Current IF 1.9
Latest issue (RSS 2.0)
Contact Editorial Office at
bulletin@geology.cz

Bulletin of Geosciences
Published by ©
Czech Geological Survey,
W. Bohemia Museum Pilsen
Individual sponsors
ISSN: 1802-8225 (online),
1214-1119 (print)

Palaeo-thermal and coalification history of Permo- Carboniferous sedimentary basins of Central and Western Bohemia, Czech Republic: first insights from apatite fission track analysis and vitrinite reflectance modelling
Published in: Bulletin of Geosciences, volume 94, issue 2; pages: 201 - 219; Received 31 October 2017; Accepted in revised form 15 March 2019; Online 6 May 2019
Keywords: coalification, organic matter diagenesis, geothermal gradient, heat flow evolution, Variscan orogeny, Bohemian Massif,
Supplementary material
Erratum to Suchy et.al, 2019, (81 kB)
Abstract
Apatite fission track analysis (AFTA) and vitrinite reflectance (VR) modelling were integrated to reveal palaeothermal evolution of the Upper Carboniferous coal-bearing basins of Central and Western Bohemia. Thermal modelling using AFTA has shown that the Carboniferous sediments were subjected to maximum temperatures ranging from ˜75 °C in the SW to more than ˜120 °C in the NE, which generally concluded during pre-Triassic times. Thermal records show a gradual cooling between ˜280-180 Ma, followed by a long Mesozoic to Cenozoic Period of thermal stability, during which time, the sediments resided at constant temperatures of ˜50-75 °C. From ˜30 Ma onwards, accelerated cooling and erosion occurred, resulting in the present-day exposure of rocks on the surface. The EASY%Ro modelling of average VR values that range from 0.59% Rr in the SW to 0.77% Rr in the NE, predicted maximum palaeo-temperatures ranging from ˜85 °C to ˜135 °C, respectively; these were attained soon after sediment deposition. A coalification grade of about 0.40-0.50% Rr characteristic of sub-bituminous coals, was already completed during the late Carboniferous and/or early Permian times. Later post-Permian heating did not have any substantial impact on the maturation of Carboniferous organic matter. By combining VR thermal modelling with local stratigraphic information we provide evidence that the coalification process occurred very rapidly. A coalification grade of ˜0.40% Rr was attained during 2-4 m.y. after peat deposition, or even earlier. In addition, abundant sub-bituminous coal clasts embedded within the Carboniferous strata suggest that coalification proceeded close to the surface. These data collectively imply extremely high thermal gradients (around or above 200 °C/km) that must have prevailed during the Permo-Carboniferous thermal climax. The syn-sedimentary volcanic and/or igneous activity combined with effects of heat advection due to hot fluids circulating through the strata could have accounted for this dramatic geothermal setting, which had vanished by the end of the Palaeozoic Era.References
Aramowicz, A., Anczkiewicz, A.A. & Mazur, S. 2006. Fission-track dating of apatite from the Góry Sowie Massif, Polish Sudetes, NE Bohemian Massif: implications for post-Variscan denudation and uplift. Neues Jahrbuch für Mineralogie, Abhandlungen 182(3), 221-229.
Armstrong, P.A. 2005. Thermochronology in Sedimentary Basins, 499-525. In Reiners, P.W. & Ehlers, T.A. (eds) Low-Temperature Thermochronology: Techniques, Interpretations and Applications, Reviews in Mineralogy and Geochemistry 58.
Arne, D. & Zentilli, M. 1994. Apatite Fission Track Thermochronology Integrated with Vitrinite Reflectance, 249-265. In Mukhopadhyay, P.K. & Dow, W.P. (eds) Vitrinite Reflectance as a Maturity Parameter. Applications and Limitations. ACD Symposium Series 570. American Chemical Society.
Barbarand, J., Carter, A., Wood, I. & Hurford, T. 2003. Compositional and structural control of fission-track annealing in apatite. Chemical Geology 198, 107-137.
Barker, C.E. 1991. Implication for Organic Maturation Studies of Evidence for a geologically Rapid Increase and Stabilization of Vitrinite Reflectance at Peak Temperature: Cerro Prieto Geothermal system, Mexico. The American Association of Petroleum Geologists Bulletin 75(12), 1852-1863.
Barker, C.E. & Pawlewicz, M.J. 1994. Calculation of Vitrinite Reflectance from Thermal Histories and Peak Temperatures, 216-229. In Mukhopadhyay, P.K. & Dow, W.G. (eds) Vitrinite Reflectance as a Maturity Parameter. Applications and Limitations, ACS Symposium Series 570. American Chemical Society, Washington DC.
Botor, D. & Anczkiewicz, A.A. 2015. Thermal history of the Sabero Coalfield (Southern Cantabrian Zone, NW Spain) as revealed by apatite fission track analyses from tonstein horizons: implications for timing of coalification. International Journal of Earth Sciences 104, 1779-1793.
Bray, R.J., Green, P.F. & Duddy, I.R. 1992. Thermal history reconstruction using apatite fission track analysis and vitrinite reflectance: a case study from the UK East Midlands and Southern North Sea, 3-25. In Hardman, R.F. (ed.) Exploration Britain: Geological insights for the next decade, Geological Society Special Publication 67.
Buntebarth, G. 1982. Geothermal history estimated from the coalification of organic matter. Tectonophysics 83(1-2), 101-108.
Buntebarth, G. & Stegena, L. (eds) 1986. Paleogeothermics. Evaluation of Geothermal Conditions in the Geological Past. Lecture Notes in Earth Sciences 5. 234 pp. Springer-Verlag, Berlin & Heidelberg.
Burnham, A.K., Peters, K.E. & Schenk, O. 2017. Evolution of Vitrinite Reflectance Models. Search and Discovery Article #41982 (2017).
Burnham, A.K. & Sweeney, J.J. 1989. A chemical kinetic model of vitrinite maturation and reflectance. Geochimica et Cosmochimica Acta 53, 2649-2657.
Carlson, W.D., Donelick, R.A. & Ketcham, R.A. 1999. Variability of Apatite Fission Track Annealing Kinetics I: Experimental Results. American Mineralogist 84, 1213-1223.
Čech, S., Klein, V., Kříž, J. & Valečka, J. 1980. Revision of the Upper Cretaceous stratigraphy of the Bohemian Cretaceous Basin. Věstník Ústředního ústavu geologického 55(5), 1213-1223.
Crowley, K.D., Cameron, M. & Schaeffer, R. 1991. Experimental studies of annealing of etched fission tracks in fluorapatite. Geochimica et Cosmochimica Acta 55, 1449-1465.
Dalla Torre, M., Ferreiro Mählmann, R. & Ernst, W.G. 1997. Experimental study on the pressure dependence of vitrinite maturation. Geochimica et Cosmochimica Acta 61, 2921-2928.
Daněk, V., Pešek, J. & Valterová, P. 2002. Coal clasts in the Bolsovian (Westphalian C) sequence of the Kladno-Rakovník continental basin (Czech Republic): implication of the timing of maturation. Polish Geological Institute Special Paper 7, 63-78.
Daniels, E.J., Altaner, S.P. & Marshak, S. 1990. Hydrothermal alteration in anthracite from eastern Pennsylvania: Implications for mechanisms of anthracite formation. Geology 18, 247-250.
Danišík, M., Migón, P., Kuhlemann, J., Evans, N.J., Dunkl, I. & Frisch, W. 2010. Thermochronological constraints on the long-term erosional history of the Karkonosze Mts., Central Europe. Geomorphology 117, 78-89.
Donelick, R.A. & Ketcham, R.A. 1998. AFTSolve. Apatite Fission Track Modelling Software. Donelick Analytical Inc., Katy, Texas.
Donelick, R.A., Ketcham, R.A. & Carlson, W.D. 1999. Variability of Apatite Fission Track Annealing Kinetics II: Crystallographic orientation effects. American Mineralogist 84, 1224-1234.
Dornstadter, J., Kappelmeyer, O. & Welte, M. 1999. The geothermal potential in the Upper Rhine Graben valley, 77-85. In European Geothermal Conference Basel ’99, September 28-30, 1999, Basel, Switzerland, Proceedings Volume 2.
Duddy, I.R., Green, P.F., Hegarty, K.A., Bray, R.J. & O’Brien, G.W. 1998. Dating and duration of hot fluid flow events determined using AFTA® and vitrinite reflectance-based thermal history reconstruction, 41-51. In Parnell, J. (ed.) Dating and Duration of Fluid Flow and Fluid-Rock Interaction. Geological Society London, Special Publication 144.
Dvořák, J. 1989. Anchimetamorfóza ve variském tektogenu střední Evropy - její vztah k tektogenezi. Věstník Ústředního ústavu geologického 64(1), 17-30.
Dvořák, J. & Paproth, E. 1988. Trends of the Variscan development near the SW border of the East European Platform. Zeitschrift für Angewandte Geologie, Band 34 (1988), Heft 12, 353-359.
Enkelmann, E. & Garver, J.L. 2016. Low-temperature thermochronology applied to ancient settings. Journal of Geodynamics 93, 17-30.
Ferreiro Mählmann, R. & Le Bayon, R. 2016. Vitrinite and vitrinite like solid bitumen reflectance in thermal maturity studies: Correlations from diagenesis to incipient metamorphism in different geodynamic settings. International Journal of Coal Geology 157, 52-73.
Ferreiro Mählmann, R., Bozkaya, Ö., Potel, S., Le Bayon, R., Šegvić, B., Nieto, F. 2012. The pioneer work of Bernard Kübler and Martin Frey in very low-grade metamorphic terranes: paleo-geothermal potential of variation in Kübler - Index/organic matter reflectance correlations. A review. Swiss Journal of Geosciences 105, 121-152.
Filip, J. & Suchý, V. 2004. Thermal and tectonic history of the Barrandian Lower Paleozoic, Czech Republic: Is there a fission-track evidence for Carboniferous-Permian overburden and pre-Westphalian alpinotype thrusting? (Critical comments on the paper by Ulrich A. Glasmacher, Ulrich Mann and Günther A. Wagner). Bulletin of Geosciences 79(2), 107-112.
Franců, E., Mann, U., Suchý, V. & Volk, H. 1998. Model of burial and thermal history of the Tobolka-1 borehole profile in the Prague basin. Acta Universitatis Carolinae - Geologica 42, 248-249.
Gallagher, K., Brown, R. & Johnson, C. 1998. Fission track analysis and its applications to geological problems. Annual Review of Earth and Planetary Sciences 26, 519?572.
Gayer, R., Garven, G. & Rickard, D. 1998. Fluid migration and coal-rank development in foreland basins. Geology 26(8), 679-682.
Gayer, R.A., Pešek, J., Sýkorová, I. & Valterová, P. 1996. Coal clasts in the upper Westphalian sequence of the South Wales coal basin: implications for timing of maturation and fracture permeability, 103-120. In Gayer, R. & Harris, I. (eds) Coalbed Methane and Coal Geology. Geological Society London, Special Publication 109.
Glasmacher, U.A., Mann, U. & Wagner, G.A. 2002. Thermotectonic evolution of the Barrandian, Czech Republic, as revealed by apatite fission-track analysis. Tectonophysics 359, 381-402.
Gleadow, A.J.W., Belton, D.X., Kohn, B.P. & Brown, R.W. 2002. Fission track dating of phosphate minerals and the thermochronology of apatite. Reviews in Mineralogy and Geochemistry 48, 579-630.
Green, P.J. & Duddy, I.R. 2012. Thermal history reconstruction in sedimentary basins using apatite fission-track analysis and related techniques, 65-104. In Harris, N.B. & Duddy, I.R. (eds) Analyzing the thermal history of sedimentary basins: methods and case studies. Society for Sedimentary Geology Special Publication 103.
Green, P.F., Duddy, I.R. & Hegarty, K.A. 2002. Quantifying exhumation from apatite fission-track analysis and vitrinite reflectance data: precision, accuracy and latest results from the Atlantic margin of NW Europe, 331-354. In Doré, A.G., Cartwight, J., Stoker, M.S., Turner, J.P. & White, N. (eds) Exhumation of the North Atlantic Margin: Timing, Mechanisms and Implication for Petroleum Exploration. Geological Society London, Special Publicaton 196.
Hartkopf-Fröder, C., Königshof, P., Littke, R. & Schwarzbauer, J. 2015. Optical thermal maturity parameters and organic geochemical alteration at low grade diagenesis to anchimetamorphism. International Journal of Geology 150, 74-119.
Havlena, V. 1964. Geologie uhelných ložisek 2. 438 pp. Nakladatelství Československé Akademie věd, Praha.
Havlena, V. 1982. Limnické pánve permokarbonu Českého masivu - geneze, třídění, vyplňování a zlomová tektonika, 37-44. In Sborník IV. uhelně geologické konference Přírodovědecké fakulty Univerzity Karlovy. Univerzita Karlova, Praha.
Hejl, E., Sekyra, G. & Friedl, G. 2003. Fission-track dating of the south-eastern Bohemian massif (Waldviertel, Austria): thermochronology and long-term erosion. International Journal of Earth Sciences 92, 677-690.
Hejl, E., Coyle, D., Nand, L., Van Den Haute, P. & Wagner, G.A. 1997. Fission-track dating of the western border of the Bohemian massif: thermochronology and tectonic implications. Geologische Rundschau 86, 210-219.
Henk, A., Blanckenburg, F. von, Finger, F., Schaltegger, U. & Zulauf, G. 2000. Syn-convergent high-temperature metamorphism and magmatism in the Variscides: a discussion of potential heat sources, 387-399. In Franke, W., Haak, V., Oncken, O. & Tanner, D. (eds) Orogenic Processes: Quantification and Modelling in the Variscan Belt. Geological Society London, Special Publication 179.
Holub, V. 1982. Explanatory notes to the lithotectonic profile of the Permo-Carboniferous basins of the Central Bohemian region (ČSSR). In Lützner, H. & Schwab, H.G.L. (eds) Tectonic regime of molasse epochs. Zentralinstitut für Physics der Erde, Potsdam.
Holub, V. & Obrhel, J. 1967. Profil karbonskou pánví u Malých Přílep ssv od Berouna. Časopis pro mineralogii a geologii 12(3), 271-276.
Holub, V., Eliáš, M., Hrazdíra, P. & Franců, J. 1997. Geological research into gas sorbed in the coal seams of the Carboniferous in the Mšeno-Roudnice Basin, Czech Republic, 409-423. In Gayer, R. & Pešek, J. (eds) European Coal Geology and Technology. Geological Society London, Special Publication 125.
Hood, A., Gutjahr, C.C. & Heacock, R.L. 1975. Organic metamorphism and the generation of petroleum. American Association of Petroleum Geologists Bulletin 59, 986-996.
Hower, J.C. & Gayer, R.A. 2002. Mechanisms of coal metamorphism: case studies from Paleozoic coalfields. International Journal of Coal Geology 50, 215-245.
Huang, W.L. 1996. Experimental study of vitrinite maturation: Effect of temperature, time, pressure, water, and hydrogen index. Organic Geochemistry 24, 233-241.
Hunt, J.M. 1979. Petroleum Geochemistry and Geology. 617 pp. W.H. Freeman, San Francisco.
Hurford, A.J. & Green, P.F. 1982. A user’s guide to fission-track dating calibration. Earth and Planetary Science Letters 59, 343-354.
Hurford, A.J. & Green, P.F. 1983. The Zeta calibration of fission-track dating. Chemical Geology 31, 285-317.
ICCP 1998. The new vitrinite classification (ICCP system 1994). Fuel 77, 349-358.
ICCP 2001. The new inertinite classification (ICCP system 1994). Fuel 80, 459-471.
International Classification of in-Seam Coals 1998. 14pp. United Nations, New York & Geneva.
ISO 7404-3 2009. Methods for the Petrographic Analysis of Coal - Part 3: Method of Determining Maceral Group Composition. 14 pp. International Organization for Standardization, Geneva, Switzerland.
ISO 7404-5, 2009. Methods for the Petrographic Analysis of Coal - Part 5: Method of determining microscopically the reflectance of vitrinite. 14 pp. International Organization for Standardization, Geneva, Switzerland.
Ketcham, R.A. & Apatite to Zircon, Inc. 2007. HefTy software version 1.4.
Ketcham, R.A., Donelick, R.A. & Carlson, W.D. 1999. Variability of Apatite Fission Track Annealing Kinetics III: Extrapolation to Geological Time Scales. American Mineralogist 84, 1235-1255.
Ketcham, R.A., Donelick, R.A. & Donelick, M.B. 2000. AFTSolve: A Program for Multi-kinetic Modelling of Apatite Fission-track Data. Geological Materials Research 2, 1-32.
Ketcham, R.A., Donelick, R.A. & Donelick, M.B. 2003. AFTSolve: A program for multi-kinetic modelling of apatite fission-track data. American Mineralogist 88, 929.
Ketcham, R.A., Carter, A., Donelick, R.A., Barbarand, J. & Hurford, A.J. 2007. Improved measurement of fission-track annealing in apatite using c-axis projection. American Mineralogist 92 (5-6), 799-810.
Klomínský, J. (ed.) 1994. Geological Atlas of the Czech Republic, Stratigraphy. 17 maps. Czech Geological Survey, Praha.
Kukal, Z. 1983. Granitoidové plutony byly hlavním zdrojem živců permokarbonských sedimentů. Časopis pro mineralogii a geologii 28(4), 423-428.
Laslett, G.M., Green, P.F., Duddy, I.R. & Gleadow, A.J.W. 1987. Thermal annealing of fission tracks in apatite 2. A quantitative analysis. Chemical Geology (Isotope Geoscience Section) 65, 1-13.
Le Bayon, R., Adam, C. & Ferreiro Mählmann, R. 2012. Experimentally determined pressure effect on vitrinite reflectance at 450 degrees C. International Journal of Geology 92, 69-81.
Le Bayon, R., Brey, G.P., Ernst, W.G. & Ferreiro Mählmann, R. 2011. Experimental kinetic study of organic matter maturation: Time and pressure effect on vitrinite reflectance at 400 °C. Organic Geochemistry 42, 340-355.
Lisker, F., Ventura, B. & Glasmacher, A. 2009. Apatite thermochronolgy in modern geology, 1-23. In Lisker, F., Ventura, B. & Glasmacher, U.A. (eds) Thermochronological Methods: From Palaeotemperature Constraints to Landscape Evolution Models. Geological Society London, Special Publication 324.
Littke, R., Büker, C., Hertle, M., Karg, H., Stroetmann-Heinen, V. & Oncken, O. 2000. Heat flow evolution, subsidence and erosion in the Rheno-Hercynian orogenic wedge of central Europe, 231-255. In Franke, W., Haak, V., Oncken, O. & Tanner, D. (eds) Orogenic Processes: Quantification and Modelling in the Variscan Belt. Geological Society London, Special Publication 179.
Littke, R., Büker, C., Lückge, A., Sachsenhofer, R.F. & Welte, D.H. 1994. A new evaluation of palaeo-heat flows and eroded thicknesses for the Carboniferous Ruhr Basin, Western Germany. International Journal of Coal Geology 26, 155-183.
Lojka, R., Rosenau, N.A., Sidorinová, T. & Strnad, L. 2016. Architecture, paleosols and cyclicity of the Middle-Late Pennsylvanian proximal fluvial system (Nýřany Member, Pilsen Basin, Czech Republic). Bulletin of Geosciences 91(1), 111-140.
Lopatin, N.V. 1971. Temperature and geologic time as factors in coalification. Izvestia Akademii Nauk SSSR Ser. Geol. 3, 95-106. [in Russian]
Malán, O. 1985. Some petrological properties of the Chotíkov coal-field (Plzeň Basin, Czechoslovakia). Folia Musei rerum naturalis Bohemiae occidentalis - Geologica 22, 1-32.
Malkovský, M. 1979. Tektogeneze platformního pokryvu Českého masívu. Knihovna Ústředního ústavu geologického 53, 1-176.
Malkovský, M. 1987. The Mesozoic and Tertiary basins of the Bohemian Massif and their evolution. Tectonophysics 137, 31-42.
Marino, J., Marshak, S. & Mastalerz, M. 2015. Evidence for stratigraphically controlled paleogeotherms in the Illinois Basin based on vitrinite-reflectance analysis: Implications for interpreting coal-rank anomalies. American Association of Petroleum Geologists Bulletin 99(10), 1803-1825.
Martínek, K., Pešek, J. & Opluštil, S. 2017. Significant hiatuses in the terrestrial Late Variscan Central and Western Bohemian basins (Late Pennsylvanian-Early Cisuralian) and their possible tectonic and climatic links. Geologica Carpathica 68(3), 269-281.
Mašek, J. 1973. Vulkanické produkty středočeského karbonu. Sborník geologických věd, Geologie 40, 73-104.
McCann, T., Pascal, C., Timmermann, M.J., Krzywiec, P., López-Gómez, J., Wetzel, A., Krawczyk, C.M., Rieke, H. & Lamarche, J. 2006. Post-Variscan (end Carboniferous - Early Permian) basin evolution in Western and Central Europe, 355-388. In Gee, D.G. & Stephenson, R.A. (eds) European Lithosphere Dynamics. Geological Society London, Memoir 32.
Mísař, Z., Dudek, A., Havlena, V. & Weiss, J. 1983. Geologie ČSSR I. Český masív. 333 pp. Státní pedagogické nakladatelství, Praha.
Morrow, D.W. & Issler, D.R. 1993. Calculation of Vitrinite Reflectance from Thermal Histories: A Comparison of Some Methods. American Association of Petroleum Geologists Bulletin 44(4), 610-624.
Mukhopadhyay, P.K. 1992. Maturation of organic matter as revealed by microscopic methods: Applications and limitations of vitrinite reflectance, and continuous spectral and pulsed laser fluorescence spectroscopy, 435-510. In Wolf, K.H. & Chilingarian, G.V. (eds) Diagenesis III, Developments in Sedimentology 47. Elsevier.
Naeser, C.W., Naeser, N.D. & McCulloh, T.H. 1989. The application of fission track dating to the depositional and thermal history of rocks in sedimentary basins, 157-180. In Naeser, N.D. & McCulloh, T.H. (eds) Thermal History of Sedimentary Basins - Methods and Case Studies. Springer-Verlag, New York.
Němejc, J. 1953. Úvod do floristické stratigrafie kamenouhelných oblastí v ČSR. 173 pp. Nakladatelství ČSAV, Praha.
Nielsen, S.B., Clausen, O.R. & McGregor, E. 2017. basin%Ro: A vitrinite reflectance model derived from basin and laboratory data. Basin Research 29, 515-536.
Opluštil, S. 2005. Evolution of the Middle Westphalian river valley drainage system in central Bohemia (Czech Republic) and its palaeographic implication. Palaeogeography, Palaeoclimatology, Palaeoecology 222, 223-258.
Opluštil, S., Martínek, K. & Tasáryová, Z. 2005. Facies and architectural analysis of fluvial deposits of the Nýřany Member and the Týnec Formation (Westphalian D - Barruelian) in the Kladno-Rakovník and Pilsen basins. Bulletin of Geosciences 80(1), 45-66.
Opluštil, S., Pšenička, J., Libertín, M., Bashforth, A.R., Šimůnek, Z., Drábková, J. & Dašková, J. 2009. A Middle Pennsylvanian (Bolsovian) peat-forming forest preserved in situ in volcanic ash of the Whetstone Horizon in the Radnice Basin, Czech Republic. Review of Palaeobotany and Palynology 155, 234-274.
Opluštil, S., Schmitz, M., Cleal, C.J. & Martínek, K. 2016. A review of the Middle-Late Pennsylvanian west European regional substages and floral biozones, and their correlation to the Geological Time Scale based on new U-Pb ages. Earth-Science Reviews 154, 301-335.
Palmer, T.D., Howard, J.H. & Lande, D.P. (eds) 1975. Geothermal development of the Salton trough, California and Mexico. 45 pp. Livermore Laboratory, University of California.
Pašek, J. 1988. Coalification in the Plzeň Basin from the viewpoint of reflectance, 175-179. In Pešek, J. & Vozár, J. (eds) Coal-Bearing Formations of Czechoslovakia. Dionýz Štúr Institute of Geology, Bratislava.
Pašek, J. & Urban, M. 1990 The tectonic evolution of the Plzeň basin (Upper Carboniferous, West Bohemia): a review and interpretation. Folia Musei rerum naturalis Bohemiae occidentalis - Geologica 32, 1-56.
Pešek, J. 1978. Erosion and clastic dikes in coal seams of the central Bohemian basins and their significance for determination of plant substance coalification. Folia Musei rerum naturalis Bohemiae occidentalis - Geologica 12, 1-34.
Pešek, J. 1996. Geology of Central Bohemian Upper Paleozoic Sedimentary Basins. 95 pp. Czech Geological Survey, Praha.
Pešek, J. (ed.) 2001. Geologie a ložiska svrchnopaleozoických limnických pánví České republiky. 244 pp. Český geologický ústav, Praha.
Pešek, J. 2004. Late Paleozoic limnic basins and coal deposits of the Czech Republic. Folia Musei rerum naturalis Bohemiae occidentalis - Geologica, Edittio Specialis 1, 1-188.
Pešek, J. & Martínek, K. 2012. Observations concerning the thickness of rocks eroded between the Cambrian and Bolsovian (= Westphalian C) in central and western Bohemia. Folia Musei rerum naturalis Bohemiae occidentalis - Geologica et Paleobiologica 46, 1-14.
Pešek, J. & Sivek, M. 2016. Coal-bearing basins and coal deposits of the Czech Republic. 208 pp. Czech Geological Survey, Prague.
Pešek, J. & Sýkorová, I. 2006. A review of the timing of coalification in the light of coal seam erosion, clastic dykes and coal clasts. International Journal of Coal Geology 66, 13-34.
Pešek, J., Opluštil, S., Kumpera, O., Holub, V. & Skoček, V. (eds) 1998. Paleogeographic Atlas of Late Paleozoic and Triassic Formations of the Czech Republic. 56 pp. 41 app. Czech Geological Survey, Prague.
Pickel, W., Kus, J., Flores, D., Kalaitzidis, S., Christianis, K., Cardott, B.J., Misz-Kennan, M., Rodrigues, S., Hentschel, A., Hamor-Vido, M., Crosdale, P. & Wagner, N. 2017. Classification of liptinite - ICCP System 1994. International Journal of Coal Geology 169, 40-61.
Potel, S., Maison, T., Maillet, M., Sarr, A.C., Doublier, M.P., Trullenque, G. & Ferreiro Mählmann, R. 2016. Reliability of very low-grade metamorphic methods to decipher basin evolution: Case study from the Markstein basin (Southern Vosges, NE France). Applied Clay Science 134, 175-185.
Povondra, P. & Ulrych, J. 1988. Základy úpravnictví a separace minerálů. 105 pp. Státní pedagogické nakladatelství, Praha.
Price, L.C. 1983. Geologic time as a parameter in organic metamorphism and vitrinite reflectance as an absolute paleogeothermometer. Journal of Petroleum Geology 6, 5-38.
Robert, P. 1988. Organic Metamorphism and Geothermal History. Microscopic Study of Organic Matter and Thermal Evolution of Sedimentary Basins. 311 pp. Elf-Aquitaine and D. Reidel Publ. Company, Dordrecht.
Robert, P. 1989. The thermal setting of Carboniferous basins in relation to the Variscan orogeny in Central and Western Europe. International Journal of Coal Geology 13, 171-206.
Šafanda, J., Žáková, J. & Buntebarth, G. 1990. Temperature Paleogradient Estimations in the Central Bohemian Basin. Studia Geophisica et Geodetica 34, 208-219.
Sine 2000. Gravimetrická mapa České republiky úplných Bougerových anomálií (2.67 g/cm-3), 1: 200 000, list M-33-XV Praha. MS Geofyzika, a. s., Brno.
Skoček, V. 1976. Regional and geological interpretation of organic matter coalification in the Late Palaeozoic sediments of the Bohemian Massif. Věstník Ústředního ústavu geologického 51, 13-25.
Sobczyk, A., Danišík, M., Aleksandrowski, P. & Anckiewicz, A. 2015. Post-Variscan cooling history of the central Western Sudetes (NE Bohemian Massif, Poland) constrained by apatite fission-track and zircon (U-Th)/He thermochronology. Tectonophysics 649, 47-57.
Storzer, D., & Selo, M. 1984. Toward a New Tool in Hydrocarbon Resource Evaluation: The Potential of the Apatite Fission-Track Chrono-Thermometer, 89-110. In Durand, B. (ed.) Thermal Phenomena in Sedimentary Basins. Edition Technip, Paris.
Suarez-Ruiz, I., Flores, D., Mendonca, J.G. & Hackley, P.C. 2012. Review and update of the application of organic petrology: Part 1, geological applications. International Journal of Coal Geology 99, 54-112.
Suchy, V., Frey, M. & Wolf, M. 1997. Vitrinite reflectance and shear-induced graphitization in orogenic belts: A case study from the Kandersteg area, Helvetic Alps, Switzerland. International Journal of Coal Geology 34, 1-20.
Suchy, V., Dobes, P., Filip, J., Stejskal, M., Zeman, A. 2002. Conditions for veining in the Barrandian Basin (Lower Paleozoic), Czech Republic: evidence from fluid inclusion and apatite fission track analysis. Tectonophysics 348, 25-50.
Suchý, V., Dobeš, P., Sýkorová, I., Machovič, V., Stejskal, M., Kroufek, J., Chudoba, J., Matějovský, L., Havelcová, M. & Matysová, P. 2010. Oil-bearing inclusions in vein quartz and calcite and, bitumens in veins: Testament to multiple phases of hydrocarbon migration in the Barrandian basin (lower Palaeozoic), Czech Republic. Marine and Petroleum Geology 27, 285-297.
Suchý, V., Sandler, A., Slobodník, M., Sýkorová, I., Filip, J., Melka, K. & Zeman, A. 2015. Diagenesis to very low-grade metamorphism in lower Palaeozoic sediments: A case study from deep borehole Tobolka 1, the Barrandian Basin, Czech Republic. International Journal of Coal Geology 140, 41-62.
Suchý, V., Sýkorová, I., Melka, K., Filip, J. & Machovič, V. 2007. Illite “crystallinity”, maturation of organic matter and microstructural development associated with lowest-grade metamorphism of Neoproterozoic sediments in the Teplá-Barrandian unit, Czech Republic. Clay Minerals 42, 503-526.
Suchý, V., Sýkorová, I., Zachariáš, J., Filip, J., Machovič, V. & Lapčák, L. 2017. Hypogene features in sandstones: an example from Carboniferous basins of central-western Bohemia, Czech Republic, 313-328. In Klimchouk, A., Palmer, A., De Waele, J. & Audra, P. (eds) Hypogene Karst Regions and Caves of the World. Springer-Verlag.
Sweeney, J.J. & Burnham, A.K. 1989. Evaluation of a Simple Model of Vitrinite Reflectance Based on Chemical Kinetics. American Association of Petroleum Geologists Bulletin 74(10), 1559-1570.
Tagami, T. & O’Sullivan, P.B. 2005. Fundamentals of Fission-Track Thermochronology, 19-47. In Reiners, P.W. & Ehlers, T.A. (eds) Low-Temperature Thermochronology: Techniques, Interpretations and Applications. Reviews in Mineralogy and Geochemistry 58.
Taylor, G.H., Teichmüller, M., Davis, A., Diessel, C.F.K., Littke, R. & Robert, P. 1998. Organic Petrology. 704 pp. Gebrüder Bortraeger, Berlin.
Teichmüller, M. 1987. Organic material and very low-grade metamorphism, 114-161. In Frey, M. (ed.) Low Temperature Metamorphism. Blackie, Glasgow.
Thomson, S.N. & Zeh, A. 2000. Fission-track thermochronology of the Ruhla Crystalline Complex: new constraints on the post-Variscan thermal evolution of the NW Saxo-Bohemian Massif. Tectonophysics 324(1-2), 17-35.
Tissot, B.P. & Welte, D.H. 1984. Petroleum Formation and Occurrence. 699 pp. Springer-Verlag, New York.
Tobin, C.R. & Claxton, L. 2000. Multidisciplinary thermal maturity studies using vitrinite reflectance and fluid inclusion microthermometry: A new calibration of old technique. American Association of Petroleum Geologists Bulletin 84, 1647-1665.
Uličný, D. & Franců, J. 1996. Subsidence history and tectonic regime of the Bohemian Cretaceous basin: a preliminary note, p. 45. In Sedimentární geologie v České republice, Abstrakty, 23. a 24. ledna 1996 v Praze. Geologická sekce Přírodovědecké fakulty Univerzity Karlovy, Praha.
Vamvaka, A., Siebel, W., Chen, F. & Rohmüller, J. 2013. Apatite fission-track dating and low-temperature history of the Bavarian Forest (southern Bohemian Massif). International Journal of Earth Sciences 103(1), 103-119.
Ventura, B. & Lisker, F. 2003. Long-term landscape evolution of the northeastern margin of the Bohemian Massif: apatite fission-track data from the Erzgebirge (Germany). International Journal of Earth Sciences 92, 691-700.
Volk, H., Horsfield, B., Mann, U. & Suchý, V. 2002. Variability of petroleum inclusions in veins fossil and vug cements - a geochemical study in the Barrandian Basin (Lower Palaeozoic, Czech Republic). Organic Geochemistry 33, 1319-1341.
Wagner, G.A. & Van Den Haute, P. 1992. Fission-Track Dating. 453 pp. Ferdinand Encke Verlag, Stuttgart.
Waples, D.W. 1980. Time and temperature in petroleum formation: application of Lopatin’s method to petroleum exploration. American Association of Petroleum Geologists Bulletin 64, 916-926.
Waples, D.W. 1989. Maturity Modeling of Sedimentary Basins: Approaches, Limitations and Prediction of Future Developments, 181-193. In Cross, T.A. (ed.) Quantitative Dynamic Stratigraphy. Prentice Hall, New Jersey.
Wood, D.A. 1988. Relationship between thermal maturation indices calculated using Arrhenius equations and Lopatin method: implications for petroleum exploration. American Association of Petroleum Geologists Bulletin 72, 115-134.
Zachariáš, J. & Pešek, J. 2010. Nepřímé indicie pro stanovení stáří polymetalické mineralizace stříbrského rudního revíru. Bulletin Mineralogicko-petrologického oddělení Národního muzea (Praha) 18(2), 109-111.
Zachariáš, P. & Pešek, J. 2011. Fluid inclusions study of carbonate-dominated veinlets from coal seam and rocks of the Central and Western Bohemian basins, Czech Republic. Acta Geodynamica et Geomaterialia 8(2), 133-143.
Žák, J., Svojtka, M. & Opluštil, S. 2018. Topographic inversion and changes in the sediment routing systems in the Variscan orogenic belts as revealed by detrital zircon and monazite updates U-Pb geochronology in post-collisional continental basins. Sedimentary Geology 377, 63-81.
Zeman, A., Suchy, V., Stejskal, M., Janku, J., Cermak, J. & Turek, K. 2000. Migration of fluids controlled by equidistant fracture systems: an example from Central Europe (Czech Republic, Slovakia and Austria). Journal of Geochemical Exploration 69/70, 499-504.
Ziegler, P.A. 1990. Geological Atlas of Western and Central Europe. Shell, The Hague.
Ziegler, P.A., Cloetingh, S. & Van Wees, J.D. 1999. Dynamics of intra-plate compressional deformations: the Alpine foreland and other examples. Tectonophysics 252, 7-59.
Zwart, H.J. 1969. Metamorphic facies series in the European orogenic belts and the bearing on the causes of orogeny. Geological Association of Canada Special Paper 5, 7-15.
Zwart, H.J. 1975. The Hercynian orogeny in Europe. Progress in Geodynamics. 84 pp. Royal Netherlands Academy of Arts and Science. Amsterdam.