Current IF 1.9
Latest issue (RSS 2.0)
Contact Editorial Office at
bulletin@geology.cz

Bulletin of Geosciences
Published by ©
Czech Geological Survey,
W. Bohemia Museum Pilsen
Individual sponsors
ISSN: 1802-8225 (online),
1214-1119 (print)

Eolian dust influx and massive whitings during the kozlowski/Lau Event: carbonate hypersaturation as a possible driver of the mid-Ludfordian Carbon Isotope Excursion
Published in: Bulletin of Geosciences, volume 90, issue 4; pages: 807 - 840; Received 15 July 2015; Accepted in revised form 16 September 2015; Online 3 November 2015
Keywords: eolian dust, saturation state, carbon isotope excursion (CIE), carbon cycle, euxinia, whitings, picocyanobacteria, Lau Event, Silurian,
Abstract
The mid-Ludfordian Carbon Isotope Excursion (CIE) is one of the biggest perturbation in the isotope and facies record in the Palaeozoic. However, its causes still remain unknown. In the periplatform setting of the Baltica palaeocontinent the event interval contains rock-forming minute calcite crystals, interpreted here as suspension-originated analogues of recent whitings and calcite rafts. The grains were preferentially formed around picocyanobacterial filaments, which are preserved as tubes inside. An event-related, 9 m-thick, massive calcisiltite bed points to the persistent hypersaturated state conditions (HSS) during the increasing limb of the CIE. The studied interval contains also a significant admixture of minute-sized detrital dolomite grains, appear for the first time several meters below and reach peak abundance immediately below the calcisiltite interval. The dolomite grains show consistent δ13C values (˜0‰) across the CIE. Their record is decoupled from the bulk-rock C-isotope record and thus indicates overwhelmingly pre-sedimentary formation and extrabasinal provenance of the dolomite. The size and provenance of the grains, along with their incorporation into surface water precipitates and formation of specific very thin laminas with internal density gradation of grains (dolomite- quartz couplets), suggest the eolian delivery of the grains to the basin. The dust influx pulses seem to have triggered the calcite precipitation events. Furthermore, the size-frequency distribution of the pyrite framboids across the studied interval shows that the progressing dust influx was followed by persistent euxinia occurring right before and during the increasing limb of the CIE. In the proposed model, globally enhanced eolian delivery of iron during the assumed glaciation promoted high net pyrite formation. The resulting “sulphate to bicarbonate exchange”, a hypothetical dissolution of eolian carbonate dust particles in deep basins, a concurrent bicarbonate supply from the carbonates emerged due to the sea-level fall, and a parallel cessation of the carbonate factory (exposed carbonate platform tops), raised the alkalinity and formed the global carbonate hypersaturated state (HSS) of the ocean. The processes needed largescale invasion of the CO2, consumed in the ocean by bicarbonate formation processes. It is hypothesized that during the subsequent initial transgression, the HSS was discharged by massive carbonate precipitation. The rapid “carbonate reflux” returned the earlier uptaken CO2 to the atmosphere by fast degassing. Its fast transfer resulted in the globally synchronized, kinetic, residual, 13CDIC-enrichment of water pools localized over individual carbonate platforms. During “carbonate reflux”, the local CIE amplitude depended on the carbonate production rate, water column thickness and pool residence time.References
Antoshkina, A. 2014. Ooid-stromatolite association as a precursor of bioevents (Silurian, Timan-northern Ural Region). iPalaeoworldi, in press.
Antoshkina, A., Valyaeva, O., Isaenko, S. & Prots’ko, O. 2012. Upper Ludfordian black shales as indicators of euxinic conditions, Subpolar Urals. iGeochemistry International 50i, 1038-1043.
Armstrong, R.A., Lee, C., Hedges, J.I., Honjo, S. & Wakeham, S.G. 2001. A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals. iDeep Sea Research Part II Topical Studies in Oceanography 49i, 219-236.
Arp, G., Reimer, A. & Reitner, J. 2001. Photosynthesis-induced biofilm calcification and calcium concentrations in Phanerozoic oceans. iScience 292i, 1701-1704.
Barrick, J.E., Kleffner, M.A., Gibson, M.A., Peavey, F.N. & Karlsson, H.R. 2010. The mid-Ludfordian Lau Event and carbon isotope excursion (Ludlow, Silurian) in southern Laurentia - preliminary results. iBollettino della Societa Paleontologica Italiana 49i, 13-33.
Baudrand, M., Aloisi, G., Lécuyer, C., Martineau, F., Fourel, F., Escarguel, G., Blanc-Valleron, M.-M., Rouchy, J.-M. & Grossi, V. 2012. Semi-automatic determination of the carbon and oxygen stable isotope compositions of calcite and dolomite in natural mixtures. iApplied Geochemistry 27i, 257-265.
Berger, W.H. & Keir, R.S. 1984. Glacial-Holocene changes in atmospheric COsub2sub and the deep-sea record, 337-351. iIni Hansen, J.E. & Takahashi, T. (eds) iClimate Processes and Climate Sensitivityi. American Geophysical Union, Washington, DC.
Berner, R.A. 1975. The role of magnesium in the crystal growth of calcite and aragonite from sea water. iGeochimica et Cosmochimica Acta 39i, 489-504.
Berner, R.A. 1982. Burial of organic carbon and pyrite sulfur in the modern ocean its geochemical and environmental significance. iAmerican Journal of Sciences 282i, 451-473.
Bickert, T., Pätzold, J., Samtleben, C. & Munnecke, A. 1997. Paleoenvironmental changes in the Silurian indicated by stable isotopes in brachiopod shells from Gotland, Sweden. iGeochimica et Cosmochimica Acta 61i, 2717-2730.
Bond, D., Wignall, P.B. & Racki, G. 2004. Extent and duration of marine anoxia during the Frasnian-Famennian (Late Devonian) mass extinction in Poland, Germany, Austria and France. iGeological Magazine 141i, 173-193.
Bosak, T. & Newman, D.K. 2005. Microbial kinetic controls on calcite morphology in supersaturated solutions. iJournal of Sedimentary Research 75i, 190-199.
Boss, S.K. & Neumann, A.C. 1993. Physical versus chemical processes of “whiting” formation in the Bahamas. iCarbonates and Evaporites 8i, 135-148.
Boss, S.K. & Wilkinson, B.H. 1991. Planktogeniceustatic control on cratonicoceanic carbonate accumulation. iThe Journal of Geologyi, 497-513.
Bradley, W. 1963. Unmineralized Fossil Bacteria. iScience 141i, 919-921.
Braissant, O., Cailleau, G., Dupraz, C. & Verrecchia, E.P. 2003. Bacterially induced mineralization of calcium carbonate in terrestrial environments the role of exopolysaccharides and amino acids. iJournal of Sedimentary Research 73i, 485-490.
Brehm, U., Palinska, K.A. & Krumbein, W.E. 2004. Laboratory cultures of calcifying biomicrospheres generate ooids - A contribution to the origin of oolites. iCarnets de GéologieNotebooks on Geology, Maintenon, Letter 3i.
Brett, C.E., Ferretti, A., Histon, K. & Schönlaub, H.P. 2009. Silurian sequence stratigraphy of the Carnic Alps, Austria. iPalaeogeography, Palaeoclimatology, Palaeoecology 279i, 1-28.
Broecker, W., Sanyal, A. & Takahashi, T. 2000. The origin of Bahamian whitings revisited. iGeophysical Research Letters 27i, 3759-3760.
Broecker, W.S. & Takahashi, T. 1966. Calcium carbonate precipitation on the Bahama Banks. iJournal of Geophysical Research 71i, 1575-1602.
Brooke, B. 2001. The distribution of carbonate eolianite. iEarth-Science Reviews 55i, 135-164.
Brunskill, G. 1969. Fayetteville Green Lake, New York Precipitation and sedimentation of calcite in a meromictic lake with laminated sediments. iLimnology and Oceanography 14i, 830-847.
Brunton, F.R., Smith, L., Dixon, O.A., Copper, P., Nestor, H. & Kershaw, S. 1998. Silurian reef episodes, changing seascapes, and paleobiogeography. iNew York State Museum Bulletin 491i, 265-282.
Calner, M. 2005a. A Late Silurian extinction event and anachronistic period. iGeology 33i, 305-308.
Calner, M. 2005b. A Late Silurian extinction event and anachronistic period Comment and reply. iGeology 33i, e92-e92.
Calner, M. 2005c. Silurian carbonate platforms and extinction events - ecosystem changes exemplified from Gotland, Sweden. iFacies 51i, 584-591.
Calner, M. 2008. Silurian global events - at the tipping point of climate change, 21-58. iIn iElewa, A.M.T. (ed.) iMass extinctioni. Springer-Verlag, Heidelberg.
Carroll, A.R., Stephens, N.P., Hendrix, M.S. & Glenn, C.R. 1998. Eolian-derived siltstone in the Upper Permian Phosphoria Formation implications for marine upwelling. iGeology 26i, 1023-1026.
Chekroun, K.B., Rodríguez-Navarro, C., González-Munoz, M.T., Arias, J.M., Cultrone, G. & Rodríguez-Gallego, M. 2004. Precipitation and growth morphology of calcium carbonate induced by iMyxococcus xanthusi implications for recognition of bacterial carbonates. iJournal of Sedimentary Research 74i, 868-876.
Cherns, L. 1982. Palaeokarst, tidal erosion surfaces and stromatolites in the Silurian Eke Formation of Gotland, Sweden. iSedimentology 29i, 819-833.
Cherns, L. & Wheeley, J.R. 2009. Early Palaeozoic cooling events peri-Gondwana and beyond. iGeological Society of London, Special Publications 325i, 257-278.
Clemens, S.C. 1998. Dust response to seasonal atmospheric forcing Proxy evaluation and calibration. iPaleoceanography 13i, 471-490.
Cloud, P. 1962. iEnvironment of calcium carbonate deposition west of Andros Island, Bahamasi. US Government Printing Office.
Cramer, B.D., Loydell, D.K., Samtleben, C., Munnecke, A., Kaljo, D., Männik, P., Martma, T., Jeppsson, L., Kleffner, M.A. & Barrick, J.E. 2010. Testing the limits of Paleozoic chronostratigraphic correlation via high-resolution ( 500 ky) integrated conodont, graptolite, and carbon isotope (δsup13supCsubcarbsub) biochemostratigraphy across the Llandovery-Wenlock (Silurian) boundary Is a unified Phanerozoic time scale achievable iGeological Society of America Bulletin 122i, 1700-1716.
Cramer, B.D. & Munnecke, A. 2008. Early Silurian positive δsup13supC excursions and their relationship to glaciations, sea-level changes and extinction events discussion. iGeological Journal 43i, 517.
Curry, B.B., Anderson, T.F. & Lohmann, K.C. 1997. Unusual carbon and oxygen isotopic ratios of ostracodal calcite from last interglacial (Sangamon episode) lacustrine sediment in Raymond Basin, Illinois, USA. iJournal of Paleolimnology 17i, 421-435.
Davies, G.R., Moslow, T.F. & Sherwin, M.D. 1997. The lower Triassic Montney formation, west-central Alberta. iBulletin of Canadian Petroleum Geology 45i, 474-505.
Dickson, J.A.D. 1965. A modified staining technique for carbonates in thin section. iNature 205i, 587.
Dittrich, M., Kurz, P. & Wehrli, B. 2004. The role of autotrophic picocyanobacteria in calcite precipitation in an oligotrophic lake. iGeomicrobiology Journal 21i, 45-53.
Dittrich, M. & Obst, M. 2004. Are picoplankton responsible for calcite precipitation in lakes? AMBIO: A Journal of the Human Environment 33, 559-564.
Donar, C., Condon, K., Gantar, M. & Gaiser, E. 2004. A new technique for examining the physical structure of Everglades floating periphyton mat. iNova Hedwigia 78i, 107-119.
Dromgoole, E.L. & Walter, L.M. 1990. Iron and manganese incorporation into calcite Effects of growth kinetics, temperature and solution chemistry. iChemical Geology 81i, 311-336.
Duce, R.A. & Tindale, N.W. 1991. Atmospheric transport of iron and its deposition in the ocean. iLimnology and Oceanography 36i, 1715-1726.
Eriksson, M.J. & Calner, M. 2008. A sequence stratigraphical model for the Late Ludfordian (Silurian) of Gotland, Sweden implications for timing between changes in sea level, palaeoecology, and the global carbon cycle. iFacies 54i, 253-276.
Falkowski, P.G. 1997. Evolution of the nitrogen cycle and its influence on the biological sequestration of COsub2sub in the ocean. iNature 387i, 272-275.
Fischer, A.G. & Sarnthein, M. 1988. Airborne silts and dune-derived sands in the Permian of the Delaware Basin. iJournal of Sedimentary Researchi i58i, 637-643.
Fischer, G., Karakas, G., Blaas, M., Ratmeyer, V., Nowald, N., Schlitzer, R., Helmke, P., Davenport, R., Donner, B. & Neuer, S. 2009. Mineral ballast and particle settling rates in the coastal upwelling system off NW Africa and the South Atlantic. iInternational Journal of Earth Sciences 98i, 281-298.
Flügel, E. 2004. iMicrofacies of Carbonate Rocks, Analysis, Interpretation and Application.i 976 pp. Springer Verlag, Berlin.
Fornós, J.J., Gines, J. & Gracia, F. 2009. Present-day sedimentary facies in the coastal karst caves of Mallorca Island (Western Mediterranean). iJournal of Cave and Karst Studies 71i, 86-99.
Frýda, J. & Manda, Š. 2013. A long-lasting steady period of isotopically heavy carbon in the late Silurian ocean evolution of the δsup13supC record and its significance for an integrated δsup13supC, graptolite and conodont stratigraphy. iBulletin of Geosciences 88i, 463-482.
Gabbott, S.E., Zalasiewicz, J., Aldridge, R.J. & Theron, J.N. 2010. Eolian input into the Late Ordovician postglacial Soom Shale, South Africa. iGeology 38i, 1103-1106.
Ghienne, J.-F., Desrochers, A., Vandenbroucke, T.R., Achab, A., Asselin, E., Dabard, M.-P., Farley, C., Loi, A., Paris, F. & Wickson, S. 2014. A Cenozoic-style scenario for the end-Ordovician glaciation. iNature Communications 5(4485)i.
Gill, B.C., Lyons, T.W., Young, S.A., Kump, L.R., Knoll, A.H. & Saltzman, M.R. 2011. Geochemical evidence for widespread euxinia in the Later Cambrian ocean. iNature 469i, 80-83.
Gischler, E., Swart, P.K. & Lomando, A.J. 2007. Stable isotopes of carbon and oxygen in modern sediments of carbonate platforms, barrier reefs, atolls, and ramps patterns and implications. iInternational Association of Sedimentologists Special Publication 41i, 61-74.
Gocke, M., Lehnert, O. & Frýda, J. 2013. Facies development and palynomorphs during the Lau Event (Late Silurian) in a non-tropical carbonate environment shallow and deep water examples from the Barrandian Area (Czech Republic). iFacies 59i, 611-630.
Harzhauser, M., Piller, W.E. & Latal, C. 2007. Geodynamic impact on the stable isotope signatures in a shallow epicontinental sea. iTerra Nova 19i, 324-330.
Hassan, K.M. 2014. Isotope geochemistry of Swan Lake Basin in the Nebraska Sandhills, USA Large sup13supC enrichment in sediment-calcite records. iChemie der Erde - Geochemistry 74i, 681-690.
Henjes, J. & Assmy, P. 2008. Particle availability controls agglutination in pelagic tintinnids in the Southern Ocean. iProtist 159i, 239-250.
Hodell, D.A., Schelske, C.L., Fahnenstiel, G.L. & Robbins, L.L. 1998. Biologically induced calcite and its isotopic composition in Lake Ontario. iLimnology and Oceanography 43i, 187-199.
Holmden, C., Creaser, R., Muehlenbachs, K., Leslie, S. & Bergström, S. 1998. Isotopic evidence for geochemical decoupling between ancient epeiric seas and bordering oceans Implications for secular curves. iGeology 26i, 567-570.
Holmden, C., Panchuk, K. & Finney, S. 2012. Tightly coupled records of Ca and C isotope changes during the Hirnantian glaciation event in an epeiric sea setting. iGeochimica et Cosmochimica Acta 98i, 94-106.
Hu, X. & Cai, W.J. 2011. An assessment of ocean margin anaerobic processes on oceanic alkalinity budget. iGlobal Biogeochemical Cycles 25i.
Jaeger, H. 1975. Die Graptolithenführung im SilurDevon des Cellon-Profils (Karnische Alpen). Ein Beitrag zur Gleichsetzung der Conodonten-und Graptolithenzonen des Silurs. iCarinthia II, 85i, 111-126.
Jeppsson, L. 1990. An oceanic model for lithological and faunal changes tested on the Silurian record. iJournal of the Geological Society 147i, 663-674.
Jeppsson, L. & Aldridge, R.J. 2000. Ludlow (late Silurian) oceanic episodes and events. iJournal of the Geological Society 157i, 1137-1148.
Jeppsson, L., Talent, J.A., Mawson, R., Andrew, A., Corradini, C., Simpson, A.J., Wigforss-Lange, J. & Schönlaub, H.P. 2012. Late Ludfordian correlation and the Lau Event, 653-675. iIni Talent, J.A. (ed.) iEarth and Life, International Year of Planet Earthi. Springer Verlag, Heidelberg.
Jeppsson, L., Talent, J.A., Mawson, R., Simpson, A.J., Andrew, A.S., Calner, M., Whitford, D.J., Trotter, J.A., Sandström, O. & Caldon, H.-J. 2007. High-resolution Late Silurian correlations between Gotland, Sweden, and the Broken River region, NE Australia lithologies, conodonts and isotopes. iPalaeogeography, Palaeoclimatology, Palaeoecology 245i, 115-137.
Jones, B. 1989. Calcite rafts, peloids, and micrite in cave deposits from Cayman Brae, British West Indies. iCanadian Journal of Earth Sciences 26i, 654-664.
Kaljo, D., Martma, T., Männik, P. & Viira, V. 2003. Implications of Gondwana glaciations in the Baltic late Ordovician and Silurian and a carbon isotopic test of environmental cyclicity. iBulletin de la Société géologique de France 174i, 59-66.
Kaźmierczak, J., Kremer, B. & Racki, G. 2012. Late Devonian marine anoxia challenged by benthic cyanobacterial mats. iGeobiology 10i, 371-383.
Kearsey, T., Twitchett, R.J. & Newell, A.J. 2012. The origin and significance of pedogenic dolomite from the Upper Permian of the South Urals of Russia. iGeological Magazine 149i, 291-307.
Kempe, S. 1990. Alkalinity the link between anaerobic basins and shallow water carbonates iNaturwissenschaften 77i, 426-427.
Kempe, S. & Kaźmierczak, J. 1990. Calcium carbonate supersaturation and the formation of in situ calcified stromatolites, 255-278. iIni Ittekot, V., Kempe, S., Michaelis, W. & Spitzy, A. (eds) iFacets of Modern Biogeochemistryi. Springer-Verlag, Berlin.
Kempe, S. & Kaźmierczak, J. 1993. Satonda Crater Lake, Indonesia Hydrogeochemistry and biocarbonates. iFacies 28i, 1-31.
Kempe, S. & Kaźmierczak, J. 1994. The role of alkalinity in the evolution of ocean chemistry, organization of living systems, and biocalcification processes. iBulletin de l’Institut océanographiquei, 61-117.
Khalaf, F., Al-Saleh, S., Al-Houty, F., Ansari, L. & Shublaq, W. 1979. Mineralogy and grain size distribution of dust fallout in Kuwait. iAtmospheric Environment (1967) 13i, 1719-1723.
Khan, A.A. 1997. Quartz and dolomite content variations and climate changes in late Pleistocene sediments of the North Arabian Sea. iGeological Bulletin, University of Peshawar 30i, 1-11.
Klaas, C. & Archer, D.E. 2002. Association of sinking organic matter with various types of mineral ballast in the deep sea: Implications for the rain ratio. Global Biogeochemical Cycles 16, 63-1-63-14.
Kleypas, J. 1997. Modeled estimates of global reef habitat and carbonate production since the last glacial maximum. iPaleoceanography 12i, 533-545.
Kozłowski, W. 2003. Age, sedimentary environment and palaeogeographical position of the Late Silurian oolitic beds in the Holy Cross Mountains (Central Poland). iActa Geologica Polonica 53i, 341-357.
Kozłowski, W. 2008. Lithostratigraphy and Regional Significance of the Nowa Słupia Group (Upper Silurian) of the Łysogóry Region (Holy Cross Mountains, Central Poland). iActa Geologica Polonica 58i, 43-74.
Kozłowski, W., Domańska-Siuda, J. & Nawrocki, J. 2014. Geochemistry and petrology of the upper Silurian greywackes from the Holy Cross Mountains (Central Poland) implications for the Caledonian history of the southern part of the Trans-European Suture Zone (TESZ). iGeological Quarterly 58i, 311-336.
Kozłowski, W. & Munnecke, A. 2010. Stable carbon isotope development and sea-level changes during the Late Ludlow (Silurian) of the Łysogóry region (Rzepin section, Holy Cross Mountains, Poland). iFacies 56i, 615-633.
Kozłowski, W. & Sobień, K. 2012. Mid-Ludfordian coeval carbon isotope, natural gamma ray and magnetic susceptibility excursions in the Mielnik IG-1 borehole (Eastern Poland) - dustiness as a possible link between global climate and the Silurian carbon isotope record. iPalaeogeography, Palaeoclimatology, Palaeoecology 339i, 74-97.
Kremer, B. & Kaźmierczak, J. 2005. Cyanobacterial mats from Silurian black radiolarian cherts phototrophic life at the edge of darkness iJournal of Sedimentary Research 75i, 897-906.
Kříž, J. 1991. The Silurian of the Prague Basin (Bohemia) - tectonic, eustatic and volcanic controls on facies and faunal development, 179-203. iIni Bassett, M.G., Lane, P.D. & Edwards, D. (eds) iThe Murchison Symposium Proceedings of an International Conference on The Silurian System. Special Papers in Palaeontology 44i.
Kump, L., Arthur, M., Patzkowsky, M., Gibbs, M., Pinkus, D. & Sheehan, P. 1999. A weathering hypothesis for glaciation at high atmospheric ipiCOsub2sub during the Late Ordovician. iPalaeogeography, Palaeoclimatology, Palaeoecology 152i, 173-187.
LaPorte, D., Holmden, C., Patterson, W., Loxton, J., Melchin, M., Mitchell, C., Finney, S. & Sheets, H. 2009. Local and global perspectives on carbon and nitrogen cycling during the Hirnantian glaciation. iPalaeogeography, Palaeoclimatology, Palaeoecology 276i, 182-195.
Lehnert, O., Eriksson, M., Calner, M., Joachimski, M. & Buggisch, W. 2007a. Concurrent sedimentary and isotopic indications for global climatic cooling in the Late Silurian. iActa Palaeontologica Sinica 46i, 249.
Lehnert, O., Frýda, J., Buggisch, W., Munnecke, A., Nützel, A., Kříž, J. & Manda, S. 2007b. δsup13supC records across the late Silurian Lau event New data from middle palaeo-latitudes of northern peri-Gondwana (Prague Basin, Czech Republic). iPalaeogeography, Palaeoclimatology, Palaeoecology 245i, 227-244.
Li, W., Liu, L.-P., Zhou, P.-P., Cao, L., Yu, L.-J. & Jiang, S.-Y. 2011. Calcite precipitation induced by bacteria and bacterially produced carbonic anhydrase. iCurrent Science (Bangalore) 100i, 502-508.
Lipps, J. H., Stoeck, T., & Dunthorn, M. 2013. Fossil tintinnids, 186-197. iIni Dolan, J.R., Montagnes, D.J.S., Agatha, S., Coats, D.W. & Stoecker, D.K. (eds) iBiology and ecology of tintinnid ciliates models for marine planktoni. Wiley-Blackwell, West Sussex.
Loope, D.B. & Haverland, Z.E. 1988. Giant desiccation fissures filled with calcareous eolian sand, Hermosa Formation (Pennsylvanian), southeastern Utah. iSedimentary Geology 56i, 403-413.
Loydell, D.K. 2007. Early Silurian positive δsup13supC excursions and their relationship to glaciations, sea-level changes and extinction events. iGeological Journal 42i, 531-546.
Lydal, J.R. 1985. Atokan (Pennsylvanian) Berlin Field genesis of recycled detrital dolomite reservoir, deep Anadarko Basin, Oklahoma. iAmerican Association of Petroleum Geologists Bulletin 69i, 1931-1949.
Lynch-Stieglitz, J., Stocker, T.F., Broecker, W.S. & Fairbanks, R.G. 1995. The influence of air-sea exchange on the isotopic composition of oceanic carbon Observations and modeling. iGlobal Biogeochemical Cycles 9i, 653-665.
Maher, B., Prospero, J., Mackie, D., Gaiero, D., Hesse, P. & Balkanski, Y. 2010. Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum. iEarth-Science Reviews 99i, 61-97.
Martin, J.H. & Fitzwater, S. 1988. Iron de?ciency limits phytoplankton growth in the north-east Paci?c subarctic. iNature 331i, 947-975.
Martire, L., Bertok, C., D’atri, A., Perotti, E. & Piana, F. 2014. Selective dolomitization by syntaxial overgrowth around detrital dolomite nuclei a case from the Jurassic of the Ligurian Briançonnais (Ligurian Alps). iJournal of Sedimentary Research 84i, 40-50.
Martma, T., Brazauskas, A., Kaljo, D., Kaminskas, D. & Musteikis, P. 2010. The Wenlock-Ludlow carbon isotope trend in the Vidukle core, Lithuania, and its relations with oceanic events. iGeological Quarterly 49i, 223-234.
McFadden, L.D., McDonald, E.V., Wells, S.G., Anderson, K., Quade, J. & Forman, S.L. 1998. The vesicular layer and carbonate collars of desert soils and pavements formation, age and relation to climate change. iGeomorphology 24i, 101-145.
McLaughlin, P.I., Emsbo, P. & Brett, C.E. 2012. Beyond black shales the sedimentary and stable isotope records of oceanic anoxic events in a dominantly oxic basin (Silurian; Appalachian Basin, USA). iPalaeogeography, Palaeoclimatology, Palaeoecology 367i, 153-177.
Melchin, M.J. & Holmden, C. 2006. Carbon isotope chemostratigraphy in Arctic Canada sea-level forcing of carbonate platform weathering and implications for Hirnantian global correlation. iPalaeogeography, Palaeoclimatology, Palaeoecology 234i, 186-200.
Meyer, H. 1984. The influence of impurities on the growth rate of calcite. iJournal of Crystal Growth 66i, 639-646.
Milliman, J.D., Freile, D., Steinen, R.P. & Wilber, R.J. 1993. Great Bahama Bank aragonitic muds mostly inorganically precipitated, mostly exported. iJournal of Sedimentary Research 63i.
Modzalevskaja, T. & Wenzel, B. 1999. Biostratigraphy and geochemistry of Upper Silurian brachiopods from the Timan-Pechora region (Russia). iActa Geologica Polonica 49i, 145-157. Morse, J.W., Gledhill, D.K. & Millero, F.J. 2003. CaCOsub3sub precipitation kinetics in waters from the great Bahama bank Implications for the relationship between bank hydrochemistry and whitings. iGeochimica et Cosmochimica Acta 67i, 2819-2826.
Morse, J.W. & He, S. 1993. Influences of iTi, iSi and iPisubCO2sub on the pseudo-homogeneous precipitation of CaCOsub3sub from seawater implications for whiting formation. iMarine Chemistry 41i, 291-297.
Morse, J.W., Millero, F.J., Thurmond, V., Brown, E. & Ostlund, H. 1984. The carbonate chemistry of Grand Bahama Bank waters after 18 years another look. iJournal of Geophysical Research 89i, 3604-3614.
Munnecke, A., Calner, M., Harper, D.A. & Servais, T. 2010. Ordovician and Silurian sea-water chemistry, sea level, and climate A synopsis. iPalaeogeography, Palaeoclimatology, Palaeoecology 296i, 389-413.
Munnecke, A., Samtleben, C. & Bickert, T. 2003. The Ireviken Event in the lower Silurian of Gotland, Sweden - relation to similar Palaeozoic and Proterozoic events. iPalaeogeography, Palaeoclimatology, Palaeoecology 195i, 99-124.
Murray, J. & Taylor, F. 1965. Early calpionellids from the Upper Devonian of western Canada, with a note on pyrite inclusions. iBulletin of Canadian Petroleum Geology 13i, 327-334.
Naiman, Z., Quade, J. & Patchett, P.J. 2000. Isotopic evidence for eolian recycling of pedogenic carbonate and variations in carbonate dust sources throughout the southwest United States. iGeochimica et Cosmochimica Acta 64i, 3099-3109.
Nakai, N., Wada, H., Kiyosu, Y. & Takimoto, M. 1975. Stable isotope studies on the origin and geological history of water and salts in the Lake Vanda area, Antarctica. iGeochemical Journal 9i, 7-24.
Oba, T. & Pedersen, T.F. 1999. Paleoclimatic significance of eolian carbonates supplied to the Japan Sea during the last glacial maximum. iPaleoceanography 14i, 34-41.
Ohlendorf, C. & Sturm, M. 2001. Precipitation and dissolution of calcite in a Swiss high alpine lake. iArctic, Antarctic, and Alpine Research 33i, 410-417.
Onac, B.P. 1997. Crystallography of speleothems, 230-235. iIn iHill, C. & Forti Cave, P. (eds) iMinerals of the World. 2supndsup editioni. National Speleological Society, Alabama, USA.
Opdyke, B.N. & Walker, J.C. 1992. Return of the coral reef hypothesis Basin to shelf partitioning of CaCOsub3sub and its effect on atmospheric COsub2sub. iGeology 20i, 733-736.
Peryt, T.M. & Peryt, D. 2012. Geochemical and foraminiferal records of environmental changes during the Zechstein Limestone (Lopingian) deposition in Northern Poland. iGeological Quarterly 56i, 187-198.
Porębski, S.J., Prugar, W. & Zacharski, J. 2013. Silurian shales of the East European Platform in Poland - some exploration problems. iPrzegląd Geologiczny 61i, 630-638.
Pytkowicz, R.M. 1965. Rates of inorganic calcium carbonate nucleation. iThe Journal of Geology 73i, 196-199.
Quade, J., Rech, J.A., Latorre, C., Betancourt, J.L., Gleeson, E. & Kalin, M.T. 2007. Soils at the hyperarid margin The isotopic composition of soil carbonate from the Atacama Desert, Northern Chile. iGeochimica et Cosmochimica Acta 71i, 3772-3795.
Raiswell, R. & Berner, R.A. 1985. Pyrite formation in euxinic and semi-euxinic sediments. iAmerican Journal of Science 285i, 710-724.
Rao, D.S., Al-Yamani, F. & Rao, C.N. 1999. Eolian dust affects phytoplankton in the waters off Kuwait, the Arabian Gulf. iNaturwissenschaften 86i, 525-529.
Ridgwell, A.J., Kennedy, M.J. & Caldeira, K. 2003. Carbonate deposition, climate stability, and Neoproterozoic ice ages. iScience 302(5646)i, 859-862.
Ridgwell, A. & Zeebe, R.E. 2005. The role of the global carbonate cycle in the regulation and evolution of the Earth system. iEarth and Planetary Science Letters 234i, 299-315.
Riding, R. 2005. A Late Silurian extinction event and anachronistic period Comment and reply. iGeology 33i, e91.
Riding, R. 2006. Cyanobacterial calcification, carbon dioxide concentrating mechanisms, and Proterozoic-Cambrian changes in atmospheric composition. iGeobiology 4i, 299-316.
Riding, R. & Liang, L. 2005a. Geobiology of microbial carbonates metazoan and seawater saturation state influences on secular trends during the Phanerozoic. iPalaeogeography, Palaeoclimatology, Palaeoecology 219i, 101-115.
Riding, R. & Liang, L. 2005b. Seawater chemistry control of marine limestone accumulation over the past 550 million years. iRevista Espanola de Micropaleontología 37i, 1-11.
Robbins, L. & Blackwelder, P. 1992. Biochemical and ultrastructural evidence for the origin of whitings a biologically induced calcium carbonate precipitation mechanism. iGeology 20i, 464-468.
Robbins, L., Tao, Y. & Evans, C. 1997. Temporal and spatial distribution of whitings on Great Bahama Bank and a new lime mud budget. iGeology 25i, 947-950.
Rosenbaum, J. & Sheppard, S. 1986. An isotopic study of siderites, dolomites and ankerites at high temperatures. iGeochimica et Cosmochimica Acta 50i, 1147-1150.
Samtleben, C., Munnecke, A. & Bickert, T. 2000. Development of facies and CO-isotopes in transects through the Ludlow of Gotland evidence for global and local influences on a shallow-marine environment. iFacies 43i, 1-38.
Samtleben, C., Munnecke, A., Bickert, T. & Pätzold, J. 1996. The Silurian of Gotland (Sweden) facies interpretation based on stable isotopes in brachiopod shells. iGeologische Rundschau 85i, 278-292.
Sandberg, P.A. 1983. An oscillating trend in Phanerozoic nonskeletal carbonate mineralogy. iNature 305i, 19-22.
Schönlaub, H.P. 1986. Significant geological events in the Paleozoic record of the Southern Alps (Austrian part), 161-167. iIni Walliser, O.H. (ed.) iGlobal bio-eventsi. Springer-Verlag, Berlin & Heidelberg.
Shinn, E.A., Steinen, R.P., Lidz, B.H. & Swart, P.K. 1989. Whitings, a sedimentologic dilemma. iJournal of Sedimentary Research 59i, 147-161.
Soreghan, G.S. 1992. Preservation and paleoclimatic significance of eolian dust in the Ancestral Rocky Mountains province. iGeology 20i, 1111-1114.
Soreghan, G.Sě. & Soreghan, M.J. 2002. Atmospheric dust and algal dominance in the late Paleozoic a hypothesis. iJournal of Sedimentary Research 72i, 457-461.
Stabel, H.H. 1986. Calcite precipitation in Lake Constance Chemical equilibrium, sedimentation, and nucleation by algae1. iLimnology and Oceanography 31i, 1081-1094.
Stel, J.H. & de Coo, J.C. 1977. The Silurian Upper Burgsvik and Lower Hamra-Sundre Beds, Gotland. iScripta Geologica 44i, 1-43.
Stricanne, L., Munnecke, A. & Pross, J. 2006. Assessing mechanisms of environmental change Palynological signals across the Late Ludlow (Silurian) positive isotope excursion (δsup13supC, δsup18supO) on Gotland, Sweden. iPalaeogeography, Palaeoclimatology, Palaeoecology 230i, 1-31.
Strong, A.E. & Eadie, B.J. 1978. Satellite observations of calcium carbonate precipitations in the Great Lakes. iLimnology and Oceanography 23i, 877-887.
Stuut, J.-B.W. 2014. Subaquatic Dust Deposits, 443-462. iIn iKnippertz, P. & Stuut, J.-B.W. (eds) iMineral Dusti. Springer, Netherlands.
Sumner, D.Y. & Grotzinger, J.P. 1996. Were kinetics of Archean calcium carbonate precipitation related to oxygen concentration iGeology 24i, 119-122.
Swart, P., Oehlert, A., Mackenzie, G., Eberli, G. & Reijmer, J. 2014. The fertilization of the Bahamas by Saharan dust A trigger for carbonate precipitation iGeology 42i, 671-674.
Swart, P.K. 2008. Global synchronous changes in the carbon isotopic composition of carbonate sediments unrelated to changes in the global carbon cycle. iProceedings of the National Academy of Sciences 105i, 13741-13745.
Talent, J.A., Mawson, R., Andrew, A.S., Hamilton, P.J. & Whitford, D.J. 1993. Middle Palaeozoic extinction events faunal and isotopic data. iPalaeogeography, Palaeoclimatology, Palaeoecology 104i, 139-152.
Taylor, M., Drysdale, R. & Carthew, K. 2004. The formation and environmental significance of calcite rafts in tropical tufa - depositing rivers of northern Australia. iSedimentology 51i, 1089-1101.
Thompson, J.B. 2000. Microbial whitings, 250-260. iIni Riding, R.E. & Awramik, S.M. (eds) iMicrobial Sedimentsi. Springer-Verlag, Berlin & Heidelberg.
Thompson, J.B. & Ferris, F. 1990. Cyanobacterial precipitation of gypsum, calcite, and magnesite from natural alkaline lake water. iGeology 18i, 995-998.
Thompson, J.B., Schultze-Lam, S., Beveridge, T.J. & Des Marais, D.J. 1997. Whiting events biogenic origin due to the photosynthetic activity of cyanobacterial picoplankton. iLimnology and Oceanography 42i, 133-141.
Urbanek, A. 1970. Neocucullograptinae n. subfam.(Graptolithina) - their evolutionary and stratigraphic bearing. iActa Palaeontologica Polonica 15i, 163-388.
Urbanek, A. 1993. Biotic crises in the history of Upper Silurian graptoloids a palaeobiological model. iHistorical Biology 7i, 29-50.
Urbanek, A. 1997. Late Ludfordian and early Pridoli monograptids from the Polish Lowland. iActa Palaeontologica Polonica 56i, 87-231.
Valero-Garcés, B.L., Delgado-Huertas, A., Ratto, N. & Navas, A. 1999. Large sup13supC enrichment in primary carbonates from Andean Altiplano lakes, northwest Argentina. iEarth and Planetary Science Letters 171i, 253-266.
Wainright, S.C. 1987. Stimulation of heterotrophic microplankton production by resuspended marine sediments. iScience 238i, 1710-1712.
Warren, J. 2000. Dolomite occurrence, evolution and economically important associations. iEarth-Science Reviews 52i, 1-81.
Wells, A. & Illing, L. 1964. Present day precipitation of calcium carbonate in the Persian Gulf, 429-435. iIni Van Straaten, L.M.J.U. (ed.) iDevelopments in Sedimentology 1, Deltaic and Shallow Marine Depositsi. Elsevier, Amsterdam.
Wigforss-Lange, J. 1999. Carbon isotope sup13supC enrichment in Upper Silurian (Whitcliffian) marine calcareous rocks in Scania, Sweden. iGFF 121i, 273-279.
Wigforss-Lange, J. 2007. Tidal facies in the Upper Silurian Öved-Ramsasa Group of Scania, Sweden Linkages of radial and cerebroid ooids and evaporite tracers to subtidal, lagoonal environment. iGFF 129i, 7-16.
Wignall, P. & Newton, R. 1998. Pyrite framboid diameter as a measure of oxygen deficiency in ancient mudrocks. iAmerican Journal of Science 298i, 537-552.
Wilkin, R.T., Barnes, H.L. & Brantley, S.L. 1996. The size distribution of framboidal pyrite in modern sediments An indicator of redox conditions. iGeochimica et Cosmochimica Acta 60i, 3897-3912.
Yan, D., Chen, D., Wang, Q., Wang, J. & Wang, Z. 2009. Carbon and sulfur isotopic anomalies across the Ordovician-Silurian boundary on the Yangtze Platform, South China. iPalaeogeography, Palaeoclimatology, Palaeoecology 274i, 32-39.