Current IF 1.9
Latest issue (RSS 2.0)
Contact Editorial Office at
bulletin@geology.cz
Bulletin of Geosciences
Published by ©
Czech Geological Survey,
W. Bohemia Museum Pilsen
Individual sponsors
ISSN: 1802-8225 (online),
1214-1119 (print)
Cyst size trends in the genus Leiosphaeridia across the Mulde (lower Silurian) biogeochemical event
Published in: Bulletin of Geosciences, volume 92, issue 3; pages: 391 - 404; Received 3 June 2017; Accepted in revised form 21 August 2017; Online 30 September 2017
Keywords: Acritarchs, green algae, Silurian, Mulde Event, size evolution, Eastern Baltic,
Supplementary material
Supplementary material (541 kB)
Abstract
The upper Wenlock epoch (Homerian age) of the Silurian period was an interval of intense changes in biotic composition, oceanic chemistry and sea level, which also witnessed a double-peaked positive stable carbon isotopic excursion. These biotic and environmental perturbations are thought to have originated due to reorganizations of the ocean system and high-amplitude sea level fluctuations. However, the evolutionary responses of the size of the micro-phytoplankton, which would help comprehension of the oceanographic mechanisms of these global perturbations, are currently unknown. Therefore, in this contribution we present morphometric data on the size changes of cysts of the dominant acritarch genus Leiosphaeridia during the middle and upper parts of the Homerian, which includes the lundgreni and Mulde bioevents, from the deep shelf facies of the eastern Baltic Basin (western Lithuania, Viduklë-61 core). Three parameters were measured for size distributions. Those are namely: average size, range of sizes, and power law exponent, which measures degree of “heavy-tailedness” and thus complexity of the distribution of cyst sizes. The average of the cyst sizes increased in the post-lundgreni interval of the Homerian, which points to the fundamental shift in the acritarch communities. The uncovered trends in cyst size ranges and power law exponents of their cyst size distributions revealed their close correspondence to the 4th order sea level fluctuations. Probable paleoclimatic and paleoecological mechanisms for this connection are presented.References
AGIĆ, H. 2015. A new species of small acritarch with a porous wall structure from the early Cambrian of Estonia and implications for the fossil record of eukaryotic picoplankton. Palynology 40, 1-14.
ALDRIDGE, R., JEPPSSON, L. & DORNING, K. 1993. Early Silurian oceanic episodes and events. Journal of the Geological Society 150, 501-513.
ALROY, J., MARSHALL, C.R., BAMBACH, R.K., BEZUSKO, K., FOOTE, M., FÜRSICH, F.T., HANSEN, T.A., HOLLAND, S.M., IVANY, L.C., JABLONSKI, D., JACOBS, D.K., JONES, D.C., KOSNIK, M.A., LIDGARD, S., LOW, S., MILLER, A.I., NOVACK-GOTTSHALL, P.M., OLSZEWSKI, T.D., PATZKOWSKY, M.E., RAUP, D.M., ROY, K., SEPKOSKI, J.J. JR., SOMMERS, M.G., WAGNER, P.J. & WEBBER, A. 2001. Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proceedings of the National Academy of Sciences 98(11), 6261-6266.
AROURI, K.R., GREENWOOD, P.F. & WALTER, M.R. 2000. Biological affinities of Neoproterozoic acritarchs from Australia: microscopic and chemical characterisation. Organic Geochemistry 31, 75-89.
BONNER, J.T. 2013. Randomness in evolution. 152 pp. Princeton University Press, Princeton.
BRAZAUSKAS, A. & PAŠKEVIČIUS, J. 1981. Correlation of Silurian graptolite zones and conodont complexes in the core section Vidukle-61 (Middle Lithuania). Geologija 2, 41-52. [in Russian]
BROCKE, R., FATKA, O. & WILDE, V. 2006. Acritarchs and prasinophytes of the Silurian-Devonian GSSP (Klonk, Barrandian area, Czech Republic). Bulletin of Geosciences 81, 27-41.
BUITENHUIS, E.T., LI, W.K.W., VAULOT, D., LOMAS, M.W., LANDRY, M., PARTENSKY, F., KARL, D., ULLOA, O., CAMPBELL, L. & JACQUET, S. 2012. Picophytoplankton biomass distribution in the global ocean. Earth System Science Data 4, 37-46.
CALNER, M. & JEPPSSON, L. 2003. Carbonate platform evolution and conodont stratigraphy during the middle Silurian Mulde Event, Gotland, Sweden. Geological Magazine 140, 173-203.
CATUNEANU, O. 2006. Principles of sequence stratigraphy. 375 pp. Elsevier, Amsterdam.
CHISHOLM, S.W. 1992. Phytoplankton size, 213-237. In FALKOWSKI, P.G., WOODHEAD, A.D. & VIVIRITO, K. (eds) Primary productivity and biogeochemical cycles in the sea. Springer Verlag, Berlin.
CLAUSET, A., SHALIZI, C.R. & NEWMAN, M.E.J. 2009. Power-law distributions in empirical data. SIAM review 51, 661-703.
COCKS, L.R.M. & TORSVIK, T.H. 2002. Earth geography from 500 to 400 million years ago: a faunal and palaeomagnetic review. Journal of the Geological Society 159, 631-644.
COCKS, L.R.M. & TORSVIK, T.H. 2005. Baltica from the late Precambrian to mid-Palaeozoic times: the gain and loss of a terrane’s identity. Earth-Science Reviews 72, 39-66.
COOPER, R.A., SADLER, P.M., MUNNECKE, A. & CRAMPTON, J.S. 2014. Graptoloid evolutionary rates track Ordovician-Silurian global climate change. Geological Magazine 151, 349-364.
CORTESE, G., GERSONDE, R., MASCHNER, K. & MEDLEY, P. 2012. Glacial-interglacial size variability in the diatom Fragilariopsis kerguelensis: Possible iron/dust controls? Paleoceanography, 27(1), PA1208.
CRAMER, B.D., BRETT, C.E., MELCHIN, M.J., MÄNNIK, P., KLEFFNER, M.A., MCLAUGHLIN, P.I., LOYDELL, D.K., MUNNECKE, A., JEPPSSON, L. & CORRADINI, C. 2011. Revised correlation of Silurian Provincial Series of North America with global and regional chronostratigraphic units and δ13Ccarb chemostratigraphy. Lethaia 44, 185-202.
CRAMER, B.D., CONDON, D.J., SÖDERLUND, U., MARSHALL, C., WORTON, G.J., THOMAS, A.T., CALNER, M., RAY, D.C., PERRIER, V. & BOOMER, I. 2012. U-Pb (zircon) age constraints on the timing and duration of Wenlock (Silurian) paleocommunity collapse and recovery during the “Big Crisis”. Geological Society of America Bulletin 124, 1841-1857.
CRAMER, B.D., KLEFFNER, M.A. & SALTZMAN, M.R. 2006. The late Wenlock Mulde positive carbon isotope (?13Ccarb) excursion in North America. GFF 128, 85-90.
CRAMPTON, J.S., COOPER, R.A., SADLER, P.M. & FOOTE, M. 2016. Greenhouse-icehouse transition in the Late Ordovician marks a step change in extinction regime in the marine plankton. Proceedings of the National Academy of Sciences 113, 1498-1503.
DELABROYE, A., MUNNECKE, A., VECOLI, M., COPPER, P., TRIBOVILLARD, N., JOACHIMSKI, M.M., DESROCHERS, A. & SERVAIS, T. 2011. Phytoplankton dynamics across the Ordovician/Silurian boundary at low palaeolatitudes: Correlations with carbon isotopic and glacial events. Palaeogeography, Palaeoclimatology, Palaeoecology 312, 79-97.
DORNING, K.J. & BELL, D.G. 1987. The Silurian carbonate shelf microflora: acritarch distribution in the Much Wenlock Limestone Formation, 266-287. In HART, M.B. (ed.) Micropalaeontology of carbonate environments. Ellis Horwood, Chichester.
EINASTO, P.E., ABUSHIK, A.F., KALJO, D.L., KOREN’, T.N., MODZALEVSKAYA, T.L., NESTOR, H.E. & KLAAMANN, E. 1986. Osobiennosti silurskogo osadkonakopleniya i associacii fauny v kraevych basseinach Pribaltiki i Podolii, 65-72. In KALJO, D.L. & KLAAMANN, E. (eds) Teoria i opyt ekostratigrafii. Valgus, Tallin. [in Russian].
EISENACK, A. 1938. Hystrichosphaerideen und verwandte Formen im baltischen Silur. Zeitschrift für Geschiebeforschung 14, 1-30.
EISENACK, A. 1958. Tasmanites Newton 1875 und Leiosphaeridia n. g. als Gattungen der Hystrichosphaeridea. Palaeontographica Abteilung A 110, 1-19.
EKLERIS, A. & RADZEVIČIUS, S. 2014. The Upper Homerian (Silurian) machaerid sclerite from Lithuania. Geologija 55, 109-114.
EVITT, W.R. 1963. A discussion and proposals concerning fossil dinoflagellates, hystrichospheres, and acritarchs, I. Proceedings of the National Academy of Sciences 49, 158-164.
FALKOWSKI, P.G. & OLIVER, M.J. 2007. Mix and match: how climate selects phytoplankton. Nature Reviews Microbiology 5, 813-819.
FATKA, O. & BROCKE, R. 2008. Morphologic variability in lower palaeozoic acritarchs: importance for acritarch systematics. Acta Musei Nationalis Pragae Series B - Historia Naturalis 64, 97-107.
FINKEL, Z.V., KATZ, M.E., WRIGHT, J.D., SCHOFIELD, O.M.E. & FALKOWSKI, P.G. 2005. Climatically driven macroevolutionary patterns in the size of marine diatoms over the Cenozoic. Proceedings of the National Academy of Sciences of the United States of America 102, 8927-8932.
FINKEL, Z.V., SEBBO, J., FEIST-BURKHARDT, S., IRWIN, A., KATZ, M., SCHOFIELD, O., YOUNG, J. & FALKOWSKI, P. 2007. A universal driver of macroevolutionary change in the size of marine phytoplankton over the Cenozoic. Proceedings of the National Academy of Sciences 104, 20416-20420.
FOOTE, M. 1997. The evolution of morphological diversity. Annual Review of Ecology and Systematics 28, 129-152.
FRONTIER, S. 1985. Diversity and structure in aquatic ecosystems, 253-312. In BARNES, M. (ed.) Oceanography and Marine Biology: An Annual Review. Aberdeen University Press, Aberdeen.
GILLESPIE, C. 2015. Fitting heavy tailed distributions: the poweRlaw package. Journal of Statistical Software 64, 1-16.
GOULD, S.J. 2002. The structure of evolutionary theory. 1464 pp. Harvard University Press, Cambridge.
GUY-OHLSON, D. 1996. Prasinophycean algae. Palynology: principles and applications 1, 181-190. JAEGER, H. 1991. Neue Standard-Graptolithenzonenfolge nach der “Grossen Krise” an der Wenlock/Ludlow-Grenze (Silur). Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 182, 303-354.
JAROCHOWSKA, E. & MUNNECKE, A. 2016. Late Wenlock carbon isotope excursions and associated conodont fauna in the Podlasie Depression, eastern Poland: a not-so-big crisis? Geological Journal 51(5), 683-703.
JAROCHOWSKA, E., BREMER, O., HEIDLAS, D., PRÖPSTER, S., VANDENBROUCKE, T.R.A. & MUNNECKE, A. 2016. End-Wenlock terminal Mulde carbon isotope excursion in Gotland, Sweden: Integration of stratigraphy and taphonomy for correlations across restricted facies and specialized faunas. Palaeogeography, Palaeoclimatology, Palaeoecology 457, 304-322.
JAVAUX, E.J., KNOLL, A.H. & WALTER, M.R. 2004. TEM evidence for eukaryotic diversity in mid-Proterozoic oceans. Geobiology 2, 121-132.
JEPPSSON, L. 1987. Lithological and conodont distributional evidence for episodes of anomalous oceanic conditions during the Silurian, 129-145. In ALDRIDGE, R.J. (ed.) Palaeobiology of Conodonts. Ellis Horwood Ltd, Chichester.
JEPPSSON, L. 1993. Silurian events: the theory and the conodonts. Proceedings of the Estonian Academy of Sciences 42, 23-27.
JEPPSSON, L. 1997. The anatomy of the mid-early Silurian Ireviken Event and a scenario for PS events, 451-492. In BRETT, C.E. & BAIRD, G. (eds), Paleontological events: stratigraphic, ecological, and evolutionary implications. Columbia University Press, New York.
JEPPSSON, L. 1998. Silurian oceanic events: summary of general characteristics, 239-257. In LANDING, E.J.M. (ed.) Silurian cycles: Linkages of dynamic stratigraphy with atmospheric, oceanic and tectonic changes. New York State Museum, New York.
JEPPSSON, L. & ALDRIDGE, R. 2000. Ludlow (late Silurian) oceanic episodes and events. Journal of the Geological Society 157, 1137-1148.
JEPPSSON, L. & CALNER, M. 2002. The Silurian Mulde Event and a scenario for secundo-secundo events. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 93, 135-154.
JEPPSSON, L., ALDRIDGE, R. & DORNING, K. 1995. Wenlock (Silurian) oceanic episodes and events. Journal of the Geological Society 152, 487-498.
JEPPSSON, L., TALENT, J.A., MAWSON, R., ANDREW, A., CORRADINI, C., SIMPSON, A.J., WIGFORSS-LANGE, J. & SCHÖNLAUB, H.P. 2012. Late Ludfordian correlations and the Lau event, 653-675. In TALENT, J.A. (ed.) Earth and Life. Springer, Dordrecht.
JUN, L., SERVAIS, T. & KUI, Y. 2010. Acritarch biostratigraphy of the Lower-Middle Ordovician boundary (Dapingian) at the Global Stratotype Section and Point (GSSP), Huanghuachang, South China. Newsletters on Stratigraphy 43, 235-250.
KALJO, D., BOUCOT, A.J., CORFIELD, R.M., LE HERISSE, A., KOREN’, T.N., KRIZ, J., MÄNNIK, P., MÄRSS, T., NESTOR, V., SHAVER, R.H., SIVETER, D.J. & VIIRA, V. 1996. Silurian bio-events, 173-224. In WALLISER, O.H. (ed.) Global events and event stratigraphy in the Phanerozoic. Springer, Berlin.
KALJO, D., MARTMA, T., GRYTSENKO, V., BRAZAUSKAS, A. & KAMINSKAS, D. 2012. Přídolí carbon isotope trend and upper Silurian to lowermost Devonian chemostratigraphy based on sections in Podolia (Ukraine) and the East Baltic area. Estonian Journal of Earth Sciences 61, 162-180.
KAPRAUN, D.F. & BURATTI, J.R. 1998. Evolution of genome size in the Dasycladales (Chlorophyta) as determined by DAPI cytophotometry. Phycologia 37, 176-183.
KAZMIERCZAK, J. & KREMER, B. 2009. Spore-like bodies in some early Paleozoic acritarchs: clues to chlorococcalean affinities. Acta Palaeontologica Polonica 54, 541-551.
KIORBOE, T. 1993. Turbulence, phytoplankton cell size, and the structure of pelagic food webs. Advances in Marine Biology 29, 1-72.
KOJELE, A., RADZEVIČIUS, S., SPIRIDONOV, A. & BRAZAUSKAS, A. 2014. Geluvos regioninio aukšto (viršutinis homeris, siluras) ribos stratotipas. Geologijos akiračiai 1, 10-21.
KOREN’, T. 1987. Graptolite dynamics in Silurian and Devonian time. Bulletin of the Geological Society of Denmark 35, 149-160.
KOREN’, T. 1991. The lundgreni extinction event in central Asia and its bearing on graptolite biochronology within the Homerian. Proceedings of the Estonian Academy of Sciences, Geology 40, 74-78.
KOZŁOWSKA-DAWIDZIUK, A., LENZ, A.C. & ŠTORCH, P. 2001. Upper Wenlock and Lower Ludlow (Silurian), post-extinction graptolites, Všeradice section, Barrandian area, Czech Republic. Journal of Paleontology 75, 147-164.
LABARBERA, M. 1989. Analyzing body size as a factor in ecology and evolution. Annual Review of Ecology and Systematics 20, 97-117.
LAZAUSKIENE, J., ŠLIAUPA, S., BRAZAUSKAS, A. & MUSTEIKIS, P. 2003. Sequence stratigraphy of the Baltic Silurian succession: tectonic control on the foreland infill. Geological Society London, Special Publications 208, 95-115.
LE HERISSÉ, A. 1984. Microplancton a paroi organique du Silurien de Gotland (Suede): observations au microscope electronique de structures de désenkystement. Review of Palaeobotany and Palynology 43, 217-236.
LE HÉRISSÉ, A., DORNING, K.J., MULLINS, G.L. & WICANDER, R. 2009. Global patterns of organic-walled phytoplankton biodiversity during the late Silurian to earliest Devonian. Palynology 33, 25-75.
LE HÉRISSÉ, A., PARIS, F. & STEEMANS, P. 2013. Late Ordovician-earliest Silurian palynomorphs from northern Chad and correlation with contemporaneous deposits of southeastern Libya. Bulletin of Geosciences 88, 483-504.
LEHNERT, O., ERIKSSON, M.J., CALNER, M., JOACHIMSKI, M. & BUGGISCH, W. 2007. Concurrent sedimentary and isotopic indications for global climatic cooling in the Late Silurian. Acta Palaeontologica Sinica 46, 249-255.
LENTON, T.M., DAHL, T.W., DAINES, S.J., MILLS, B.J.W., OZAKI, K., SALTZMAN, M.R. & PORADA, P. 2016. Earliest land plants created modern levels of atmospheric oxygen. Proceedings of the National Academy of Sciences 113, 9704-9709.
LENZ, A.C., NOBLE, P.J., MASIAK, M., POULSON, S.R. & KOZ- ŁOWSKA, A. 2006. The lundgreni Extinction Event: integration of paleontological and geochemical data from Arctic Canada. GFF 128, 153-158.
LIEBERMAN, B.S. & MELLOT, A.L. 2013. Declining volatility, a general property of disparate systems: from fossils, to stocks, to the stars. Palaeontology 56, 1297-1304.
LIEBERMAN, B.S. & SAUPE, E.E. 2016. Palaeoniches get stitches: analyses of niches informing macroevolutionary theory. Lethaia 49, 145-149.
LOYDELL, D.K. 1998. Early Silurian sea-level changes. Geological Magazine 135, 447-471.
LOYDELL, D.K. 2007. Early Silurian positive δ13C excursions and their relationship to glaciations, sea-level changes and extinction events. Geological Journal 42, 531-546.
MARANÓN, E. 2015. Cell size as a key determinant of phytoplankton metabolism and community structure. Annual Review of Marine Science 7, 241-264.
MARTIN, F. 1993. Acritarchs a review. Biological Reviews 68, 475-537.
MARTMA, T., BRAZAUSKAS, A., KALJO, D., KAMINSKAS, D. & MUSTEIKIS, P. 2005. The Wenlock-Ludlow carbon isotope trend in the Vidukle core, Lithuania, and its relations with oceanic events. Geological Quarterly 49, 223-234.
MCSHEA, D.W. & BRANDON, R.N. 2010. Biology’s first law: the tendency for diversity and complexity to increase in evolutionary systems. 184 pp. University of Chicago Press, Chicago.
MELCHIN, M.J., SADLER, P.M. & CRAMER, B.D. 2012. The Silurian Period, 525-558. In GRADSTEIN, F.M., OGG, J.G. & SCHMITZ, M. (eds) The Geologic Time Scale 2012, 2-volume set. Elsevier, Amsterdam.
MEYERS, S.R. 2015. Astrochron: A Computational Tool for Astrochronology (Version 0.5). https://cran.r-project.org/package=astrochron
MOCZYDŁOWSKA, M. 2010. Life cycle of early Cambrian microalgae from the Skiagia-plexus acritarchs. Journal of Paleontology 84, 216-230.
MOCZYDŁOWSKA, M. & WILLMAN, S. 2009. Ultrastructure of cell walls in ancient microfossils as a proxy to their biological affinities. Precambrian Research 173, 27-38.
MULLINS, G.L. & SERVAIS, T. 2008. The diversity of the Carboniferous phytoplankton. Review of Palaeobotany and Palynology 149, 29-49.
MYERS, C.E., STIGALL, A.L. & LIEBERMAN, B.S. 2015. PaleoENM: applying ecological niche modeling to the fossil record. Paleobiology 41, 226-244.
NOBLE, P., LENZ, A., HOLMDEN, C., MASIAK, M., ZIMMERMAN, M., POULSON, S. & KOZŁOWSKA, A. 2012. Isotope geochemistry and plankton response to the Ireviken (earliest Wenlock) and Cyrtograptus lundgreni extinction events, Cape Phillips Formation, Arctic Canada, 631-652. In TALENT, J. (ed.) Earth and Life. Springer, Dordrecht.
PALUVEER, L., NESTOR, V. & HINTS, O. 2014. Chitinozoan diversity in the East Baltic Silurian: first results of a quantitative stratigraphic approach with CONOP. GFF 136, 198-202.
PAŠKEVIČIUS, J. 1997. The Geology of the Baltic Republics. 387 pp. Vilnius University and Geological Survey of Lithuania, Vilnius.
PATZKOWSKY, M.E. & HOLLAND, S.M. 2016. Biotic invasion, niche stability, and the assembly of regional biotas in deep time: comparison between faunal provinces. Paleobiology 42, 359-379.
PAYNE, J.L., BOYER, A.G., BROWN, J.H., FINNEGAN, S., KOWALEWSKI, M., KRAUSE, R.A., LYONS, S.K., MCCLAIN, C.R., MCSHEA, D.W., NOVACK-GOTTSHALL, P.M., SMITH, F.A., STEMPIEN, J.A. & WANG, S.C. 2009. Two-phase increase in the maximum size of life over 3.5 billion years reflects biological innovation and environmental opportunity. Proceedings of the National Academy of Sciences 106, 24-27.
PORĘBSKA, E., KOZŁOWSKA-DAWIDZIUK, A. & MASIAK, M. 2004. The lundgreni event in the Silurian of the East European Platform, Poland. Palaeogeography, Palaeoclimatology, Palaeoecology 213, 271-294.
PRAUSS, M., LIGOUIS, B. & LUTERBACHER, H. 1991. Organic matter and palynomorphs in the ’Posidonienschiefer’ (Toarcian, Lower Jurassic) of southern Germany. Geological Society London, Special Publications 58, 335-351.
R Development Core Team 2015. R: A Language and Environment for Statistical Computing. Version 3.1.3. R Foundation for Statistical Computing, Vienna. https://www.r-project.org/
RACKI, G., BALINSKI, A., WRONA, R., MALKOWSKI, K., DRYGANT, D. & SZANIAWSKI, H. 2012. Faunal dynamics across the Silurian-Devonian positive isotope excursions (δ13C, δ18O) in Podolia, Ukraine: Comparative analysis of the Ireviken and Klonk events. Acta Palaeontologica Polonica 57, 795-832.
RADZEVIČIUS, S. 2006. Late Wenlock biostratigraphy and the Pristiograptus virbalensis group (Graptolithina) in Lithuania and the Holy Cross Mountains. Geological Quarterly 50, 333-344.
RADZEVIČIUS, S., SPIRIDONOV, A. & BRAZAUSKAS, A. 2014a. Application of Wavelets to the Cyclostratigraphy of the Upper Homerian (Silurian) Geluva Regional Stage in the Vidukle-61 Deep Well (Western Lithuania), 437-440. In Pais, J. (ed.). STRATI 2013. Springer, Berlin.
RADZEVIČIUS, S., SPIRIDONOV, A. & BRAZAUSKAS, A. 2014b. Integrated middle-upper Homerian (Silurian) stratigraphy of the Vidukle-61 well, Lithuania. GFF 136, 218-222.
RADZEVIČIUS, S., SPIRIDONOV, A., BRAZAUSKAS, A., DANKINA, D., RIMKUS, A., BIČKAUSKAS, G., KAMINSKAS, D., MEIDLA, T. & AINSAAR, L. 2016. Integrated stratigraphy, conodont turnover and paleoenvironments of the Upper Wenlock and Ludlow of the Vilkaviškis-134 core (Lithuania). Newsletters on Stratigraphy 49(2), 321-336.
RADZEVIČIUS, S., SPIRIDONOV, A., BRAZAUSKAS, A., NORKUS, A., MEIDLA, T. & AINSAAR, L. 2014c. Upper Wenlock ?13C chemostratigraphy, conodont biostratigraphy and palaeoecological dynamics in the Ledai-179 drill core (Eastern Lithuania). Estonian Journal of Earth Sciences 63, 293-299.
RADZEVIČIUS, S., TUMAKOVAITE, B. & SPIRIDONOV, A. 2017. Upper Homerian (Silurian) high-resolution correlation using cyclostratigraphy: an example from Western Lithuania. Acta Geologica Polonica 67(2), 307-322.
RAY, D. & BUTCHER, A. 2010. Sequence stratigraphy of the type Wenlock area (Silurian), England. Bollettino della Societa Paleontologica Italiana 49, 47-54.
RAY, D.C., BRETT, C.E., THOMAS, A.T. & COLLINGS, A.V.J. 2010. Late Wenlock sequence stratigraphy in central England. Geological Magazine 147, 123-144.
RIDING, R. 2009. An atmospheric stimulus for cyanobacterialbioinduced calcification ca. 350 million years ago? Palaios 24, 685-696.
SALLAN, L.C., KAMMER, T.W., AUSICH, W.I. & COOK, L.A. 2011. Persistent predator-prey dynamics revealed by mass extinction. Proceedings of the National Academy of Sciences 108, 8335-8338.
SALTZMAN, M.R. 2005. Phosphorus, nitrogen, and the redox evolution of the Paleozoic oceans. Geology 33, 573-576.
SAMTLEBEN, C., MUNNECKE, A., BICKERT, T. & PÄTZOLD, J. 1996. The Silurian of Gotland (Sweden): facies interpretation based on stable isotopes in brachiopod shells. Geologische Rundschau 85, 278-292.
SCHULZ, M. & MUDELSEE, M. 2002. REDFIT: estimating red-noise spectra directly from unevenly spaced paleoclimatic time series. Computers & Geosciences 28, 421-426.
SERVAIS, T. 1996. Some considerations on acritarch classification. Review of Palaeobotany and Palynology 93, 9-22.
SERVAIS, T., LEHNERT, O., LI, J., MULLINS, G.L., MUNNECKE, A., NUETZEL, A. & VECOLI, M. 2008. The Ordovician Biodiversification: revolution in the oceanic trophic chain. Lethaia 41, 99-109.
SMITH, F.A., PAYNE, J.L., HEIM, N.A., BALK, M.A., FINNEGAN, S., KOWALEWSKI, M., LYONS, S.K., MCCLAIN, C.R., MCSHEA, D.W. & NOVACK-GOTTSHALL, P.M. 2016. Body Size Evolution Across the Geozoic. Annual Review of Earth and Planetary Sciences 44, 523-553.
SOLÉ, R.V., SALDANA, J., MONTOYA, J.M. & ERWIN, D.H. 2010. Simple model of recovery dynamics after mass extinction. Journal of Theoretical Biology 267, 193-200.
SOMMER, U., STIBOR, H., KATECHAKIS, A., SOMMER, F. & HANSEN, T. 2002. Pelagic food web configurations at different levels of nutrient richness and their implications for the ratio fish production: primary production, 11-20. In VADSTEIN, O. &
OLSEN, Y. (eds) Sustainable Increase of Marine Harvesting: Fundamental Mechanisms and New Concepts. Springer, Dordrecht.
SPIRIDONOV, A., BRAZAUSKAS, A. & RADZEVIČIUS, S. 2015. The role of temporal abundance structure and habitat preferences in the survival of conodonts during the mid-early Silurian Ireviken mass extinction event. PLoS ONE 10, e0124146.
SPIRIDONOV, A., BRAZAUSKAS, A. & RADZEVIČIUS, S. 2016. Dynamics of abundance of the mid- to late Pridoli conodonts from the eastern part of the Silurian Baltic Basin: multifractals, state shifts, and oscillations. American Journal of Science 316, 363-400.
STANLEY, S.M. 1975. A theory of evolution above the species level. Proceedings of the National Academy of Sciences 72, 646-650.
STANLEY, S.M. 2008. Predation defeats competition on the seafloor. Paleobiology 34, 1-21.
STROTHER, P.K. 1996. Chapter 5. Acritarchs, 81-107. In JANSONIUS, D. & MCGREGOR, C. (eds) Palynology: principles and applications. American Association of Stratigraphic Palynologists Foundation, Publishers Press, Salt Lake City.
STROTHER, P.K. 2008. A speculative review of factors controlling the evolution of phytoplankton during Paleozoic time. Revue de micropaléontologie 51, 9-21.
TAPPAN, H.N. 1980. The paleobiology of plant protists. 1028 pp. WH Freeman, San Francisco. ¬
TOGGWEILER, J.R. & RUSSELL, J. 2008. Ocean circulation in a warming climate. Nature 451(7176), 286-288.
TORSVIK, T.H. & COCKS, L.R.M. 2013. New global palaeogeographical reconstructions for the Early Palaeozoic and their generation. Geological Society London, Memoirs 38, 5-24.
TROTTER, J.A., WILLIAMS, I.S., BARNES, C.R., MÄNNIK, P. & SIMPSON, A. 2016. New conodont ?18O records of Silurian climate change: Implications for environmental and biological events. Palaeogeography, Palaeoclimatology, Palaeoecology 443, 34-48.
URBANEK, A. 1993. Biotic crises in the history of Upper Silurian graptoloids: a palaeobiological model. Historical Biology 7, 29-50.
VAN VALEN, L. 1973. Body size and numbers of plants and animals. Evolution 27, 27-35.
VECOLI, M. 2008. Fossil microphytoplankton dynamics across the Ordovician-Silurian boundary. Review of Palaeobotany and Palynology 148, 91-107.
VENCKUTE-ALEKSIENE, A., RADZEVIČIUS, S. & SPIRIDONOV, A. 2016. Dynamics of phytoplankton in relation to the upper Homerian (Lower Silurian) lundgreni event - An example from the Eastern Baltic Basin (Western Lithuania). Marine Micropaleontology 126, 31-41.
VOJE, K.L., HOLEN, O.H., LIOW, L.H. & STENSETH, N.C. 2015. The role of biotic forces in driving macroevolution: beyond the Red Queen, Proceedings of the Royal Society B, 20150186.
WAINWRIGHT, P.C. 2007. Functional versus morphological diversity in macroevolution. Annual Review of Ecology, Evolution, and Systematics 38, 381-401.
WALL, D. 1962. Evidence from recent plankton regarding the biological affinities of Tasmanites Newton 1875 and Leiosphaeridia Eisenack 1958. Geological Magazine 99, 353-362.
WEEDON, G.P. 2003. Time-series analysis and cyclostratigraphy: examining stratigraphic records of environmental cycles. 276 pp. Cambridge University Press, Cambridge.