Current IF 1.9
Latest issue (RSS 2.0)
Contact Editorial Office at
bulletin@geology.cz

Bulletin of Geosciences
Published by ©
Czech Geological Survey,
W. Bohemia Museum Pilsen
Individual sponsors
ISSN: 1802-8225 (online),
1214-1119 (print)

Reconstructing time and diagenesis of limestone-marl alternations from the selective compaction of colonies of the tabulate coral Halysites
Published in: Bulletin of Geosciences, volume 94, issue 3; pages: 279 - 298; Received 12 March 2019; Accepted in revised form 24 July 2019; Online 30 September 2019
Keywords: early diagenesis, cyclostratigraphy, preservation bias, environmental reconstruction, taphonomy,
Abstract
Limestone-marl alternations are often interpreted to reflect cyclic changes in the depositional environment, with time spans for the deposition of a limestone-marl couplet between thousands and tens of thousands of years. Data from halysitid coral colonies from Gotland (Silurian), Sweden, indicate a diagenetic origin of limestones and marls indifferent to original sedimentary differences. The specimens crosscut several layers of their surrounding limestonemarl alternation, which means that both limestone and marl layers are among corallites and surrounding the coral colony. We analysed thin sections, SEM samples and micro-CT scans from Halysites catenularius from Gotland to document (1) the spatial extent of corals, limestone, and marl, and (2) the chronological order of sedimentation and subsequent diagenesis. Our results indicate a sedimentary infill of the coral frame while the coral was still alive. Growth banding indicates growth rates of 3.8 mm per year. Early diagenetic mass loss by aragonite dissolution as well as sedimentary overburden during progressive burial caused the compaction in marl beds fragmenting the coral, whereas it is well preserved in the limestone beds. The time span of a limestone-marl couplet penetrating the colony lies in the order of a few decades. Thus, the missing time in the depositional record is rather reflected by hiatuses than condensed sedimentary cycles. The mismatch of environmental changes recorded in the coral colonies with the changes in lithology, and the spatial heterogeneity of sedimentation rates within one bed imply constraints for applying lithological changes in cyclostratigraphy.References
Adomat, F., Munnecke, A. & Kido, E. 2016. Mass occurrence of the large solitary rugose coral Phaulactis angusta at the boundary Lower/Upper Visby Formation in the Silurian of Gotland, Sweden: palaeoecology and depositional implications. GFF 138(3), 393-409.
Bádenas, B., Aurell, M., Armendáriz, M., Rosales, I., García-Ramos, J.C. & Pinuela, L. 2012. Sedimentary and chemostratigraphic record of climatic cycles in Lower Pliensbachian marl-limestone platform successions of Asturias (North Spain). Sedimentary Geology 281, 119-138.
Bae, B.-Y., Lee, D.-J. & Elias, R.J. 2006. Life-history strategies of a species of Catenipora (Tabulata; Upper Ordovician; southern Manitoba, Canada). Lethaia 39(2), 141-156.
Berkowski, B. & Zapalski, M.K. 2018. Large dwellers of the Silurian Halysites biostrome: rhizosessile life strategies of cystiphyllid rugose corals from the Llandovery of Gotland. Lethaia 51(4), 581-595.
Böhm, F., Westphal, H. & Bornholdt, S. 2003. Required but disguised: environmental signals in limestone-marl alternations. Palaeogeography, Palaeoclimatology, Palaeoecology 189, 161-178.
Buehler, E.J. 1955. The morphology and taxonomy of the Halysitidae. Peabody Museum of Natural History, Bulletin 8, Yale University, 1-79.
Calner, M., Sandström, O. & Motus, M.-A. 2000. Significance of a Halysitid-Heliolitid Mud-Facies Autobiostrome from the Middle Silurian of Gotland, Sweden. Palaios 15(6), 511-523.
Cherns, L., Wheeley, J.R. & Wright, V.P. 2011. Taphonomic Bias in Shelly Faunas Through Time: Early Aragonitic Dissolution and Its Implications for the Fossil Record, 79-105. In Allison, P.A. & Bottjer, D.J. (eds) Taphonomy: Process and Bias Through Time. Springer Netherlands, Dordrecht.
Cruz-Pinón, G., Carricart-Ganivet, J.P. & Espinoza-Avalos, J. 2003. Monthly skeletal extension rates of the hermatypic corals Montastraea annularis and Montastraea faveolata: biological and environmental controls. Marine Biology 143(3), 491-500.
Da Silva, A.C., De Vleeschouwer, D., Boulvain, F., Claeys, P., Fagel, N., Humblet, M., Mabille, C., Michel, J., Sardar Abadi, M., Pas, D. & Dekkers, M.J. 2013. Magnetic susceptibility as a high-resolution correlation tool and as a climatic proxy in Paleozoic rocks - Merits and pitfalls: Examples from the Devonian in Belgium. Marine and Petroleum Geology 46, 173-189.
Desrochers, A., Farley, C., Achab, A., Asselin, E. & Riva, J.F. 2010. A far-field record of the end Ordovician glaciation: The Ellis Bay Formation, Anticosti Island, Eastern Canada. Palaeogeography, Palaeoclimatology, Palaeoecology 296(3), 248-263.
Gygi, R.A. 2012. Quantitative Geology of Late Jurassic Epicontinental Sediments in the Jura Mountains of Switzerland. 216 pp. Birkhäuser Basel, Basel.
Hallam, A. 1986. Origin of minor limestone-shale cycles: climatically induced or diagenetic? Geology 14, 609-612.
Hede, J.E., 1921. Gottlands Silurstratigrafi. Sveriger Geologiska Undersökning, Årsbok 14 (1920), 1-100.
Heureux, I. l’ 2018. Diagenetic Self-Organization and Stochastic Resonance in a Model of Limestone-Marl Sequences. Geofluids 2018, 1-18.
Hilgen, F.J. et al. 2003. Integrated stratigraphy and astronomical tuning of the Serravallian and lower Tortonian at Monte dei Corvi (Middle-Upper Miocene, northern Italy). Palaeogeography, Palaeoclimatology, Palaeoecology 199(3), 229-264.
Jeppsson, L. 1983. Silurian conodont faunas from Gotland. Fossils and Strata 15, 121-144.
Kerans, C., Hurley, N.F. & Playford, P.E. 1986. Marine Diagenesis in Devonian Reef Complexes of the Canning Basin, Western Australia, 357-380. In Schroeder, J.H. & Purser, B.H. (eds) Reef Diagenesis. Springer, Berlin & Heidelberg.
Kershaw, S. 1994. Classification and geological significance of biostromes. Facies 31(1), 81-91.
Langereis, C.G. & Hilgen, F.J. 1991. The Rossello composite: a Mediterranean and global reference section for the Early to early Late Pliocene. Earth and Planetary Science Letters 104(2), 211-225.
Lee, D.J. & Elias, R.J. 1991. Mode of growth and life-history strategies of a Late Ordovician halysitid coral. Journal of Paleontology 65(2), 191-199.
Liang, K., Elias, R. & Lee, D.-J. 2018. Morphometrics, growth characteristics, and phylogenetic implications of Halysites catenularius (Tabulata, Silurian, Estonia). Journal of Paleontology 93(2), 215-231.
Liang, K., Elias, R., Choh, S.-J., Lee, D.-C. & Lee, D.J. 2016. Morphometrics and paleoecology of Catenipora (Tabulata) from the Xiazhen Formation (Upper Ordovician), Zhuzhai, South China. Journal of Paleontology 90(6), 1027-1048.
Long, D. & Copper, P. 1987. Stratigraphy of the Upper Ordovician upper Vaureal and Ellis Bay formations, eastern Anticosti Island, Quebec. Canadian Journal of Earth Sciences 24(9), 1807-1820.
Ma, T.Y.H. 1934. On the seasonal change of growth in a reef coral, Favia speciose (Dana), and the watertemperature of the Japanese seas during the latest geological times. Proceedings of the Imperial Academy 10, 353-356.
Ma, T.Y.H. 1958. The relation of growth rate of reef corals to surface temperature of sea water as basis for study of causes of diastrophisms investigating evolution of life. Research on the Past Climate and Continental Drift. 60 pp. The first series of private research publication, Vol. 14. World Book Co., Taipei, Taiwan.
Manten, A.A. 1962. Some Middle Silurian reefs of Gotland. Sedimentology 1(3), 211-234.
Manten, A.A. 1971. Silurian reefs of Gotland. Developments in Sedimentology 13, 1-539.
Mazzullo, S.J. 1971. Length of the Year during the Silurian and Devonian Periods: New Values. GSA-Bulletin 82(4), 1085-1086.
Motus, M.-A. & Klaamann, E. 1999. The halysitid coral genera Halysites and Cystihalysites from Gotland, Sweden. GFF 121(2), 81-90.
Munnecke, A. 1997. Bildung mikritischer Kalke im Silur auf Gotland. Courier Forschungsinstitut Senckenberg 198, 1-131.
Munnecke, A. & Samtleben, C. 1996. The Formation of Micritic Limestones and the Development of Limestone-Marl Alternations in the Silurian of Gotland, Sweden. Facies 34, 159-176.
Munnecke, A., Westphal, H., Reijmer, J.J.G. & Samtleben, C. 1997. Microspar development during early marine burial diagenesis: A comparison of Pliocene carbonates from the Bahamas with Silurian limestones from Gotland (Sweden). Sedimentology 44, 977-990.
Nield, E.W. 1982. The earliest gotland reefs: Two bioherms from the Lower Visby Beds (Upper Llandovery). Palaeogeography, Palaeoclimatology, Palaeoecology 39(1), 149-164.
Nohl, T., Jarochowska, E. & Munnecke, A. (2019). Revealing the genesis of limestone-marl alternations: a taphonomic approach. Palaios 34(1), 15-31.
Puetz, S.J., Prokoph, A. & Borchardt, G. 2016. Evaluating alternatives to the Milankovitch theory. Journal of Statistical Planning and Inference 170, 158-165.
Read, J.F., Osleger, D. & Elrick, M. 1991. Two-dimensional modelling of carbonate ramp sequences and component cycles, 473-488. In Franseen, E.K., Wamey, W.L., Kendall, C.G.St.C. & Ross, W.C. (eds) Sedimentary Modeling: Computer Simulations and Methods for Improved Parameter Definition. Kansas Geological Survey, Bulletin 233.
Riding, R. 2002. Structure and composition of organic reefs and carbonate mud mounds: concepts and categories. Earth-Science Reviews 58(1), 163-231.
Sadler, P.M. 1981. Sediment Accumulation Rates and the Completeness of Stratigraphic Sections. The Journal of Geology 89(5), 569-584.
Sadler, P.M. 1994. The expected duration of upward-shallowing peritidal carbonate cycles and their terminal hiatuses. GSA-Bulletin 106(6), 791-802.
Samtleben, C. & Munnecke, A. 1999. Reefmounds im unteren Wenlock auf Gotland: Beispiele früher Korallenriffe. Meyniana 51, 77-94.
Samtleben, C., Munnecke, A. & Bickert, T. 1996. The Silurian of Gotland (Sweden): facies interpretation based on stable isotopes in brachiopod shells. Geologische Rundschau 85, 278-292.
Sanders, D. 2004. Potential significance of syndepositional carbonate dissolution for platform banktop aggradation and sediment texture: a graphic modeling approach. Austrian Journal of Earth Sciences 95-96, 71-79.
Schlager, W. 2005. Carbonate Sedimentology and Sequence Stratigraphy. SEPM Concepts in Sedimentology and Paleontology 8, 1-200.
Schlager, W., Marsal, D., Van der Geest, P.A.G. & Sprenger, A. 1998. Sedimentation Rates, Observation Span, and the Problem of Spurious Correlation. Mathematical Geology 30(5), 547-556.
Scrutton, C.T. 1965. Periodicity in Devonian coral growth. Palaeontology 7(4), 552-558.
Scrutton, C.T. 1998. The Palaeozoic corals, II: Structure, variation and palaeoecology. Proceedings of the Yorkshire Geological Society 52, 1-57.
Scrutton, C.T. & Powell, J.H. 1980. Periodic development of dimetrism in some favositid corals. Acta Palaeontologica Polonica 25, 477-491.
Spjeldnaes, N. 2002. Silurian bryozoans from Gotland fossilized in galena and sphalerite. gff 124, 27-33.
Stel, J. 1978. Environment and quantitative morphology of some Silurian tabulates from Gotland. Scripta Geologica 47, 1-75.
Strasser, A., Hilgen, A. & Heckel, P.H. 2006. Cyclostratigraphy - Concepts, definitions, and applications. Newsletters Stratigraphy 42(2), 75-114.
Sujkowski, Z.L. 1958. Diagenesis. American Association of PelIoleum Geologists Bulletin 42(11), 2692-2717.
Tucker, M.E., Gallagher, J. & Leng, M.J. 2009. Are beds in shelf carbonates millennial-scale cycles? An example from the mid-Carboniferous of northern England…… Sedimentary Geology 214(1), 19-34.
van Andel, T.H. 1981. Consider the incompleteness of the geological record. Nature 294(5840), 397-398.
Westphal, H. 2006. Limestone-marl alternations as environmental archives and the role of early diagenesis: a critical review. International Journal of Earth Sciences 95, 947-961.
Westphal, H., Hilgen, F. & Munnecke, A. 2010. An assessment of the suitability of individual rhythmic carbonate successions for astrochronological application. Earth-Science Reviews 99(1), 19-30.
Westphal, H., Lavi, J. & Munnecke, A. 2015. Diagenesis makes the impossible come true: intersecting beds in calcareous turbidites. Facies 61(2), 1-3.
Westphal, H., Munnecke, A., Böhm, F. & Bornholdt, S. 2008. Limestone-marl alternations in epeiric sea settings - witnesses of environmental changes, or of rhythmic diagenesis? Geological Association of Canada Special Paper 48, 1-20.
Wood, R.A. 1999. Reef Evolution. 414 pp. Oxford University Press, Oxford.
Wright, V.P. 1994. Early Carboniferous carbonate systems: an alternative to the Cainozoic paradigm. Sedimentary Geology 93(1), 1-5.
Young, G.A. & Kershaw, S. 2005. Classification and controls of internal banding in Palaeozoic stromatoporoids and colonial corals. Palaeontology 48(3), 623-651.