Current IF 1.9
Latest issue (RSS 2.0)
Contact Editorial Office at
bulletin@geology.cz
Bulletin of Geosciences
Published by ©
Czech Geological Survey,
W. Bohemia Museum Pilsen
Individual sponsors
ISSN: 1802-8225 (online),
1214-1119 (print)
Beginning of the Miocene Climatic Optimum in Central Europe in sediment archive of the Most Basin, Czech Republic
Published in: Bulletin of Geosciences, volume 96, issue 1; pages: 61 - 81; Received 17 April 2020; Accepted in revised form 20 October 2020; Online 13 December 2020
Keywords: lacustrine sediments, stratigraphy, orbital forcing, weathering proxies, geomagnetic reversals,
Abstract
The Most Basin (Czech Republic) offers an extraordinarily detailed archive of the continental environment in Central Europe (ca. 50° N) in the period around the beginning of the Miocene Climatic Optimum. The sediments were studied by magneto-, chemo-, and cyclostratigraphy. Novel proxies for chemical weathering intensity were derived from K/Al concentration ratios and Mg/Al concentration ratios corrected for autochthonous carbonate content using an isometric log-ratio methodology and robust regression (RR). The correction confirmed that the association of chemical weathering maxima (lows in K/Al or Mg/Al) with eccentricity, obliquity, or precession maxima were affected by sediment grain size to only a minor degree. The orbital control allowed for the refinement of a magnetic-polarity-based depth-age model to unprecedented resolution. The timing of the basin development after the peat swamp flooding was confirmed; it started in the C5Dr.2r subchron, intensified in the C5Dn.1n subchron over several tens of kyr, and spread over the entire basin in the early part of C5Dr.1r. The expression of orbital cycles in weathering proxies changed abruptly near 17.07 and 16.90 Ma, in close temporal proximity to two step-like changes in global marine δ18O records between 17.2 and 16.9 Ma. The sensitivity of weathering intensity in the Most Basin to orbital forcing decreased coevally with the initial floods of the Columbia River Basalt Group and disruptions of the global δ13C record near the C5Dr/C5Dn reversal at around 16.6 Ma. Ratios K/Al and Mg/Al, either raw or carbonate corrected, can be recommended for the study of continental basin sediments.References
Ait-Itto, F.-Z., Martinez, M., Price, G.D. & Ait Addi, A. 2018. Synchronization of the astronomical time scales in the Early Toarcian: A link between anoxia, carbon-cycle perturbation, mass extinction and volcanism. Earth and Planetary Science Letters 493, 1-11.
Armstrong McKay, D.I., Tyrrell, T., Wilson, P.A. & Forster, G.L. 2015. Estimating the impact of the cryptic degassing of Large Igneous Provinces: A mid-Miocene case-study. Earth and Planetary Science Letters 403, 254-262.
Barry, T.L., Self, S., Kelley, S.P., Reidel, S., Hooper, P. & Widdowson, M. 2010. New 40Ar/39Ar dating of the Grande Ronde lavas, Columbia River Basalts, USA: implications for duration of flood basalt eruption episodes. Lithos 118, 213-222.
Beddow, H.M., Liebrand, D., Wilson, D.S., Hilgen, F.J., Sluijs, A., Wade, B.S. & Lourens, L.J. 2018. Astronomical tunings of the Oligocene-Miocene transition from Pacific Ocean Site U1334 and implications for the carbon cycle. Climate of the Past 14, 255-270.
Böhme, M. 2003. The Miocene Climatic Optimum: evidence from ectothermic vertebrates of Central Europe. Palaeogeography, Palaeoclimatology, Palaeoecology 195, 389-401.
Buggle, B., Glaser, B., Hambach, U., Gerasimenko, N. & Marković, S. 2011. An evaluation of geochemical weathering indices in loess-paleosol studies. Quaternary International 240, 12-21.
Carroll, A.R. & Bohacs, K.M. 1999. Stratigraphic classification of ancient lakes: Balancing tectonic and climatic controls. Geology 27, 99-102.
Chen, J., Chen, Y., Liu, L.-W., Ji, J.-F., Balsam, W., Sun, Y.B. & Lu, H.Y. 2006. Zr/Rb ratio in the Chinese loess sequences and its implication for changes in the East Asian winter monsoon strength. Geochimica et Cosmochimica Acta 70, 1471-1482.
Courtillot, V.E. & Renne, P.R. 2003. On the ages of flood basalt events. Comptes Rendus Geosciences 335, 113-140.
De Vleeschouwer, D., Vahlenkamp, M., Crucifix, M. & Pälike, H. 2017. Alternating Southern and Northern Hemisphere climate response to astronomical forcing during the past 35 m.y. Geology 45, 375-378.
Dellisanti, F., Pini, G.A. & Baudin, F. 2010. Use of T-max as a thermal maturity indicator in orogenic successions and comparison with clay mineral evolution. Clay Minerals 45, 115-130.
Dill, H.G. 2001. The geology of aluminium phosphates and sulphates of the alunite group minerals: a review. Earth-Science Reviews 5, 35-93.
Dinis, P., Garzanti, E., Vermeesch, P. & Huvi, J. 2017. Climatic zonation and weathering control on sediment composition (Angola). Chemical Geology 467, 110-121.
Drits, V.A. & Sakharov, B.A. 1976. X-ray analysis of mixed-layer clay minerals. 256 pp. Nauka, Moscow. [in Russian]
Drits, V.A. & Tchoubar, C. 1990. X-ray Diffraction by Disordered Lamellar Structures. 371 pp. Springer-Verlag, Berlin.
Drits, V.A., Srodon, J. & Eberl, D.D. 1997. XRD measurement ofmean crystallite thickness of illite and illite/smectite; reappraisal of the Kubler index and the Scherrer equation. Clays and Clay Minerals 45, 461-475.
Fačevicová, K., Bábek, O., Hron, K. & Kumpan, T. 2016. Element chemostratigraphy of the Devonian/Carboniferous boundary - A compositional approach. Applied Geochemistry 75, 211-221.
Garzanti, E., Padoan, M., Peruta, L., Setti, M., Najman, Y. & Villa, I.M. 2013. Weathering geochemistry and Sr-Nd fingerprints of equatorial upper Nile and Congo muds. Geochemistry Geophysics Geosystems 14, 292-316.
Gasson, E., Deconto, R.M., Pollard, D. & Levy, R.H. 2016. Dynamic Antarctic ice sheet during the early to mid-Miocene. Proceedings of the National Academy of Sciences of the United States of America 113, 3459-3464.
Grygar, T., Kadlec, J., Žigová, A., Mihaljevič, M., Nekutová, T., Lojka, R. & Světlík, I. 2009. Chemostratigraphic correlation of sediments containing expandable clay minerals based on ion exchange with Cu(II) complex with triethylenetetramine. Clays and Clay Minerals 57(2), 168-182.
Havelcová, M., Sýkorová, I., Bechtel, A., Mach, K., Trejtnarová, H., Žaloudková, M., Matysová, P., Blažek, J., Boudová, J. & Sakala, J. 2013. “Stump Horizon” in the Bílina Mine (Most Basin, Czech Republic) - GC-MS, optical and electron microscopy in identification of wood biological origin. International Journal of Coal Geology 107, 62-77.
Havelcová, M., Sýkorová, I., Mach, K, Trejtnarová, H. & Blažek, J. 2015. Petrology and organic geochemistry of the lower Miocene lacustrine sediments (Most Basin, Eger Graben, Czech Republic). International Journal of Coal Geology 139, 26-39.
Hilgen, F.J., Lourens, L.J. & Van Dam, J.A. 2012. The Neogene Period. In Gradstein, F.M., Ogg, J.G., Schmitz, M.D. & Ogg, G.M. (eds) The Geologic Time Scale 2012. Amsterdam, Elsevier BV.
Holbourn, A., Kuhnt, W., Kochhann, K.G.D., Andersen, N. & Meier, K.J.S. 2015. Global perturbation of the carbon cycle at the onset of the Miocene Climatic Optimum. Geology 43, 123-126.
Ji, S.-C., Nie, J.S., Lechler, A., Huntington, K.W., Heitmann, E.O. & Breecker, D.O. 2018. A symmetrical CO2 peak and asymmetrical climate change during the middle Miocene. Earth and Planetary Science Letters 499, 134-144.
Kasbohm, J. & Schoene, B. 2018. Rapid eruption of the Columbia River flood basalt and correlation with the mid-Miocene climate optimum. Science Advances 4, eaat8223.
Kochhann, K.G.D., Holbourn, A., Kuhnt, W., Channell, J.E.T., Lyle, M., Shackford, J.K., Wilkens, R.H. & Andersen, N. 2016. Eccentricity pacing of eastern equatorial Pacific carbonate dissolution cycles during the Miocene Climatic Optimum. Paleoceanography 31, 1176-1192.
Koller, M. & Stahel, W.A. 2011. Sharpening Wald-type inference in robust regression for small samples. Computational Statistics and Data Analysis 55, 2504-2515.
Kürschner, W.M., Kvaček, Z. & Dilcher, D.L. 2008. The impact of Miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems. Proceedings of the National Academy of Sciences of the United States of America 105, 440-453.
Kutterolf, S., Schindlbeck, J.C., Jegen, M., Freundt, A. & Straub, S.M. 2019. Milankovitch frequencies in tephra records at volcanic arcs: The relation of kyr-scale cyclic variations in volcanism to global climate changes. Quaternary Science Reviews 204, 1-16.
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A.C.M. & Levrard, B. 2004. A long-term numerical solution for the insolation quantities of the Earth. Astronony and Astrophysics 428, 261-285.
Levy, R. et al. 2016. Antarctic ice sheet sensitivity to atmospheric CO2 variations in the early to mid-Miocene. Proceedings of the National Academy of Sciences of the United States of America 113, 3453-3458.
Liebrand, D., Beddow, H.M., Lourens, L.J., Pälike, H., Raffi, I., Bohaty, S.M., Hilgen, F.J., Saes, M.J.M., Wilson, P.A., Van Dijk, A.E., Hodell, D.A., Kroon., D., Huck, C.E. & Batenburg, S.J. 2016. Cyclostratigraphy and eccentricity tuning of the early Oligocene through early Miocene (30.1-17.1 Ma): Cibicides mundulus stable oxygen and carbon isotope records from Walvis Ridge Site. Earth and Planetary Science Letters 450, 392-405.
Lukács, R., Harangi, S., Guillong, M., Bachmann, O., Fodor, L., Buret, Y., Dunkl, I., Sliwinski, J., Quadt, A. von, Peytcheva, I. & Zimmerer, M. 2018. Early to Mid-Miocene syn-extensional massive silicic volcanism in the Pannonian Basin (East-Central Europe): Eruption chronology, correlation potential and geodynamic implications. Earth-Science Reviews 179, 1-19.
Mach, K. 2003. Genesis of large scale syndepositional deformations of main coal seam - Miocene Bílina delta, Most basin, Czech Republic. 83 pp. Ph.D. thesis, Charles University, Prague, Czech Republic.
Mach, K., Sýkorová, I., Konzalová, M. & Opluštil, S. 2013. Effect of relative lake-level changes in mire-lake system on the petrographic and floristic compositions of a coal seam, in the Most Basin (Miocene), Czech Republic. International Journal of Coal Geology 105, 120-136.
Mach, K., Teodoridis, V., Matys Grygar, T., Kvaček, Z., Suhr, P. & Standke, G. 2014. An evaluation of paleogeography and paleoecology in the Most Basin (Czech Republic) and Saxony (Germany) from the late Oligocene to the early Miocene. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 272(1), 13-45.
Mach, K., Žák, K., Teodoridis, V. & Kvaček, Z. 2017. Consequences of lower Miocene CO2 degassing on geological and paleoenvironmental settings of the Ahnikov/Merkur Mine paleontological locality (Most Basin, Czech Republic). Neues Jahrbuch für Geologie und Palaontologie, Abhandlungen 285, 235-266.
Maechler, M., Rousseeuw, P., Croux, C., Todorov, V., Ruckstuhl, A., Salibian-Barreram, M., Verbeke, T., Koller, M., Conceicao, E.L.T. & di Palma, M.A. 2019. Robustbase: Basic robust statistics R package version 0.93-5. URL. http://CRAN.R-project.org/package=robustbase
Mahood, G.A. & Benson, T.R. 2017. Using 40Ar/39Ar ages of intercalated silicic tuffs to date flood basalts: Precise ages for Steens Basalt Member of the Columbia River Basalt Group. Earth and Planetary Science Letters 459, 340-351.
Mann, M.E. & Lees, J.M. 1996. Robust estimation of background noise and signal detection in climatic series. Climatic Change 33, 409-445.
Martinez, M., Deconinck, J.F., Pellenard, P., Reboulet, S. & Riquier, L. 2013. Astrochronology of the Valanginian Stage from reference sections (Vocontian Basin, France) and palaeoenvironmental implications for the Weissert Event. Palaeogeography Palaeoclimatology Palaeoecology 376, 91-102.
Martinez, M., Deconinck, J.F., Pellenard, P., Riquier, L., Company, M., Reboulet, S. & Moiroud, M. 2015. Astrochronology of the Valanginian-Hauterivian stages (Early Cretaceous): Chronological relationships between the Paraná-Etendeka large igneous province and the Weissert and the Faraoni events. Global and Planetary Change 131, 158-173.
Matys Grygar, T. 2019. Millennial-scale climate changes manifest Milankovitch combination tones and Hallstatt solar cycles in the Devonian greenhouse world: COMMENT. Geology 47(10), e487.
Matys Grygar, T. & Mach, K. 2013. Regional chemostratigraphic key horizons in the macrofossil-barren siliciclastic lower Miocene lacustrine sediments (Most Basin, Eger Graben, Czech Republic). Bulletin of Geosciences 88, 557-571.
Matys Grygar, T. & Popelka, J. 2016. Revisiting geochemical methods of distinguishing natural concentrations and pollution by risk elements in fluvial sediments. Jornal of Geochemical Exploration 170, 39-57.
Matys Grygar, T., Mach, K., Pruner, P., Schnabl, P., Laurin, J. & Martinez, M. 2014. A lacustrine record of the early stage of the Miocene Climatic Optimum in Central Europe from the Most Basin, Ohře (Eger) Graben, Czech Republic. Geologial Magazine 151, 1013-1033.
Matys Grygar, T., Mach, K., Hošek, M., Schnabl, P., Martinez, M. & Koubová, M. 2017a. Early stages of clastic deposition in the Most Basin (Ohře Rift, Czech Republic, Early Miocene): timing and possible controls. Bulletin of Geosciences 92, 337-355.
Matys Grygar, T., Hošek, M., Mach, K., Schnabl, P. & Martinez, M. 2017b. Climatic instability before the Miocene Climatic Optimum reflected in a Central European lacustrine record from the Most Basin in the Czech Republic. Palaeogeography, Palaeoclimatology, Palaeoecology 485, 930-945.
Matys Grygar, T., Mach, K., Schnabl, P., Martinez, M. & Zeeden, C. 2019a. Orbital forcing and abrupt events in a continental weathering proxy from central Europe (Most Basin, Czech Republic, 17.7-15.9 Ma) recorded beginning of the Miocene Climatic Optimum. Palaeogeography, Palaeoclimatology, Palaeoecology 514, 423-440.
Matys Grygar, T., Mach, K. & Martinez, M. 2019b. Checklist for the use of potassium concentrations in siliciclastic sediments as paleoenvironmental archives. Sedimentary Geology 382, 75-84.
Meier, L.P. & Kahr, G. 1999. Determination of the cation exchange capacity (CEC) of clay minerals using the complexes of copper (II) ion with triethylenetetramine and tetraethylenepentamine. Clays and Clay Minerals 47, 386-388.
Meyers, S.R. 2014. Astrochron: An R Package for Astrochronology. https://cran.r-project.org/package=astrochron
Meyers, S.R. 2019. Cyclostratigraphy and the problem of astrochronologic testing. Earth-Science Reviews 190, 190-223.
Miller, K.G., Baluyot, R., Wright, J.D., Kopp, R.E. & Browning, J.V. 2017. Closing an early Miocene astronomical gap with Southern Ocean δ18O and δ13C records: Implications for sea level change. Paleoceanography 32, 600-621.
Pawlowsky-Glahn, V., Egozcue, J.J. & Tolosana-Delgado, R. 2015. Modeling and analysis of compositional data. 272 pp. Wiley, Chichester.
R Core Team 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL. http://CRAN.R-project.org/package=robustbase
Rajchl, M., Uličný, D. & Mach, K. 2008. Interplay between tectonics and compaction in a rift-margin, lacustrine delta system: Miocene of Eger Graben, Czech Republic. Sedimentology 55, 1419-1447.
Rajchl, M., Uličný, D., Grygar, R. & Mach, K. 2009. Evolution of basin architecture in an incipient continental rift: the Cenozoic Most Basin, Eger Graben (Central Europe). Basin Research 21(3), 269-294.
Schindlbeck, J.C., Jegen, M., Freundt, A., Kutterolf, S., Straub, S.M., Mleneck-Vautravers, M.J. & McManus, J.F. 2018. 100-kyr cyclicity in volcanic ash emplacement: evidence from a 1.1 Myr tephra record from the NW Pacific. Scientific Reports 8, art. 4440.
Smith, D.G. 2019. Millennial-scale climate changes manifest Milankovitch combination tones and Hallstatt solar cycles in the Devonian greenhouse world: COMMENT. Geology 47(10), art. e488.
Tanaka, K. & Watanabe, N. 2015. Size distribution of alkali elements in riverbed sediment and its relevance to fractionation of alkali elements during chemical weathering. Chemical Geology 411, 12-18.
Taner, M.T. 2003. Attributes revisited. Rock Solid Images (RSI), Houston, Texas, 1992 revised May 2003. http://www.rocksolidimages.com/attributes-revisited/#_Toc328470897
Thomson, D.J. 1982. Spectrum estimation and harmonic analysis. Proceedings of the IEEE 70, 1055-1096.
Thomson, D.J. 1990. Quadratic-inverse spectrum estimates - applications to paleoclimatology. Philosophical Transactions of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences 332, 539-597.
Valero, L., Cabrera, L., Saez, A. & Garces, M. 2016. Long-period astronomically-forced terrestrial carbon sinks. Earth and Planetary Science Letters 444, 131-138.
Van der Weijden, C.H. 2002. Pitfalls of normalization of marine geochemical data using a common divisor. Marine Geology 184, 167-187.
Vaughan, S., Bailey, R.J. & Smith, D.G. 2011. Detecting cycles in stratigraphic data: Spectral analysis in the presence of red noise. Paleoceanography 26, PA4211.
Viennet, J.-C., Hubert, F., Ferrage, E., Tertre, E., Legout, A. & Turpault, M.-P. 2015. Investigation of clay mineralogy in a temperate acidic soil of a forest using X-ray diffraction profile modeling: Beyond the HIS and HIV description. Geoderma 241-242, 75-86.
Wu, H.-C., Zhao, X.-X., Shi, M.-N., Zhang, S.-H., Li, H.-Y. & Yang, T.-S. 2014. A 23 Myr magnetostratigraphic time framework for Site 1148, ODP Leg 184 in South China Sea and its geological implications. Marine and Petroleum Geology 58, 749-759.
Yohai, V.J. 1987. High breakdown-point and high efficiency estimates for regression. The Annals of Statistics 15, 642-665.
Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686-693.