (Orthoptera: Gryllidae) in mid-Cretaceous Myanmar amber. Biosis: Biological Systems 1(01), 33–38.
Pott, C., Labandeira, C.C., Krings, M. & Kerp, H. 2008. Fossil insect eggs and ovipositional damage on bennettitalean leaf cuticles from the Carnian (Upper Triassic) of Austria. Journal of Paleontology 82(4), 778–789.
Purrington, F.F., Kendall, P.A., Bater, J.E. & Stinner, B.R. 1991. Alarm pheromone in a gregarious poduromorph collembolan (Collembola: Hypogastruridae). The Great Lakes Entomologist 24(2), 75–78.
Ren, M., Zhang, W., Shih, C. & Ren, D. 2017. A new earwig (Dermaptera: Pygidicranidae) from the Upper Cretaceous Myanmar amber. Cretaceous Research 74, 137–141.
Ren, M., Zhang, W., Shih, C. & Ren, D. 2018. Earwig nymphs (Dermaptera) from the mid-Cretaceous amber of Myanmar. Cretaceous Research 90, 382–390.
Ross, A.J. 2020. Burmese (Myanmar) amber taxa, on-line supplement v. 2020.1, 1–25. https://www.nms.ac.uk/media/1161742/burmese-amber-taxa-v2020_1.pdf
Ross, A.J. 2021. Burmese (Myanmar) amber taxa, on-line supplement v.2021.1, 1–27. https://www.nms.ac.uk/media/1164144/burmese-amber-taxa-v2021_1.pdf
Ross, K.G. & Matthews, R.W. 1989. New evidence for eusociality in the sphecid wasp Microstigmus comes. Animal Behaviour 38(4), 613–619.
Rust, J., Stumpner, A. & Gottwald, J. 1999. Singing and hearing in a Tertiary bushcricket. Nature 399(6737), art. 650.
Salmon, S. & Ponge, J.F. 2001. Earthworm excreta attract soil springtails: laboratory experiments on Heteromurus nitidus (Collembola: Entomobryidae). Soil Biology and Biochemistry 33(14), 1959–1969.
Salmon, S., Rebuffat, S., Prado, S., Sablier, M., Haese, C. d’, Sun, J.S. & Ponge, J.F. 2019. Chemical communication in springtails: a review of facts and perspectives. Biology and Fertility of Soils 55(5), 425–438.
Sánchez-García, A. & Engel, M.S. 2016. Springtails from the Early Cretaceous amber of Spain (Collembola: Entomobryomorpha), with an annotated checklist of fossil Collembola. American Museum Novitates 2016(3862), 1–47.
Sánchez-García, A., Penalver, E., Delclos, X. & Engel, M.S. 2018. Mating and aggregative behaviors among basal hexapods in the Early Cretaceous. PloS One 13(2), art. e0191669.
Santiago-Blay, J.A., Jolivet, P. & Verma, K.K. 2012. A natural history of conspecific aggregations in terrestrial arthropods, with emphasis on cycloalexy in leaf beetles (Coleoptera: Chrysomelidae). Terrestrial Arthropod Reviews 5(3–4), 289–355.
Sarzetti, L.C., Labandeira, C.C., Muzón, J., Wilf, P., Cúneo, N.R., Johnson, K.R. & Genise, J.F. 2009. Odonatan endophytic oviposition from the Eocene of Patagonia: the ichnogenus Paleoovoidus and implications for behavioural stasis. Journal of Paleontology 83(3), 431–447.
Sauphanor, B. & Sureau, F. 1993. Aggregation behaviour and interspecific relationships in Dermaptera. Oecologia 96(3), 360–364.
Schädel, M., Hörnig, M.K., Hyžný, M. & Haug, J.T. 2021. Mass occurrence of small isopodan crustaceans in 100-million-year-old amber: an extraordinary view on behaviour of extinct organisms. PalZ 95, 429–445.
Schultz, T.R., Engel, M.S. & Aschier, J.S. 2001. Evidence for the origin of eusociality in the corbiculate bees (Hymenoptera: Apidae). Journal of the Kansas Entomological Society 74, 10–16.
Seeley, T.D. 2009. The wisdom of the hive: the social physiology of honey bee colonies. 318 pp. Harvard University Press, Cambridge.
Simpson, S.J., Despland, E., Hägele, B.F. & Dodgson, T. 2001. Gregarious behavior in desert locusts is evoked by touching their back legs. Proceedings of the National Academy of Sciences 98(7), 3895–3897.
Simpson, S.J., Raubenheimer, D., Behmer, S.T., Whitworth, A. & Wright, G.A. 2002. A comparison of nutritional regulation in solitarious-and gregarious-phase nymphs of the desert locust Schistocerca gregaria. Journal of Experimental Biology 205(1), 121–129.
Smith, S.M., Beattie, A.J., Kent, D.S. & Stow, A.J. 2009. Ploidy of the eusocial beetle Austroplatypus incompertus (Schedl) (Coleoptera, Curculionidae) and implications for the evolution of eusociality. Insectes Sociaux 56(3), 285–288.
Stern, D.L. & Foster, W.A. 1996. The evolution of soldiers in aphids. Biological Reviews 71(1), 27–79.
Szinwelski, N., Rosa, C.S., Castro Solar, R.R. de & Sperber, C.F. 2015. Aggregation of cricket activity in response to resource addition increases local diversity. PloS One 10(10), art. e0139669.
Tallamy, D.W. 1984. Insect parental care. BioScience 34(1), 20–24.
Tallamy, D.W. & Wood, T.K. 1986. Convergence patterns in subsocial insects. Annual Review of Entomology 31(1), 369–390.
Thorne, B.L. 1997. Evolution of eusociality in termites. Annual Review of Ecology and Systematics 28(1), 27–54.
Tillyard, R.J. 1926. The Insects of Australia and New Zealand. 560 pp. Angus & Robertson, Sydney.
Usher, M.B. 1969. Some properties of the aggregations of soil arthropods: Collembola. Journal of Animal Ecology 38, 607–622.
Verhoef, H.A. & Nagelkerke, C.J. 1977. Formation and ecological significance of aggregations in Collembola. Oecologia 31(2), 215–226.
Wang, B., Rust, J., Engel, M.S., Szwedo, J., Dutta, S., Nel, A., Fan, Y., Meng, F., Shi, G., Jarzembowski, E.A., Wappler, T., Stebner, F., Fang, Y., Mao, L., Zheng, D. & Zhang, H. 2014. A diverse paleobiota in Early Eocene Fushun amber from China. Current Biology 24(14), 1606–1610.
Wang, B., Xia, F., Wappler, T., Simon, E., Zhang, H., Jarzembowski, E.A. & Szwedo, J. 2015. Brood care in a 100-million-year-old scale insect. eLife 4, art. e05447.
Wang, B., Xia, F., Engel, M.S., Perrichot, V., Shi, G., Zhang, H., Chen J., Jarzembowski E.A, Wappler, T. & Rust, J. 2016. Debris-carrying camouflage among diverse lineages of Cretaceous insects. Science Advances 2(6), art. e1501918.
Wappler, T., Guilbert, E., Labandeira, C.C., Hörnschemeyer, T. & Wedmann, S. 2015. Morphological and behavioral convergence in extinct and extant bugs: the systematics and biology of a new unusual fossil lace bug from the Eocene. PloS One 10(8), art. e0133330.
Watler, D. 1982. Influence of social situation on food consumption and growth in nymphs of the house cricket, Acheta domesticus. Physiological Entomology 7(3), 343–350.
Wedmann, S., Bradler, S. & Rust, J. 2007. The first fossil leaf insect: 47 million years of specialized cryptic morphology and behavior. Proceedings of the National Academy of Sciences 104(2), 565– 569.
Westwood, J.O. 1888. I. Notes on the life-history of various species of the Neuropterous genus Ascalaphus. Transactions of the Royal Entomological Society of London 36(1), 1–12.
Wichard, W., Gröhn, C. & Seredszus, F. 2009. Aquatic insects in Baltic amber. 336 pp. Remagen, Kessel.
Wilson, E.O. & Hölldobler, B. 2005. Eusociality: origin and consequences. Proceedings of the National Academy of Sciences 102(38), 13367–13371.
Witmer, L.M. 1995. The extant phylogenetic bracket and the importance of reconstructing soft tissues in fossils. Functional Morphology in Vertebrate Paleontology 1, 19–33.
Yoder, J.A., Hobbs III, H.H. & Hazelton, M.C. 2002. Aggregate protection against dehydration in adult females of the cave cricket, Hadenoecus cumberlandicus (Orthoptera, Rhaphidophoridae). Journal of Cave and Karst Studies 64(2), 140–144.