Current IF 1.9
Latest issue (RSS 2.0)
Contact Editorial Office at
bulletin@geology.cz

Bulletin of Geosciences
Published by ©
Czech Geological Survey,
W. Bohemia Museum Pilsen
Individual sponsors
ISSN: 1802-8225 (online),
1214-1119 (print)

Black shales contamination and depositional paleoenvironment during the Early Aptian OAE 1a in the Eastern Russian Platform
Published in: Bulletin of Geosciences, volume 97, issue 1; pages: 123 - 140; Received 24 May 2020; Accepted in revised form 8 November 2021; Online 22 November 2021
Keywords: OAE 1a; Aptian; anoxia; black shales; Peri-Tethys; foraminiferal abundance,
Supplementary material
Electronic supplementary data (822 kB)
Trace element analyses of bulk-rock samples from the Tatar-Shatrashany core.
Abstract
The most pernicious consequences of the Early Aptian Oceanic Anoxic Event (OAE) 1a in the North-Eastern Peri- Tethys for benthic microfauna were oxygen decrease and the onset of sulphidic conditions, related to toxic enrichment in heavy metals which can be regarded as one of the main causes for biota distress and even their disappearance. Twenty-nine samples from the Tatar-Shatrashany borehole located in the Ulyanovsk-Saratov Trough (Eastern Russian Platform) were studied to estimate the extent of anoxia using trace element redox proxies and pyrite framboid morphology and distribution. The degree of contamination in toxic metals (As, Cd, Se, Pb, Zn, Ni, Mo, Cu, V, and W) is estimated for the Lower Aptian OAE 1a-related black shales of the Ulyanovsk Formation and compared with the results obtained for the Late Jurassic OAE-related black shales of the Promzino Formation and host mudrocks. The relationships between benthic foraminiferal abundance and diversity and black shales contamination in toxic metals are evaluated. Extreme contamination of the OAE 1a-related black shales in Mo and Cd in conjunction with the absence of oxygen could result in conditions not suitable for benthic foraminifers dwelling. The key species Mjatliukaena aptiensis (Mjatl.) is regarded to be one of the toxic-resistant species that successfully recovered from the OAE 1a anoxic stress. Comparing to the Late Jurassic OAE, the integrated data indicate moderately contaminated black shales and mainly dysoxic conditions under which habitat conditions were not completely detrimental for benthic foraminifers. The most toxic-resistant species was Lenticulina infravolgaensis (Furs. et Pol.).References
Algeo, T.J. & Ingall, E. 2007. Sedimentary Corg: P ratios, paleocean ventilation, and Phanerozoic atmospheric pO2. Palaeogeography, Palaeoclimatology, Palaeoecology 256, 130–155.
Algeo, T.J. & Maynard, J.B. 2004. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chemical Geology 206, 289–318.
Alve, E. 1991. Benthic foraminifera in sediment cores reflecting heavy metal pollution in Sorfjord, western Norway. Journal of Foraminiferal Research 21(1), 1–19.
Alyazichi, Y.M., Jones, B. & McLean, E. 2014. Environmental assessment of benthic foraminiferal and pollution in Gunnamatta Bay, NSW, Australia, 2495–2504. In Shimizu, N., Kaneko, K. & Kodama, J. (eds) Rock Mechanics for Global Issues – Natural Disasters, Environment, and Energy. Proceedings of the 2014 ISRM International Symposium.
Anderson, R.F., Bacon, M.P. & Brewer, P.G. 1983. Removal of 230Th and 231Pa at ocean margins. Earth and Planetary Science Letters 66, 73–90.
Atkinson, W.J. 1967. Regional geochemical studies in county Limerick, Ireland with particular reference to selenium and molybdenum. 337 pp. Ph.D. thesis, Imperial College, London.
Begum, G. (ed.) 2012. Ecotoxicology. 146 pp. InTech, Croatia.
Berkeley, A. 2009. Understanding the role of taphonomy and post-depositional processes on the intertidal stratigraphic record. Palaios 24, 271–272.
Bond, D.P.G. & Wignall, P.B. 2010. Pyrite framboid study of marine Permian-Triassic boundary sections: A complex anoxic event and its relationship to contemporaneous mass extinction. GSA Bulletin 122(7/8), 1265–1279.
Bottini, C., Erba, E., Tiraboschi, D., Jenkyns, H.C., Schouten, S. & Sinninghe Damsté, J.S. 2015. Climate variability and ocean fertility during the Aptian Stage. Climate Past 11, 383–402.
Brand, L.E. 1994. Physiological ecology of marine coccolithophores, 39–49. In Winter, A. & Siesser, W.G. (eds) Coccolithophores. Cambridge University Press, Cambridge.
Cavalazzi, B., Agangi, A., Barbieri, R., Franchi, F. & Gasparotto, G. 2014. The Formation of Low-Temperature Sedimentary Pyrite and Its Relationship with Biologically-Induced Processes. Geology of Oil Deposits 56, 395–408.
Calvert, S.E. & Pedersen, T.F. 1993. Geochemistry of recent oxic and anoxic marine sediments: implications for the geological record. Marine Geology 113, 67–88.
Caruso, A., Cosentino, C. Tranchina, L. & Brai, M. 2011. Response of benthic foraminifera to heavy metal contamination in marine sediments (Sicilian coasts, Mediterranean Sea). Chemistry and Ecology 27(1), 9–30.
Crusius, J., Calvert, S., Pedersen, T. & Sage, D. 1996. Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic, and sulfidic conditions of deposition. Earth and Planetary Science Letters 145, 65–78.
Dean, W.E., Gardner, J.V. & Piper, D.Z. 1997. Inorganic geochemical indicators of glacial–interglacial changes in productivity and anoxia on the California continental margin. Geochimica et Cosmochimica Acta 61, 4507–4518.
Debenay, J.-P. & Fernandez, J.-M. 2009. Benthic foraminifera records of complex anthropogenic environmental changes combined with geochemical data in a tropical bay of New Caledonia (SW Pacific). Marine Pollution Bulletin 59, 311–322.
Emerson, S.R. & Huested, S.S. 1991. Ocean anoxia and the concentrations of molybdenum and vanadium in seawater. Marine Chemistry 34, 177–196.
Erba, E. 2004. Calcareous nannofossils and Mesozoic oceanic anoxic events. Marine Micropaleontology 52, 85–106.
Erba, E., Bottini, C., Weissert, J.H. & Keller, C.E., 2010. Calcareous Nannoplankton Response to Surface-Water Acidification Around Oceanic Anoxic Event 1a. Science 329, 428–432.
Farina, F., Esquivel, D.M.S & Lins de Barros H.G.P. 1990. Magnetic iron-sulphur crystals from a magnetotactic microorganism. Nature 343, 256–258.
French, K.L., Sepúlveda, J., Trabucho-Alexandre, J., Gröcke, D.R. & Summons, R.E. 2014. Organic geochemistry of the early Toarcian oceanic anoxic event in Hawsker Bottoms, Yorkshire, England. Earth and Planetary Science Letters 390, 116–127.
Friedrich, O. 2010. Benthic foraminifera and their role to decipher paleoenvironment during mid-Cretaceous Oceanic Anoxic Events – the “anoxic benthic foraminifera” paradox. Revue de micropaléontologie 53, 175–192.
Frontalini, F., Buosi, C., Da Pelo, S., Coccioni, R., Cherchi, A. & Bucci., C. 2009. Benthic Foraminifera as Bio-Indicators of Trace Element Pollution in the Heavily Contaminated Santa Gilla Lagoon (Cagliari, Italy). Marine Pollution Bulletin 58(6), 858–877.
Galiakberov, A., Zorina S., Maksyutova, L., Dzhalmukhanova, R., Zaripova, G. & Nikashin, K. 2018. Toxicity of high-carbon sediments: case Study from anoxic basins of the East European and West Siberian Platforms, 340–343. In Nourgaliev, D.K. (ed.) Advances in Devonian, Carboniferous, and Permian Research: Stratigraphy, Environments, Climate, and Resources. Filodiritto Editore–Proceedings.
Gavrilov, Yu.O., Shchepetova, E.V., Baraboshkin, E.Yu. & Shcherbinina, E.A. 2002. The Early Cretaceous anoxic basin of the Russian Plate: sedimentology and geochemistry. Lithology and Mineral Resources 37, 310–329.
Geslin, E., Debenay, J.P. & Lesourd, M. 1998. Abnormal wall textures and test deformation in Ammonia (Hyaline Foraminifer). Journal of Foraminiferal Research 28(2), 148–156.
Guo, Q., Shields, G.A., Liu, C., Strauss, H., Zhu, M., Pi, D., Goldberg, T. & Yang, X. 2007. Trace element chemostratigraphy of two Ediacaran-Cambrian successions in South China: implications for organosedimentary metal enrichment and silicification in the Early Cambrian. Palaeogeography, Palaeoclimatology, Palaeoecology 254, 194–216.
Haq, B.U. 2014. ?retaceous eustasy revisited. Global and Planetary Change 113, 44–58.
Helz, G.R., Miller, C.V., Charnock, J.M., Mosselmans, J.F.M., Pattrick, R.A.D., Garner, C.D. & Vaughan, D.J. 1996. Mechanisms of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence. Geochimica et Cosmochimica Acta 60, 3631–3642.
Jacobs, L., Emerson, S. & Skei, J. 1985. Partitioning and transport of metals across the O2/H2S interface in a permanently anoxic basin: Framvaren Fjord, Norway. Geochimica et Cosmochimica Acta 49, 1433– 1444.
Jahren, A.H., Arens, N.C., Sarmiento, G., Guerrero, J. & Amundson, R. 2001. Terrestrial record of methane hydrate dissociation in the Early Cretaceous. Geology 29, 159–162.
Jenkyns, H.C. 2010. Geochemistry of oceanic anoxic events. Geochemistry. Geophysics. Geosystems 11(3), Q03004.
Jiang, S.Y., Zhao, H.X., Chen, Y.Q., Yang, T., Yang, J.H. & Ling, H.F. 2007. Trace and rare earth element geochemistry of phosphate nodules from the lower Cambrian black shale sequence in the Mufu Mountain of Nanjing, Jiangsu province, China. Chemical Geology 244(3–4), 584–604.
Jones, B. & Manning, D.A.C. 1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology 111, 111–129.
Keller, C.E., Hochuli, P.A., Weissert, H., Bernasconi, S.M., Giorgioni, M. & Garcia, T.I. 2011. A volcanically induced climate warming and floral change preceded the onset of OAE1a (Early Cretaceous). Palaeogeography, Palaeoclimatology, Palaeoecology 305, 43–49.
Ketris, M.P. & Yudovich, Y.E. 2009. Estimation of clarkes for carbonaceous biolithes: world averages for trace elements contents in black shales and coals. International Journal of Coal Geology 78, 135–148.
Larson, R.L. & Erba, E. 1999. Onset of the mid-Cretaceous greenhouse in the Barremian–Aptian: igneous events and the biological, sedimentary, and geochemical responses. Paleoceanography 14, 553–678.
Lee, J.-S., Chon, H.-T., Kim, J.-Sh., Kim, K.-W. & Moon, H.-S. 1998. Enrichment of potentially toxic elements in areas underlain by black shales and slates in Korea. Environmental Geochemistry and Health 20, 135–147.
Li, Y.X., Bralower, T.J., Montanez, I.P., Osleger, D.A., Arthur, M.A., Bice, D.M., Herbert, T.D., Erba, E. & Premoli Silva, I. 2008. Toward an orbital chronology for the early Aptian Oceanic Anoxic Event (OAE1a, ~120 Ma). Earth and Planetary Science Letters 271, 88–100.
Lund, L.J., Betty, E.E., Page, A.L. & Elliott, R.A. 1981. Occurrence of naturally high cadimium levels in soils and its accumulation by vegetation. Journal of Environmental Quality 10, 551–556.
Maksyutova, L.F., Galiakberov, A.I., Dzhalmukhanova, R.I., Zaripova, G.M., Nikashin, K.I. & Zorina, S.O. 2018. New data on greenhouse-gas footprint from black shales of Russian and West Siberian Platforms, Russia, 375–380. In Nourgaliev, D.K. (ed.) Advances in Devonian, Carboniferous, and Permian Research: Stratigraphy, Environments, Climate, and Resources. Filodiritto Editore–Proceedings.
Malinverno, A., Erba, E. & Herbert, T.D. 2010. Orbital tuning as an inverse problem: Chronology of the early Aptian oceanic anoxic event 1a (Selli Level) in the Cismon APTICORE. Paleoceanography 25, PA2203.
Menegatti, A.P., Weissert, H., Brown, R.S., Tyson, R.V., Farrimond, P., Strasser, A. & Caron, M. 1998. High-resolution ?13C stratigraphy through the early Aptian “Livello selli” of the Alpine tethys. Paleoceanography 13, 530–545.
Meyer, K.M. & Kump, L.R. 2008. Oceanic Euxinia in Earth History: Causes and Consequences. Annual Review of Earth and Planetary Sciences 36, 251–288.
Moosavizadeh, M.A., Mahboubi, A., Moussavi-Harami, R.M.A. & Kavoosi, M.A., 2014. Early Aptian Oceanic Anoxic Event (OAE 1a) in moderately Arabian Plate Setting: An Example from Dariyan Formation in Zagros Fold-Trust Belt, SE Iran. Arabian Journal of Geosciences 7, 4745–4756.
Müller, G. 1969. Index of geo-accumulation in Sediments of the Rhine River. Geojournal 2, 108–118.
Murray, J.W. 1989. Syndepositional dissolution of calcareous foraminifera in moder shallow-water sediments. Marine Micropaleontology 15, 117–121.
Murray, J.W. 2006. Ecology and Applications of Benthic Foraminifera. 400 pp. Cambridge University Press, New York.
Murray, J.W. & Alve, E. 1999. Natural dissolution of modern shallow water benthic foraminifera: Taphonomic effects on the palaeoecological record. Palaeoecology, Palaeogeography, Palaeoclimatology 146, 195–209.
Nozaki, T., Kato, Ya. & Suzuki, K. 2013. Late Jurassic ocean anoxic event: evidence from voluminous sulfide deposition and preservation in the Panthalassa. Scientific Reports 3(1889), 1–6.
Olferiev, A.G., Beniamovski, V.N., Vishnevskaya, V.S., Ivanov, A.V., Kopaevich, L.F., Ovechkina, M.N., Pervushov, E.M., Sel’tser, V.B., Tesakova, E.M., Kharitonov, V.M. & Shcherbinina, E.A. 2008. Upper Cretaceous deposits in the northwest of Saratov Region, Part 2: Problems of chronostratigraphy and regional geological history. Stratigraphy and Geological Correlation 16, 267–294.
Olszewski, T.D. 2004. Modeling the influence of taphonomic destruction, reworking, and burial on time-averaging in fossil accumulations. Palaios 19, 39–50.
Oschmann, W. 2011. Black shales, 201–210. Reitner, J. & Thiel, V. (eds) Encyclopedia of Geobiology. Dordrecht, Springer Science+Business Media B.V.
Park, M.-H., Kim, I.-S. & Ryu, B.-J. 2003. Framboidal pyrites in late Quaternary core sediments of the East Sea and their paleoenvironmental implications. Geosciences Journal 7(3), 209–215.
Percival, L.M.E., Tedeschi, L.R., Creaser, R.A., Bottini, C., Erba, E., Giraud, F., Svensen, H., Savian, J., Trindade, R., Coccioni, R., Frontalini, F., Jovane, L., Mather, T.A. & Jenkyns, H.C. 2021. Determining the style and provenance of magmatic activity during the Early Aptian Oceanic Anoxic Event (OAE 1a). Global and Planetary Change 200, 103461.
Poňavič, M., Pašava, L., Vymazalová, A., Kříbek, B., Deng, H., Luo, T., Li, C. & Zeng, M. 2006. Fractionation of toxic trace elements in soils around Mo-Ni black shale-hosted mines, Zunyi region, southern China: Environmental implications. Bulletin of Geosciences 81, 197–206.
Premoli Silva, I., Erba, E., Salvini, G., Locatelli, C. & Verga, D. 1999. Biotic changes in Cretaceous oceanic anoxic events of the Tethys. Journal of Foraminiferal Research 29, 352–370.
Rimmer, S.M., Thompson, J.A., Goodnight, S.A. & Robl, T.L. 2004. Multiple controls on the preservation of organic matter in Devonian–Mississippian marine black shales: geochemical and petrographic evidence. Palaeogeography, Palaeoclimatology, Palaeoecology 215, 125–154.
Rudnick, R.L. & Gao, S. 2003. Composition of the Continental Crust. Treatise on Geochemistry 3, 1–64. Elsevier, Amsterdam.
Sawlowicz, Z. 1993. Pyrite framboids and their development: a new conceptual mechanism. Geologische Rundschau 82, 148–156.
Scotese, C.R. 2014. The PALEOMAP Project PaleoAtlas for ArcGIS, version 2, Vol. 2, Cretaceous Plate Tectonic, Paleogeographic, and Paleoclimatic Reconstructions. Maps 16–32. PALEOMAP Project, Evanston, IL.
Scotese, C.R. 2016. Some Thoughts on Global Climate Change: The transition from Icehouse to Hothouse, in the Earth History: The evolution of the Earth System. PALEOMAP Project, Evanston, IL.
Schlanger, S.O. & Jenkyns, H.C. 1976. Cretaceous oceanic anoxic events: causes and consequences. Geologieen Mijnbouw 55, 179–184.
Taylor, G.R. 1983. A mechanism for framboid formation – The role of bacteria. Mineralium Deposita 18, 129–130.
Tejada, M.L.G., Suzuki, K., Kuroda, J., Coccioni, R., Mahoney, J.J. Ohkouchi, N., Sakamoto, T. & Tatsumi, Y. 2009. Ontong Java Plateau eruption as a trigger for the early Aptian oceanic anoxic event. Geology 37, 855–858.
Trabucho-Alexandre, J., Hay, W.W. & de Boer, P.L. 2012. Phanerozoic environments of black shale deposition and the Wilson Cycle. Solid Earth 3, 29–42.
Tribovillard, N., Algeo, T.J., Lyons, T. & Riboulleau, A. 2006. Trace-metals as paleoredox and paleoproductivity proxies: an update. Chemical Geology 232, 12–32.
Ulmishek, G. 2003. Petroleum geology and resources of the West Siberian basin, Russia. U.S.G.S. Bulletin 2201-G, 49.
Van Breugel, Y., Schouten, S., Tsikos, H., Erba, E., Price, G.D. & Sinninghe Damsté, J.S. 2007. Synchronous negative carbon isotope shifts in marine and terrestrial biomarkers at the onset of the early Aptian oceanic anoxic event 1a: Evidence for the release of 13C-depleted carbon into the atmosphere. Paleoceanography 22(1), PA1210.
Vine, J.D. & Tourtelot, E.B. 1970. Geochemistry of black shale deposit ± a summary report. Economic Geology 65, 253–272.
Von Bargen, D. & Lehmann, J. 2014. Benthic ecosystem response to the deposition of lower Aptian black shales in an epicontinental sea. Cretaceous Research 51, 208–224.
Vodyanitskii, Yu.N. 2012, Standards for the contents of heavy metals and metalloids in soils. Eurasian Soil Science 45, 321–328.
Wang, L., Shi, X. & Jiang G. 2012. Pyrite morphology and redox fluctuations recorded in the Ediacaran Doushantuo Formation. Palaeogeography, Palaeoclimatology, Palaeoecology 333, 218–227.
Westermann, S., Stein, M., Matera, V., Fiet, N., Fleitmann, D., Adatte, T. & Föllmi, K.B. 2013. Rapid changes in the redox conditions of the western Tethys Ocean during the early Aptian oceanic anoxic event. Geochimica et Cosmochimica Acta 121, 467–486.
Wignall, P.B. & Myers, K.J. 1988. Interpreting the benthic oxygen levels in mudrocks: a new approach. Geology 16, 452–455.
Wignall, P.B. & Twitchett, R.J. 1996. Oceanic anoxia and the end Permian mass extinction. Science 272, 1155–1158.
Wignall, P.B., Newton, R. & Brookfield, M.E. 2005. Pyrite framboid evidence for oxygenpoor deposition during the Permian-Triassic crisis in Kashmir. Palaeogeography, Palaeoclimatology, Palaeoecology 216, 183–188.
Wignall, P.B., Bond, D.P.G., Kuwahara, K., Kakuwa, Y., Newton, R.J. & Poulton, S.W. 2010. An 80 million year oceanic redox history from Permian to Jurassic pelagic sediments of the Mino-Tamba terrane, SW Japan, and the origin of four mass extinctions. Global and Planetary Change 71, 109–123.
Wilkin, R.T. & Barnes, H.L. 1997. Formation processes of framboidal pyrite. Geochimica et Cosmochimica Acta 61(2), 323–339.
Wilkin, R.T., Barnes, H.L. & Brantley, S.L. 1996. The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions. Geochimica et Cosmochimica Acta 60, 3897–3912.
Yanko, V., Arnold, A.J. & Parker, W.C. 1999. Effects of Marine Pollution on Benthic Foraminifera, 217–235. Sen Gupta, B.K (ed.) Modern Foraminifera. Kluwer Academic Publisher, Dordrecht.
Zakharov, Yu.D., Baraboshkin, E.Yu., Weissert, H., Michailova, I.A., Smyshlyaeva, O.P. & Safronov, P.P. 2013, Late Barremian-early Aptian climate of the northern middle latitudes: Stable isotope evidence from bivalve and cephalopod mollusks of the Russian Platform. Cretaceous Research 44, 183–201.
Zorina, S.O. 2007. Stratigraphy of middle-upper Jurassic deposits in the East Russian plate. Stratigraphy and Geological Correlation 15, 267–276.
Zorina, S.O. 2009. Sequence stratigraphy of Lower Cretaceous deposit on the eastern Russian Plate. Russian Geology and Geophysics 50, 430–437.
Zorina, S.O. 2014. Eustatic, tectonic, and climatic signatures in the Lower Cretaceous siliciclastic succession on the Eastern Russian Platform. Palaeogeography, Palaeoclimatology, Palaeoecology 412, 91–98.
Zorina, S.O. 2016. Sea-level and climatic controls on Aptian depositional environments of the Eastern Russian Platform. Palaeogeography, Palaeoclimatology, Palaeoecology 441, 599–609.
Zorina, S. 2019. Early Cretaceous microbiofacies and paleobathymetry in the Eastern Russian Platform, 288–292. In Nourgaliev, D.K. (ed.) Sedimentary Earth Systems: Stratigraphy, Geochronology, Petroleum Resources. Proceedings Kazan Golovkinsky Stratigraphic Meeting, 2019. Filodiritto Editore – Proceedings.
Zorina, S.O. & Startseva, G.N. 2010. Biofacies of benthic foraminifers and paleobathymetry and sequence stratigraphy of Middle Jurassic–Lower Cretaceous deposits on the eastern Russian Plate (area of the Tatarsko–Shatrashanskaya 1 borehole, Republic of Tatarstan), Litosfera 4, 81–93.
Zorina, S.O., Pavlova, O.V., Galiullin, B.M., Morozov, V.P. & Eskin, A.A. 2017. Euxinia as a dominant process during OAE1a (Early Aptian) on the Eastern Russian Platform and during OAE1b (Early Albian) in the Middle Caspian. Science China: Earth Sciences 60, 58–70.
Zorina, S.O., Nikashin, K.I. & Sokerin, M.Y. 2020. Geochemical Indicators of “Camouflaged? Pyroclastic Material in the Upper Jurassic-Lower Cretaceous Deposits of the Eastern Russian Platform. Doklady Earth Sciences 493, 608–611.