Current IF 1.9
Latest issue (RSS 2.0)
Contact Editorial Office at
bulletin@geology.cz
Bulletin of Geosciences
Published by ©
Czech Geological Survey,
W. Bohemia Museum Pilsen
Individual sponsors
ISSN: 1802-8225 (online),
1214-1119 (print)
Early stages of clastic deposition in the Most Basin (Ohře Rift, Czech Republic, Early Miocene): timing and possible controls
Published in: Bulletin of Geosciences, volume 92, issue 3; pages: 337 - 355; Received 1 January 2017; Accepted in revised form 27 June 2017; Online 30 September 2017
Keywords: cyclostratigraphy, chemostratigraphy, lake sediments, climate forcing, Burdigalian,
Abstract
This study examines the early stages of clastic deposition above the main coal seam in the Most Basin (Ohře Rift, NW Czech Republic). Eight drill cores were subjected to chemical analysis by X-ray fluorescence spectroscopy (XRF) and cation exchange capacity determination (CEC) to corroborate the local chemostratigraphic scheme and extend its temporal and spatial ranges. Additionally, four drill cores were subjected to palaeomagnetic polarity analysis for magnetostratigraphic dating, and two cores were subjected to the frequency analysis of variations in elemental compositions to obtain cyclostratigraphic patterns and more detailed insight into depositional dynamics. We demonstrate that a local lake was present in the Bílina area from the end of palaeomagnetic chron C5Er through chron C5En (18.524-18.056 Ma according to the Astronomically Tuned Neogene Time Scale 2012) to the beginning of the C5Dr chrons. This finding extends the previous age models for the Most Formation by more than 0.5 My (18.6 to 17.9 Ma). The chemostratigraphic scheme, which is based on variations in the concentrations of K and the values of CEC, was successfully extended from the basin centre to its north-east periphery, which reflects the basin-wide environmental changes that terminated the peat accumulation (coal formation) in the basin. The basin-wide lacustrine body formed by the coalescence of local lakes and the flooding of the remaining peatlands ca. 17.8 Ma (during C5Dn), which is coeval with the substantial reduction of the Antarctic ice sheet prior to the onset of the Miocene climatic optimum (MCO). The Most Basin deposits are the most detailed (with respect to temporal resolution) continental sedimentary archive of the time period preceding the MCO that have not been described to date.References
BERGER, A., LOUTRE, M.F. & MÉLICE, J.L. 2006. Equatorial insolation: from precession harmonics to eccentricity frequencies. Climate of the Past 2, 131-136.
BOUCHEZ, J., GAILLARDET, J., FRANCE-LANORD, C., MAURICE, L. & DUTRA-MAIA, P. 2011. Grain size control of river suspended sediment geochemistry: Clues from Amazon River depth profiles. Geochemistry Geophysics Geosystems 12(3), Q03008.
CAJZ, V., RAPPRICH, V., SCHNABL, P. & PÉCSKAY, Z. 2009. Návrh litostratigrafie neovulkanitů východočeské oblasti (A proposal on lithostratigraphy of Cenozoic volcanic rocks in Eastern Bohemia). Zprávy o geologických výzkumech v roce 2008, 9-15.
CLIFT, P.D., WAN, S.M. & BLUSZTAJN, J. 2014. Reconstructing chemical weathering, physical erosion and monsoon intensity since 25 Ma in the northern South China Sea: A review of competing proxies. Earth-Science Reviews 130, 86-102.
DILL, H.D. 2001. The geology of aluminium phosphates and sulphates of the alunite group minerals: a review. Earth-Science Reviews 53(1-2), 35-93.
DVOŘÁK, Z. & MACH, K. 1999. Deltaic deposits in the NorthBohemian Brown Coal Basin and their documentation. Acta Universitatis Carolinae Geologica 43(4), 633-641.
ELZNIC, A., ČADKOVÁ, Z. & DUŠEK, P. 1998. Paleogeografie terciérních sedimentů severočeské pánve, Sborník geologických věd, Geologie 48, 19-46.
FEJFAR, O., DVOŘÁK, Z. & KADLECOVÁ, E. 2003. New record of early Miocene (MN3a) mammals in the open brown coal pit Merkur, North Bohemia, Czech Republic, 163-182. In REUMER, J.W.F. & WESSELS, W. (eds) Distribution and migration of tertiary mammals in Eurasia. A volume in honour of Hans de Bruijn. Deinsea 10.
GRADSTEIN, F.M., OGG, J.G., SCHMITZ, M.D. & OGG, G.M. 2012. The Geologic Time Scale 2012. Elsevier BV, Amsterdam.
GRYGAR, T., KADLEC, J., ŽIGOVÁ, A., MIHALJEVIČ, M., NEKUTOVÁ, T., LOJKA, R. & SVĚTLÍK, I. 2009. Chemostratigraphic correlation of sediments containing expandable clay minerals based on ion exchange with Cu(II) complex with triethylenetetramine. Clays and Clay Minerals 57(2), 168-182.
HURNÍK, S. 1972. Koeficient sednutí některých sedimentů v Severočeské hnědouhelné pánvi. Časopis pro mineralogii a geologii 17(4), 365-372.
IED, I.M., HOLCOVÁ, K. & ABD-ELSHAFY, E. 2011. Biostratigraphy and paleoecology of the Burdigalian-Serravallian sediments in Wadi Sudr (Gulf of Suez, Egypt): comparison with the Central Paratethys evolution. Geologica Carpathica 62(3), 233-249.
JONES, A.F., MACKLIN, M.G. & BREWER, P.A. 2012. A geochemical record of flooding on the upper River Severn, UK, during the last 3750 years. Geomorphology 179, 89-105.
KIRSCHVINK, J.L. 1980. The least-squares line and plane and the analysis of palaeomagnetic data. Geophysical Journal of the Royal Astronomical Society 62(3), 699-718.
KOCHHANN, K.G.D., HOLBOURN, A., KUHNT, W., CHANNELL, J.E.T., LYLE, M., SHACKFORD, J.K., WILKENS, R.H. & ANDERSEN, N. 2016. Eccentricity pacing of eastern equatorial Pacific carbonate dissolution cycles during the Miocene Climatic Optimum. Paleoceanography 31(9), 1176-1192.
KOVAR-EDER, J., KVAČEK, Z. & MELLER, B. 2001. Comparing Early to Middle Miocene floras and probable vegetation types of Oberdorf N Voitsberg (Austria), Bohemia (Czech Republic), and Wackersdorf (Germany). Review of Palaeobotany and Palynology 114(1-2), 83-125.
LEVY, R. et al. 2016. Antarctic ice sheet sensitivity to atmospheric CO2 variations in the early to mid-Miocene. Proceedings of National Academy of Sciences 113(13), 3453-3458.
MACH, K. 2003. Genesis of large scale syndepositional deformations of main coal seam-Miocene Bílina delta, Most Basin, Czech Republic. 83 pp. Ph.D. thesis, Charles University, Prague, Czech Republic.
MACH, K., SÝKOROVÁ, I., KONZALOVÁ, M. & OPLUŠTIL, S. 2013. Effect of relative lake-level changes in mire-lake system on the petrographic and floristic compositions of a coal seam, in the Most Basin (Miocene), Czech Republic. International Journal of Coal Geology 105, 120-136.
MACH, K., TEODORIDIS, V., MATYS GRYGAR, T., KVAČEK, Z., SUHR, P. & STANDKE, G. 2014. An evaluation of paleogeography and paleoecology in the Most Basin (Czech Republic) and Saxony (Germany) from the late Oligocene to the early Miocene. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 272/1, 13-45.
MANN, M.E. & LEES, J.M. 1996. Robust estimation of background noise and signal detection in climatic time series. Climatic Change 33(3), 409-445.
MARTINEZ, M., DECONINCK, J.F., PELLENARD, P., REBOULET, S. & RIQUIER, L. 2013. Astrochronology of the Valanginian Stage from reference sections (Vocontian Basin, France) and palaeoenvironmental implications for the Weissert Event. Palaeogeography, Palaeoclimatology, Palaeoecology 376, 91-102.
MARTINEZ, M., DECONINCK, J.F., PELLENARD, P., RIQUIER, L., COMPANY, M., REBOULET, S. & MOIROUD, M. 2015. Astrochronology of the Valanginian-Hauterivian stages (Early Cretaceous): Chronological relationships between the Paraná-Etendeka large igneous province and the Weissert and the Faraoni events. Global and Planetary Change 131, 158-173.
MATYS GRYGAR, T. 2010. Geochemical analysis of drill cores AL405 and SP257 and their comparison with LB297 (Ko-8). Research report for North Bohemian Mines.
MATYS GRYGAR, T. & MACH, K. 2013a. Chemostratigrafie miocenních sedimentů mostecké pánve (Chemostratigraphy of Miocene sediments in Most Basin). Zprávy o geologických výzkumech v roce 2012, 26-29.
MATYS GRYGAR, T. & MACH, K. 2013b. Regional chemostratigraphic key horizons in the macrofossil-barren siliciclastic lower Miocene lacustrine sediments (Most Basin, Eger Graben, Czech Republic), Bulletin of Geosciences 88(3), 557-571.
MATYS GRYGAR, T. & POPELKA, J. 2016. Revisiting geochemical methods of distinguishing natural concentrations and pollution by risk elements in fluvial sediments. Journal of Geochemical Exploration 170, 39-57.
MATYS GRYGAR, T., ELZNICOVÁ, J., KISS, T. & SMITH, H.G. 2016. Using sedimentary archives to reconstruct pollution history and sediment provenance: The Ohře River, Czech Republic. Catena 144, 109-129.
MATYS GRYGAR, T., MACH, K., PRUNER, P., SCHNABL, P., LAURIN, J. & MARTINEZ, M. 2014. A lacustrine record of the early stage of the Miocene Climatic Optimum in Central Europe from the Most Basin, Ohře (Eger) Graben, Czech Republic. Geological Magazine 151(6), 1013-1033.
MEIER, L.P. & KAHR, G. 1999. Determination of the cation exchange capacity (CEC) of clay minerals using the complexes of copper (II) ion with triethylenetetramine and tetraethylenepentamine, Clays and Clay Minerals 47(3), 386-388.
MEYERS, S.R. 2014. Astrochron: An R Package for Astrochronology. http:/cran.r-project.org/package=astrochron.
NOVÁK, F., PEKÁRKOVÁ, R. & ŠEVCŮ, J. 1993. Barium rich crandallite from the Nástup Tušimice quarry (North-Bohemian Brown-Coal Basin, Věstník Českého geologického ústavu 68, 53-57.
NOVOTNÝ, T. & MACH, K. 2016. Liboušský aluviální systém ovlivněný synsedimentární kompakcí rašeliny (spodní miocén, mostecká pánev). Zpravodaj Hnědé uhlí 2, 3-12.
PEŠEK, J. et al. 2010. Terciérní pánve a ložiska hnědého uhlí České republiky (Tertiary Basins and Soft Coal Seams of the Czech Republic). 438 pp. Czech Geological Survey, Prague.
RAJCHL, M. & ULIČNÝ, D. 2005: Depositional record of an avulsive fluvial system controlled by peat compaction (Neogene, Most Basin, Czech Republic). Sedimentology 52(3), 601-625.
RAJCHL, M., ULIČNÝ, D., GRYGAR, R. & MACH, K. 2009. Evolution of basin architecture in an incipient continental rift: the Cenozoic Most Basin, Eger Graben (Central Europe). Basin Research 21(3), 269-294.
RAJCHL, M., ULIČNÝ, D. & MACH, K. 2008. Interplay between tectonics and compaction in a rift-margin, lacustrine delta system: Miocene of the Eger Graben, Czech Republic. Sedimentology 55(5), 1419-1447.
REICHENBACHER, B., KRIJGSMAN, W., LATASTER, Y., PIPPERR, M., VAN BAAK, C.G.C., CHANG, L., KÄLIN, D., JOST, J., DOPPLER, G., JUNG, D., PRIETO, J., ABDUL AZIZ, H., BÖHME, M., GARNISH, J., KIRSCHER, U. & BACHTADSE, V. 2013. A new magnetostratigraphic framework for the Lower Miocene (Burdigalian/Ottnangian, Karpatian) in the North Alpine Foreland Basin. Swiss Journal of Geosciences 106(2), 309-334.
RUDNICK, R. & GAO, S. 2003. Composition of the continental crust, 1-64. In RUDNICK, R.L., HOLLAND, H.D. & TUREKIAN, K.K. (eds) The Crust. Treatise on Geochemistry 3. Elsevier-Pergamon, Oxford.
SCHLUNEGGER, F., RIEKE-ZAPP, D. & RAMSEYER, K. 2007. Possible environmental effects on the evolution of the Alps-Molasse Basin system. Swiss Journal of Geosciences 100(3), 383-405.
SLOUPSKÁ, M. 1985. Nerostné složení tercierních sedimentů SHR. Manuscript. VÚHU Most, Most.
TANER, M.T. 2003. Attributes Revisited, Technical Publication. Houston, Texas: Rock Solid Images, Inc. http://rocksolidimages.com/pdf/attrib_revisited.htm
THOMSON, D.J. 1982. Spectrum estimation and harmonic analysis. Proceedings of the IEEE 70, 1055-1096.
THOMSON, D.J. 1990. Quadratic-inverse spectrum estimates - applications to paleoclimatology. Philosophical Transactions of the Royal Society of London Series A - Mathematical Physical and Engineering Sciences 332(1627), 539-597.
ULIČNÝ, D., LAURIN, J. & ČECH, S. 2008. Controls on clastic sequence geometries in a shallow-marine, transtensional basin: The Bohemian Cretaceous Basin, Czech Republic. Sedimentology 56(4), 1077-1114.
ULIČNÝ, D., JARVIS, I., GRÖCKE, D.R., ČECH, S., LAURIN, J., OLDE, K., TRABUCHO-ALEXANDRE, J., ŠVÁBENICKÁ, L. & PEDENTCHOUK, N. 2014. A high-resolution carbon-isotope record of the Turonian stage correlated to a siliciclastic basin fill: Implications for mid-Cretaceous sea-level change. Palaeogeography, Palaeoclimatology, Palaeoecology 405, 42-58.
UTESCHER, T., ASHRAF, A.R., DREIST, A., DYBKJAR, K., MOSBRUGGER, V., PROSS, J. & WILDER, V. 2012. Variability of Neogene Continental Climates in Northwest Europe - A Detailed Study Based on Microfloras. Turkish Journal of Earth Sciences 21, 289-314.
VALERO, L., HUERTA, P., GARCÉS, M., ARMENTEROS, I., BEAMUD, E. & GÓMEZ-PACCARD, M. 2017. Linking sedimentation rates and large-scale architecture for facies prediction in nonmarine basins (Paleogene, Almazán Basin, Spain), Basin Research 29(S1), 213-232.
VAN ASSELEN, S. 2011. The contribution of peat compaction to total basin subsidence: implications for the provision of accommodation space in organic-rich deltas. Basin Research 23(2), 239-255.
VAN ASSELEN, S., STOUTHAMER, E. & VAN ASCH, T.W.J. 2009. Effects of peat compaction on delta evolution: A review on processes, responses, measuring and modelling. Earth-Science Reviews 92(1-2), 35-51.
WIDERA, M. 2015. Compaction of lignite: a review of methods and results. Acta Geologica Polonica 65(3), 367-378.
WIDERA, M. 2016a. Depositional environments of overbank sedimentation in the lignite-bearing Grey Clays Member: New evidence from Middle Miocene deposits of central Poland. Sedimentary Geology 335, 150-165.
WIDERA, M. 2016b. Characteristics and origin of deformation structures within lignite seams-a case study from Polish opencast mines. Geological Quarterly 60(1), 181-191.
ZACHOS, J., PAGANI, M., SLOAN, L., THOMAS, E. & BILLUPS, K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292(5517), 686-693.
ZIEGLER, P.A. & DEZES, P. 2007. Cenozoic uplift of Variscan Massifs in the Alpine foreland: Timing and controlling mechanisms. Global and Planetary Change 58(1-4), 237-269.