Current IF 1.5
Latest issue (RSS 2.0)
Contact Editorial Office at
bulletin@geology.cz

Bulletin of Geosciences
Published by ©
Czech Geological Survey,
W. Bohemia Museum Pilsen
Individual sponsors
ISSN: 1802-8225 (online),
1214-1119 (print)

Lower Aeronian (Llandovery, Silurian) graptolitic carbonate concretions from the Qusaiba Shale Formation, Tabuk Basin, Saudi Arabia, and their significance
Published in: Bulletin of Geosciences, volume 96, issue 3; pages: 251 - 263; Received 15 July 2020; Accepted in revised form 14 May 2021; Online 30 May 2021
Keywords: Silurian, Aeronian, graptolite, concretions, carbon isotopes, Saudi Arabia, Qusaiba Shale, Gondwana,
Abstract
A unique layer of carbonate concretions within the Qusaiba Shale Formation, north-west of Tayma in north-west Saudi Arabia, is dated to the early Aeronian (within the lowermost magnus Biozone, close to the triangulatus/magnus Biozone boundary) based upon its diverse (18 species) assemblage of graptolites. This assemblage is dominated by biserial taxa, many showing current alignment. The studied concretion included a 6 mm thick layer composed entirely of graptolites, potentially significant, if laterally extensive, for the burial of organic carbon. Carbonates of a similar age occur in northernmost Saudi Arabia, suggesting that the concretions may be a useful stratigraphical marker and are likely to result from similar environmental conditions. A few localities on Avalonia and Baltica, in sections otherwise dominated by outer shelf or basinal clastics, also have limestone layers/concretions and/or unusually high incidences of preservation of shells (mostly orthocones) within the lower Aeronian. It is considered likely that the limestone layers and concretions resulted from dissolution then reprecipitation of carbonate from some of the shelly fauna. This may be a stratigraphically very early and poorly developed expression of the cephalopod limestone facies so characteristic of higher levels in the Silurian of peri-Gondwanan Europe and Gondwana. The deposition/preservation of the limestones occurred within the positive Early Aeronian Carbon Isotope Excursion (EACIE) which itself may reflect an interval of slightly lower eustatic sea-level. One new graptolite species, Paraclimacograptus crameri, is described, distinguished from Pa. libycus by its narrower rhabdosome.References
Abouelresh, M. & Babalola, L. 2020. 2D spatial analysis of the natural fractures in the organic-rich Qusaiba Shale outcrop, NW Saudi Arabia. Journal of Petroleum Science and Engineering 186, 106780.
Abouelresh, M., Babalola, L., Bokhari, A., Omer, M., Koithan, T. & Boyde, D. 2020. Sedimentology, geochemistry and reservoir potential of the organic-rich Qusaiba Shale, Tabuk Basin, NW Saudi Arabia. Marine and Petroleum Geology 111, 240-260.
Aoudeh, S.M. & Al-Hajri, S.A. 1995. Regional distribution and chronostratigraphy of the Qusaiba Member of the Qalibah Formation in the Nafud Basin, Northwestern Saudi Arabia, 143-154. In Al-Husseini, M.I. (ed.) Geo ’94, The Middle East Petroleum Geosciences, Vol. 1. April 25-27 1994, Bahrain. Gulf PetroLink, Manama, Bahrain.
Bjerreskov, M. 1975. Llandoverian and Wenlockian graptolites from Bornholm. Fossils and Strata 8, 1-94.
Boss, S.K. & Wilkinson, B.H. 1991. Planktogenic/eustatic control on cratonic/oceanic carbonate accumulation. Journal of Geology 99, 497-513.
Challinor, J. 1928. A shelly band in graptolitic shales. Geological Magazine 65, 364-368.
Cullum, A.A. & Loydell, D.K. 1996. A new species of Neodiplograptus from the Middle Llandovery of the Rheidol Gorge, Wales. Journal of the Czech Geological Society 41, 217-219.
Ferretti, A. & Kříž, J. 1995. Cephalopod limestone biofacies in the Silurian of the Prague Basin, Bohemia. Palaios 10, 240-253.
Ghavidel-Syooki, M., Álvaro, J.J., Popov, L., Ghobadi Pour, M., Ehsani, M.H. & Suyarkova, A. 2011. Stratigraphic evidence for the Hirnantian (latest Ordovician) glaciation in the Zagros Mountains, Iran. Palaeogeography, Palaeoclimatology, Palaeoecology 307, 1-16.
Halawani, M.A., Al-Duaiji, A.A., Bahabri, B.H., Basyoni, M.H., Al Dabbagh, M.E., Al Ramadan, K., Al Ajmi, H.F., Al Mahri, A.K. & Saudi Stratigraphic Committee Members 2013. Phanerozoic stratigraphy of Saudi Arabia: Part 1 - Paleozoic succession of the Arabian Shelf (cover rocks). Saudi Geological Survey Special Publication SGS-SP-2012-1, 1-69.
Hammarlund, E.U., Loydell, D.K., Nielsen A.T. & Schovsbo, N.H. 2019. Early Silurian δ13Corg excursions in the foreland basin of Baltica, both familiar and surprising. Palaeogeography, Palaeoclimatology, Palaeoecology 526, 126-135.
Hayton, S., Rees, A.J. & Vecoli, M. 2017. A punctuated Late Ordovician and early Silurian deglaciation and transgression: evidence from the subsurface of northern Saudi Arabia. AAPG Bulletin 101, 863-886.
Helal, A.H. 1964. On the occurrence of Lower Palaeozoic rocks in Tabuk area, Saudi Arabia. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 7, 391-414.
Howe, M.P.A. 1983. Measurement of thecal spacing in graptolites. Geological Magazine 120, 635-638.
Jones, O.T. 1909. The Hartfell-Valentian succession in the district around Plynlimon and Pont Erwyd (North Cardiganshire). Quarterly Journal of the Geological Society of London 65, 463-537.
Loydell, D.K. 1998. Early Silurian sea-level changes. Geological Magazine 135, 447-471.
Loydell, D.K. 2007a. Early Silurian positive δ13C excursions and their relationship to glaciations, sea-level changes and extinction events. Geological Journal 42, 531-546.
Loydell, D.K. 2007b. Graptolites from the Upper Ordovician and lower Silurian of Jordan. Special Papers in Palaeontology 78, 1-66.
Loydell, D. K. 2011. Graptolite biostratigraphy of the E1-NC174 core, Rhuddanian (lower Llandovery, Silurian), Murzuq Basin (Libya). Bulletin of Geosciences 87, 651-660.
Loydell, D.K., Butcher, A. & Frýda, J. 2013. The middle Rhuddanian (lower Silurian) ’hot’ shale of North Africa and Arabia: an atypical hydrocarbon source rock. Palaeogeography, Palaeoclimatology, Palaeoecology 386, 233-256.
Loydell, D.K. & Large, R.R. 2019. Biotic, geochemical and environmental changes through the early Sheinwoodian (Wenlock, Silurian) carbon isotope excursion (ESCIE), Buttington Quarry, Wales. Palaeogeography, Palaeoclimatology, Palaeoecology 514, 305-325.
Loydell, D.K. & Maletz, J. 2004. The Silurian graptolite genera Streptograptus and Pseudostreptograptus. Journal of Systematic Palaeontology 2, 65-93.
Loydell, D.K., Männik, P. & Nestor, V. 2003. Integrated biostratigraphy of the lower Silurian of the Aizpute-41 core, Latvia. Geological Magazine 140, 205-229.
Loydell, D.K., Walasek, N., Schovsbo, N.H. & Nielsen, A.T. 2017. Graptolite biostratigraphy of the lower Silurian of the Sommerodde-1 core, Bornholm, Denmark. Bulletin of the Geological Society of Denmark 65, 135-160.
Lubeseder, S. 2008. Palaeozoic low-oxygen, high-latitude carbonates: Silurian and Lower Devonian nautiloid and scyphocrinoid limestones of the Anti-Atlas (Morocco). Palaeogeography, Palaeoclimatology, Palaeoecology 264, 195-209.
Lüning, S., Craig, J., Loydell, D.K., Štorch, P. & Fitches, B. 2000. Lower Silurian “hot shales” in North Africa and Arabia: regional distribution and depositional model. Earth-Science Reviews 49, 121-200.
Mahmoud, M.D., Vaslet, D. & Husseini, M.I. 1992. The Lower Silurian Qalibah Formation of Saudi Arabia: an important hydrocarbon source rock. Bulletin of the American Association of Petroleum Geologists 76, 1491-1506.
Maury, C.J. 1929. Uma zona de graptolitos do Llandovery inferior no Rio Trombetas, Estado do Pará, Brasil. Servico Geologico e Mineralogico do Brasil, Monographia 7, 6-45.
McClure, H.A. 1988. The Ordovician-Silurian boundary in Saudi Arabia. Bulletin of the British Museum, Natural History (Geology) 43, 155-163.
Melchin, M.J. 1998. Morphology and phylogeny of some early Silurian ’diplograptid’ genera from Cornwallis Island, Arctic Canada. Palaeontology 41, 263-315.
Melchin, M.J. & Holmden, C. 2006. Carbon isotope chemostratigraphy of the Llandovery of Arctic Canada: implications for global correlation and sea-level change. GFF 128, 173-180.
Melchin, M.J., Sadler, P.M. & Cramer, B.D. 2020. The Silurian Period, 695-732. In Gradstein, F.M, Ogg, J.G., Schmitz, M.D. & Ogg, G.M. (eds) Geologic time scale 2020. Volume 2. Elsevier BV, Amsterdam.
Miller, M.A. & Melvin, J. 2005. Significant new biostratigraphic horizons in the Qusaiba Member of the Silurian Qalibah Formation of central Saudi Arabia, and their sedimentological expression in a sequence stratigraphic context. GeoArabia 10, 49-92.
Packham, G.H. 1962. Some diplograptids from the British Lower Silurian. Palaeontology 5, 498-526.
Paškevičius, J. 1976. On some new Llandoverian diplograptids of the eastern Baltic, 140-151. In Kaljo, D. & Koren’, T.N. (eds) Graptolites and stratigraphy. Tallinn.
Přibyl, A. 1947. Classification of the genus Climacograptus Hall, 1865. Bulletin International de l’Académie Tchéque des Sciences 48(2), 1-12.
Russel, J.C, Melchin, M.J. & Koren’, T.N. 2000. Development, taxonomy and phylogenetic relationships of species of Paraclimacograptus (Graptoloidea) from the Canadian Arctic and the southern Urals of Russia. Journal of Paleontology 74, 84-91.
Štorch, P. 2015. Graptolites from the Rhuddanian-Aeronian boundary interval (Silurian), Prague Synform, Czech Republic. Bulletin of Geosciences 90, 841-891.
Štorch, P., Manda, Š., Tasáryová, Z., Frýda, J., Chadimová, L. & Melchin, M.J. 2018. A proposed new global stratotype for Aeronian Stage of the Silurian System: Hlásná Třebaň section, Czech Republic. Lethaia 51, 357-388.
Štorch, P. & Massa, D. 2006. Middle Llandovery (Aeronian) graptolites of the western Murzuq Basin and Al Qarqaf Arch region, south-west Libya. Palaeontology 49, 83-112.
Štorch, P. & Melchin, M.J. 2018. Lower Aeronian triangulate monograptids of the genus Demirastrites Eisel, 1912: biostratigraphy, palaeobiogeography, anagenetic changes and speciation. Bulletin of Geosciences 93, 513-537.
Torsvik, T. & Cocks, L.R.M. 2013. New global palaeogeographical reconstructions for the Early Palaeozoic and their generation. Geological Society Memoirs 38, 5-24.
Williams, M., Zalasiewicz, J., Boukhamsin, H. & Cesari, C. 2016. Early Silurian (Llandovery) graptolite assemblages of Saudi Arabia: biozonation, palaeoenvironmental significance and biogeography. Geological Quarterly 60, 1-23.