Eolian dust influx and massive whitings during the kozlowski/Lau Event: carbonate hypersaturation as a possible driver of the mid-Ludfordian Carbon Isotope Excursion

 

Authors: Kozłowski W

Published in: Bulletin of Geosciences, volume 90, issue 4; pages: 807 - 840; Received 15 July 2015; Accepted in revised form 16 September 2015; Online 3 November 2015

Keywords: eolian dust, saturation state, carbon isotope excursion (CIE), carbon cycle, euxinia, whitings, picocyanobacteria, Lau Event, Silurian,

full text (PDF, 11.82 MB)

Export to RIS

 

Abstract

The mid-Ludfordian Carbon Isotope Excursion (CIE) is one of the biggest perturbation in the isotope and facies record in the Palaeozoic. However, its causes still remain unknown. In the periplatform setting of the Baltica palaeocontinent the event interval contains rock-forming minute calcite crystals, interpreted here as suspension-originated analogues of recent whitings and calcite rafts. The grains were preferentially formed around picocyanobacterial filaments, which are preserved as tubes inside. An event-related, 9 m-thick, massive calcisiltite bed points to the persistent hypersaturated state conditions (HSS) during the increasing limb of the CIE. The studied interval contains also a significant admixture of minute-sized detrital dolomite grains, appear for the first time several meters below and reach peak abundance immediately below the calcisiltite interval. The dolomite grains show consistent δ13C values (˜0‰) across the CIE. Their record is decoupled from the bulk-rock C-isotope record and thus indicates overwhelmingly pre-sedimentary formation and extrabasinal provenance of the dolomite. The size and provenance of the grains, along with their incorporation into surface water precipitates and formation of specific very thin laminas with internal density gradation of grains (dolomite- quartz couplets), suggest the eolian delivery of the grains to the basin. The dust influx pulses seem to have triggered the calcite precipitation events. Furthermore, the size-frequency distribution of the pyrite framboids across the studied interval shows that the progressing dust influx was followed by persistent euxinia occurring right before and during the increasing limb of the CIE. In the proposed model, globally enhanced eolian delivery of iron during the assumed glaciation promoted high net pyrite formation. The resulting “sulphate to bicarbonate exchange”, a hypothetical dissolution of eolian carbonate dust particles in deep basins, a concurrent bicarbonate supply from the carbonates emerged due to the sea-level fall, and a parallel cessation of the carbonate factory (exposed carbonate platform tops), raised the alkalinity and formed the global carbonate hypersaturated state (HSS) of the ocean. The processes needed largescale invasion of the CO2, consumed in the ocean by bicarbonate formation processes. It is hypothesized that during the subsequent initial transgression, the HSS was discharged by massive carbonate precipitation. The rapid “carbonate reflux” returned the earlier uptaken CO2 to the atmosphere by fast degassing. Its fast transfer resulted in the globally synchronized, kinetic, residual, 13CDIC-enrichment of water pools localized over individual carbonate platforms. During “carbonate reflux”, the local CIE amplitude depended on the carbonate production rate, water column thickness and pool residence time.

References

Antoshkina, A. 2014. Ooid-stromatolite association as a precursor of bioevents (Silurian, Timan-northern Ural Region). iPalaeoworldi, in press.View article

Antoshkina, A., Valyaeva, O., Isaenko, S. & Prots’ko, O. 2012. Upper Ludfordian black shales as indicators of euxinic conditions, Subpolar Urals. iGeochemistry International 50i, 1038-1043.View article

Armstrong, R.A., Lee, C., Hedges, J.I., Honjo, S. & Wakeham, S.G. 2001. A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals. iDeep Sea Research Part II Topical Studies in Oceanography 49i, 219-236.View article

Arp, G., Reimer, A. & Reitner, J. 2001. Photosynthesis-induced biofilm calcification and calcium concentrations in Phanerozoic oceans. iScience 292i, 1701-1704.View article

Barrick, J.E., Kleffner, M.A., Gibson, M.A., Peavey, F.N. & Karlsson, H.R. 2010. The mid-Ludfordian Lau Event and carbon isotope excursion (Ludlow, Silurian) in southern Laurentia - preliminary results. iBollettino della Societa Paleontologica Italiana 49i, 13-33.

Baudrand, M., Aloisi, G., Lécuyer, C., Martineau, F., Fourel, F., Escarguel, G., Blanc-Valleron, M.-M., Rouchy, J.-M. & Grossi, V. 2012. Semi-automatic determination of the carbon and oxygen stable isotope compositions of calcite and dolomite in natural mixtures. iApplied Geochemistry 27i, 257-265.View article

Berger, W.H. & Keir, R.S. 1984. Glacial-Holocene changes in atmospheric COsub2sub and the deep-sea record, 337-351. iIni Hansen, J.E. & Takahashi, T. (eds) iClimate Processes and Climate Sensitivityi. American Geophysical Union, Washington, DC.View article

Berner, R.A. 1975. The role of magnesium in the crystal growth of calcite and aragonite from sea water. iGeochimica et Cosmochimica Acta 39i, 489-504.View article

Berner, R.A. 1982. Burial of organic carbon and pyrite sulfur in the modern ocean its geochemical and environmental significance. iAmerican Journal of Sciences 282i, 451-473.View article

Bickert, T., Pätzold, J., Samtleben, C. & Munnecke, A. 1997. Paleoenvironmental changes in the Silurian indicated by stable isotopes in brachiopod shells from Gotland, Sweden. iGeochimica et Cosmochimica Acta 61i, 2717-2730.View article

Bond, D., Wignall, P.B. & Racki, G. 2004. Extent and duration of marine anoxia during the Frasnian-Famennian (Late Devonian) mass extinction in Poland, Germany, Austria and France. iGeological Magazine 141i, 173-193.View article

Bosak, T. & Newman, D.K. 2005. Microbial kinetic controls on calcite morphology in supersaturated solutions. iJournal of Sedimentary Research 75i, 190-199.View article

Boss, S.K. & Neumann, A.C. 1993. Physical versus chemical processes of “whiting” formation in the Bahamas. iCarbonates and Evaporites 8i, 135-148.View article

Boss, S.K. & Wilkinson, B.H. 1991. Planktogeniceustatic control on cratonicoceanic carbonate accumulation. iThe Journal of Geologyi, 497-513.View article

Bradley, W. 1963. Unmineralized Fossil Bacteria. iScience 141i, 919-921.View article

Braissant, O., Cailleau, G., Dupraz, C. & Verrecchia, E.P. 2003. Bacterially induced mineralization of calcium carbonate in terrestrial environments the role of exopolysaccharides and amino acids. iJournal of Sedimentary Research 73i, 485-490.View article

Brehm, U., Palinska, K.A. & Krumbein, W.E. 2004. Laboratory cultures of calcifying biomicrospheres generate ooids - A contribution to the origin of oolites. iCarnets de GéologieNotebooks on Geology, Maintenon, Letter 3i.

Brett, C.E., Ferretti, A., Histon, K. & Schönlaub, H.P. 2009. Silurian sequence stratigraphy of the Carnic Alps, Austria. iPalaeogeography, Palaeoclimatology, Palaeoecology 279i, 1-28.View article

Broecker, W., Sanyal, A. & Takahashi, T. 2000. The origin of Bahamian whitings revisited. iGeophysical Research Letters 27i, 3759-3760.View article

Broecker, W.S. & Takahashi, T. 1966. Calcium carbonate precipitation on the Bahama Banks. iJournal of Geophysical Research 71i, 1575-1602.View article

Brooke, B. 2001. The distribution of carbonate eolianite. iEarth-Science Reviews 55i, 135-164.View article

Brunskill, G. 1969. Fayetteville Green Lake, New York Precipitation and sedimentation of calcite in a meromictic lake with laminated sediments. iLimnology and Oceanography 14i, 830-847.View article

Brunton, F.R., Smith, L., Dixon, O.A., Copper, P., Nestor, H. & Kershaw, S. 1998. Silurian reef episodes, changing seascapes, and paleobiogeography. iNew York State Museum Bulletin 491i, 265-282.

Calner, M. 2005a. A Late Silurian extinction event and anachronistic period. iGeology 33i, 305-308.View article

Calner, M. 2005b. A Late Silurian extinction event and anachronistic period Comment and reply. iGeology 33i, e92-e92.View article

Calner, M. 2005c. Silurian carbonate platforms and extinction events - ecosystem changes exemplified from Gotland, Sweden. iFacies 51i, 584-591.View article

Calner, M. 2008. Silurian global events - at the tipping point of climate change, 21-58. iIn iElewa, A.M.T. (ed.) iMass extinctioni. Springer-Verlag, Heidelberg.

Carroll, A.R., Stephens, N.P., Hendrix, M.S. & Glenn, C.R. 1998. Eolian-derived siltstone in the Upper Permian Phosphoria Formation implications for marine upwelling. iGeology 26i, 1023-1026.View article

Chekroun, K.B., Rodríguez-Navarro, C., González-Munoz, M.T., Arias, J.M., Cultrone, G. & Rodríguez-Gallego, M. 2004. Precipitation and growth morphology of calcium carbonate induced by iMyxococcus xanthusi implications for recognition of bacterial carbonates. iJournal of Sedimentary Research 74i, 868-876.View article

Cherns, L. 1982. Palaeokarst, tidal erosion surfaces and stromatolites in the Silurian Eke Formation of Gotland, Sweden. iSedimentology 29i, 819-833.View article

Cherns, L. & Wheeley, J.R. 2009. Early Palaeozoic cooling events peri-Gondwana and beyond. iGeological Society of London, Special Publications 325i, 257-278.View article

Clemens, S.C. 1998. Dust response to seasonal atmospheric forcing Proxy evaluation and calibration. iPaleoceanography 13i, 471-490.View article

Cloud, P. 1962. iEnvironment of calcium carbonate deposition west of Andros Island, Bahamasi. US Government Printing Office.

Cramer, B.D., Loydell, D.K., Samtleben, C., Munnecke, A., Kaljo, D., Männik, P., Martma, T., Jeppsson, L., Kleffner, M.A. & Barrick, J.E. 2010. Testing the limits of Paleozoic chronostratigraphic correlation via high-resolution ( 500 ky) integrated conodont, graptolite, and carbon isotope (δsup13supCsubcarbsub) biochemostratigraphy across the Llandovery-Wenlock (Silurian) boundary Is a unified Phanerozoic time scale achievable iGeological Society of America Bulletin 122i, 1700-1716.View article

Cramer, B.D. & Munnecke, A. 2008. Early Silurian positive δsup13supC excursions and their relationship to glaciations, sea-level changes and extinction events discussion. iGeological Journal 43i, 517.View article

Curry, B.B., Anderson, T.F. & Lohmann, K.C. 1997. Unusual carbon and oxygen isotopic ratios of ostracodal calcite from last interglacial (Sangamon episode) lacustrine sediment in Raymond Basin, Illinois, USA. iJournal of Paleolimnology 17i, 421-435.View article

Davies, G.R., Moslow, T.F. & Sherwin, M.D. 1997. The lower Triassic Montney formation, west-central Alberta. iBulletin of Canadian Petroleum Geology 45i, 474-505.

Dickson, J.A.D. 1965. A modified staining technique for carbonates in thin section. iNature 205i, 587.View article

Dittrich, M., Kurz, P. & Wehrli, B. 2004. The role of autotrophic picocyanobacteria in calcite precipitation in an oligotrophic lake. iGeomicrobiology Journal 21i, 45-53.View article

Dittrich, M. & Obst, M. 2004. Are picoplankton responsible for calcite precipitation in lakes? AMBIO: A Journal of the Human Environment 33, 559-564.View article

Donar, C., Condon, K., Gantar, M. & Gaiser, E. 2004. A new technique for examining the physical structure of Everglades floating periphyton mat. iNova Hedwigia 78i, 107-119.View article

Dromgoole, E.L. & Walter, L.M. 1990. Iron and manganese incorporation into calcite Effects of growth kinetics, temperature and solution chemistry. iChemical Geology 81i, 311-336.View article

Duce, R.A. & Tindale, N.W. 1991. Atmospheric transport of iron and its deposition in the ocean. iLimnology and Oceanography 36i, 1715-1726.View article

Eriksson, M.J. & Calner, M. 2008. A sequence stratigraphical model for the Late Ludfordian (Silurian) of Gotland, Sweden implications for timing between changes in sea level, palaeoecology, and the global carbon cycle. iFacies 54i, 253-276.View article

Falkowski, P.G. 1997. Evolution of the nitrogen cycle and its influence on the biological sequestration of COsub2sub in the ocean. iNature 387i, 272-275.View article

Fischer, A.G. & Sarnthein, M. 1988. Airborne silts and dune-derived sands in the Permian of the Delaware Basin. iJournal of Sedimentary Researchi i58i, 637-643.

Fischer, G., Karakas, G., Blaas, M., Ratmeyer, V., Nowald, N., Schlitzer, R., Helmke, P., Davenport, R., Donner, B. & Neuer, S. 2009. Mineral ballast and particle settling rates in the coastal upwelling system off NW Africa and the South Atlantic. iInternational Journal of Earth Sciences 98i, 281-298.View article

Flügel, E. 2004. iMicrofacies of Carbonate Rocks, Analysis, Interpretation and Application.i 976 pp. Springer Verlag, Berlin.

Fornós, J.J., Gines, J. & Gracia, F. 2009. Present-day sedimentary facies in the coastal karst caves of Mallorca Island (Western Mediterranean). iJournal of Cave and Karst Studies 71i, 86-99.

Frýda, J. & Manda, Š. 2013. A long-lasting steady period of isotopically heavy carbon in the late Silurian ocean evolution of the δsup13supC record and its significance for an integrated δsup13supC, graptolite and conodont stratigraphy. iBulletin of Geosciences 88i, 463-482.View article

Gabbott, S.E., Zalasiewicz, J., Aldridge, R.J. & Theron, J.N. 2010. Eolian input into the Late Ordovician postglacial Soom Shale, South Africa. iGeology 38i, 1103-1106.View article

Ghienne, J.-F., Desrochers, A., Vandenbroucke, T.R., Achab, A., Asselin, E., Dabard, M.-P., Farley, C., Loi, A., Paris, F. & Wickson, S. 2014. A Cenozoic-style scenario for the end-Ordovician glaciation. iNature Communications 5(4485)i.View article

Gill, B.C., Lyons, T.W., Young, S.A., Kump, L.R., Knoll, A.H. & Saltzman, M.R. 2011. Geochemical evidence for widespread euxinia in the Later Cambrian ocean. iNature 469i, 80-83.View article

Gischler, E., Swart, P.K. & Lomando, A.J. 2007. Stable isotopes of carbon and oxygen in modern sediments of carbonate platforms, barrier reefs, atolls, and ramps patterns and implications. iInternational Association of Sedimentologists Special Publication 41i, 61-74.

Gocke, M., Lehnert, O. & Frýda, J. 2013. Facies development and palynomorphs during the Lau Event (Late Silurian) in a non-tropical carbonate environment shallow and deep water examples from the Barrandian Area (Czech Republic). iFacies 59i, 611-630.View article

Harzhauser, M., Piller, W.E. & Latal, C. 2007. Geodynamic impact on the stable isotope signatures in a shallow epicontinental sea. iTerra Nova 19i, 324-330.View article

Hassan, K.M. 2014. Isotope geochemistry of Swan Lake Basin in the Nebraska Sandhills, USA Large sup13supC enrichment in sediment-calcite records. iChemie der Erde - Geochemistry 74i, 681-690.View article

Henjes, J. & Assmy, P. 2008. Particle availability controls agglutination in pelagic tintinnids in the Southern Ocean. iProtist 159i, 239-250.View article

Hodell, D.A., Schelske, C.L., Fahnenstiel, G.L. & Robbins, L.L. 1998. Biologically induced calcite and its isotopic composition in Lake Ontario. iLimnology and Oceanography 43i, 187-199.View article

Holmden, C., Creaser, R., Muehlenbachs, K., Leslie, S. & Bergström, S. 1998. Isotopic evidence for geochemical decoupling between ancient epeiric seas and bordering oceans Implications for secular curves. iGeology 26i, 567-570.View article

Holmden, C., Panchuk, K. & Finney, S. 2012. Tightly coupled records of Ca and C isotope changes during the Hirnantian glaciation event in an epeiric sea setting. iGeochimica et Cosmochimica Acta 98i, 94-106.View article

Hu, X. & Cai, W.J. 2011. An assessment of ocean margin anaerobic processes on oceanic alkalinity budget. iGlobal Biogeochemical Cycles 25i.View article

Jaeger, H. 1975. Die Graptolithenführung im SilurDevon des Cellon-Profils (Karnische Alpen). Ein Beitrag zur Gleichsetzung der Conodonten-und Graptolithenzonen des Silurs. iCarinthia II, 85i, 111-126.

Jeppsson, L. 1990. An oceanic model for lithological and faunal changes tested on the Silurian record. iJournal of the Geological Society 147i, 663-674.View article

Jeppsson, L. & Aldridge, R.J. 2000. Ludlow (late Silurian) oceanic episodes and events. iJournal of the Geological Society 157i, 1137-1148.View article

Jeppsson, L., Talent, J.A., Mawson, R., Andrew, A., Corradini, C., Simpson, A.J., Wigforss-Lange, J. & Schönlaub, H.P. 2012. Late Ludfordian correlation and the Lau Event, 653-675. iIni Talent, J.A. (ed.) iEarth and Life, International Year of Planet Earthi. Springer Verlag, Heidelberg.View article

Jeppsson, L., Talent, J.A., Mawson, R., Simpson, A.J., Andrew, A.S., Calner, M., Whitford, D.J., Trotter, J.A., Sandström, O. & Caldon, H.-J. 2007. High-resolution Late Silurian correlations between Gotland, Sweden, and the Broken River region, NE Australia lithologies, conodonts and isotopes. iPalaeogeography, Palaeoclimatology, Palaeoecology 245i, 115-137.View article

Jones, B. 1989. Calcite rafts, peloids, and micrite in cave deposits from Cayman Brae, British West Indies. iCanadian Journal of Earth Sciences 26i, 654-664.View article

Kaljo, D., Martma, T., Männik, P. & Viira, V. 2003. Implications of Gondwana glaciations in the Baltic late Ordovician and Silurian and a carbon isotopic test of environmental cyclicity. iBulletin de la Société géologique de France 174i, 59-66.View article

Kaźmierczak, J., Kremer, B. & Racki, G. 2012. Late Devonian marine anoxia challenged by benthic cyanobacterial mats. iGeobiology 10i, 371-383.View article

Kearsey, T., Twitchett, R.J. & Newell, A.J. 2012. The origin and significance of pedogenic dolomite from the Upper Permian of the South Urals of Russia. iGeological Magazine 149i, 291-307.View article

Kempe, S. 1990. Alkalinity the link between anaerobic basins and shallow water carbonates iNaturwissenschaften 77i, 426-427.View article

Kempe, S. & Kaźmierczak, J. 1990. Calcium carbonate supersaturation and the formation of in situ calcified stromatolites, 255-278. iIni Ittekot, V., Kempe, S., Michaelis, W. & Spitzy, A. (eds) iFacets of Modern Biogeochemistryi. Springer-Verlag, Berlin.View article

Kempe, S. & Kaźmierczak, J. 1993. Satonda Crater Lake, Indonesia Hydrogeochemistry and biocarbonates. iFacies 28i, 1-31.View article

Kempe, S. & Kaźmierczak, J. 1994. The role of alkalinity in the evolution of ocean chemistry, organization of living systems, and biocalcification processes. iBulletin de l’Institut océanographiquei, 61-117.

Khalaf, F., Al-Saleh, S., Al-Houty, F., Ansari, L. & Shublaq, W. 1979. Mineralogy and grain size distribution of dust fallout in Kuwait. iAtmospheric Environment (1967) 13i, 1719-1723.View article

Khan, A.A. 1997. Quartz and dolomite content variations and climate changes in late Pleistocene sediments of the North Arabian Sea. iGeological Bulletin, University of Peshawar 30i, 1-11.

Klaas, C. & Archer, D.E. 2002. Association of sinking organic matter with various types of mineral ballast in the deep sea: Implications for the rain ratio. Global Biogeochemical Cycles 16, 63-1-63-14. View article

Kleypas, J. 1997. Modeled estimates of global reef habitat and carbonate production since the last glacial maximum. iPaleoceanography 12i, 533-545.View article

Kozłowski, W. 2003. Age, sedimentary environment and palaeogeographical position of the Late Silurian oolitic beds in the Holy Cross Mountains (Central Poland). iActa Geologica Polonica 53i, 341-357.

Kozłowski, W. 2008. Lithostratigraphy and Regional Significance of the Nowa Słupia Group (Upper Silurian) of the Łysogóry Region (Holy Cross Mountains, Central Poland). iActa Geologica Polonica 58i, 43-74.

Kozłowski, W., Domańska-Siuda, J. & Nawrocki, J. 2014. Geochemistry and petrology of the upper Silurian greywackes from the Holy Cross Mountains (Central Poland) implications for the Caledonian history of the southern part of the Trans-European Suture Zone (TESZ). iGeological Quarterly 58i, 311-336.View article

Kozłowski, W. & Munnecke, A. 2010. Stable carbon isotope development and sea-level changes during the Late Ludlow (Silurian) of the Łysogóry region (Rzepin section, Holy Cross Mountains, Poland). iFacies 56i, 615-633.View article

Kozłowski, W. & Sobień, K. 2012. Mid-Ludfordian coeval carbon isotope, natural gamma ray and magnetic susceptibility excursions in the Mielnik IG-1 borehole (Eastern Poland) - dustiness as a possible link between global climate and the Silurian carbon isotope record. iPalaeogeography, Palaeoclimatology, Palaeoecology 339i, 74-97.View article

Kremer, B. & Kaźmierczak, J. 2005. Cyanobacterial mats from Silurian black radiolarian cherts phototrophic life at the edge of darkness iJournal of Sedimentary Research 75i, 897-906.View article

Kříž, J. 1991. The Silurian of the Prague Basin (Bohemia) - tectonic, eustatic and volcanic controls on facies and faunal development, 179-203. iIni Bassett, M.G., Lane, P.D. & Edwards, D. (eds) iThe Murchison Symposium Proceedings of an International Conference on The Silurian System. Special Papers in Palaeontology 44i.

Kump, L., Arthur, M., Patzkowsky, M., Gibbs, M., Pinkus, D. & Sheehan, P. 1999. A weathering hypothesis for glaciation at high atmospheric ipiCOsub2sub during the Late Ordovician. iPalaeogeography, Palaeoclimatology, Palaeoecology 152i, 173-187.View article

LaPorte, D., Holmden, C., Patterson, W., Loxton, J., Melchin, M., Mitchell, C., Finney, S. & Sheets, H. 2009. Local and global perspectives on carbon and nitrogen cycling during the Hirnantian glaciation. iPalaeogeography, Palaeoclimatology, Palaeoecology 276i, 182-195.View article

Lehnert, O., Eriksson, M., Calner, M., Joachimski, M. & Buggisch, W. 2007a. Concurrent sedimentary and isotopic indications for global climatic cooling in the Late Silurian. iActa Palaeontologica Sinica 46i, 249.

Lehnert, O., Frýda, J., Buggisch, W., Munnecke, A., Nützel, A., Kříž, J. & Manda, S. 2007b. δsup13supC records across the late Silurian Lau event New data from middle palaeo-latitudes of northern peri-Gondwana (Prague Basin, Czech Republic). iPalaeogeography, Palaeoclimatology, Palaeoecology 245i, 227-244.View article

Li, W., Liu, L.-P., Zhou, P.-P., Cao, L., Yu, L.-J. & Jiang, S.-Y. 2011. Calcite precipitation induced by bacteria and bacterially produced carbonic anhydrase. iCurrent Science (Bangalore) 100i, 502-508.

Lipps, J. H., Stoeck, T., & Dunthorn, M. 2013. Fossil tintinnids, 186-197. iIni Dolan, J.R., Montagnes, D.J.S., Agatha, S., Coats, D.W. & Stoecker, D.K. (eds) iBiology and ecology of tintinnid ciliates models for marine planktoni. Wiley-Blackwell, West Sussex.

Loope, D.B. & Haverland, Z.E. 1988. Giant desiccation fissures filled with calcareous eolian sand, Hermosa Formation (Pennsylvanian), southeastern Utah. iSedimentary Geology 56i, 403-413.View article

Loydell, D.K. 2007. Early Silurian positive δsup13supC excursions and their relationship to glaciations, sea-level changes and extinction events. iGeological Journal 42i, 531-546.View article

Lydal, J.R. 1985. Atokan (Pennsylvanian) Berlin Field genesis of recycled detrital dolomite reservoir, deep Anadarko Basin, Oklahoma. iAmerican Association of Petroleum Geologists Bulletin 69i, 1931-1949.

Lynch-Stieglitz, J., Stocker, T.F., Broecker, W.S. & Fairbanks, R.G. 1995. The influence of air-sea exchange on the isotopic composition of oceanic carbon Observations and modeling. iGlobal Biogeochemical Cycles 9i, 653-665.View article

Maher, B., Prospero, J., Mackie, D., Gaiero, D., Hesse, P. & Balkanski, Y. 2010. Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum. iEarth-Science Reviews 99i, 61-97.View article

Martin, J.H. & Fitzwater, S. 1988. Iron de?ciency limits phytoplankton growth in the north-east Paci?c subarctic. iNature 331i, 947-975.View article

Martire, L., Bertok, C., D’atri, A., Perotti, E. & Piana, F. 2014. Selective dolomitization by syntaxial overgrowth around detrital dolomite nuclei a case from the Jurassic of the Ligurian Briançonnais (Ligurian Alps). iJournal of Sedimentary Research 84i, 40-50.View article

Martma, T., Brazauskas, A., Kaljo, D., Kaminskas, D. & Musteikis, P. 2010. The Wenlock-Ludlow carbon isotope trend in the Vidukle core, Lithuania, and its relations with oceanic events. iGeological Quarterly 49i, 223-234.

McFadden, L.D., McDonald, E.V., Wells, S.G., Anderson, K., Quade, J. & Forman, S.L. 1998. The vesicular layer and carbonate collars of desert soils and pavements formation, age and relation to climate change. iGeomorphology 24i, 101-145.View article

McLaughlin, P.I., Emsbo, P. & Brett, C.E. 2012. Beyond black shales the sedimentary and stable isotope records of oceanic anoxic events in a dominantly oxic basin (Silurian; Appalachian Basin, USA). iPalaeogeography, Palaeoclimatology, Palaeoecology 367i, 153-177.View article

Melchin, M.J. & Holmden, C. 2006. Carbon isotope chemostratigraphy in Arctic Canada sea-level forcing of carbonate platform weathering and implications for Hirnantian global correlation. iPalaeogeography, Palaeoclimatology, Palaeoecology 234i, 186-200.View article

Meyer, H. 1984. The influence of impurities on the growth rate of calcite. iJournal of Crystal Growth 66i, 639-646.View article

Milliman, J.D., Freile, D., Steinen, R.P. & Wilber, R.J. 1993. Great Bahama Bank aragonitic muds mostly inorganically precipitated, mostly exported. iJournal of Sedimentary Research 63i.

Modzalevskaja, T. & Wenzel, B. 1999. Biostratigraphy and geochemistry of Upper Silurian brachiopods from the Timan-Pechora region (Russia). iActa Geologica Polonica 49i, 145-157. Morse, J.W., Gledhill, D.K. & Millero, F.J. 2003. CaCOsub3sub precipitation kinetics in waters from the great Bahama bank Implications for the relationship between bank hydrochemistry and whitings. iGeochimica et Cosmochimica Acta 67i, 2819-2826.View article

Morse, J.W. & He, S. 1993. Influences of iTi, iSi and iPisubCO2sub on the pseudo-homogeneous precipitation of CaCOsub3sub from seawater implications for whiting formation. iMarine Chemistry 41i, 291-297.View article

Morse, J.W., Millero, F.J., Thurmond, V., Brown, E. & Ostlund, H. 1984. The carbonate chemistry of Grand Bahama Bank waters after 18 years another look. iJournal of Geophysical Research 89i, 3604-3614.View article

Munnecke, A., Calner, M., Harper, D.A. & Servais, T. 2010. Ordovician and Silurian sea-water chemistry, sea level, and climate A synopsis. iPalaeogeography, Palaeoclimatology, Palaeoecology 296i, 389-413.View article

Munnecke, A., Samtleben, C. & Bickert, T. 2003. The Ireviken Event in the lower Silurian of Gotland, Sweden - relation to similar Palaeozoic and Proterozoic events. iPalaeogeography, Palaeoclimatology, Palaeoecology 195i, 99-124.View article

Murray, J. & Taylor, F. 1965. Early calpionellids from the Upper Devonian of western Canada, with a note on pyrite inclusions. iBulletin of Canadian Petroleum Geology 13i, 327-334.

Naiman, Z., Quade, J. & Patchett, P.J. 2000. Isotopic evidence for eolian recycling of pedogenic carbonate and variations in carbonate dust sources throughout the southwest United States. iGeochimica et Cosmochimica Acta 64i, 3099-3109.View article

Nakai, N., Wada, H., Kiyosu, Y. & Takimoto, M. 1975. Stable isotope studies on the origin and geological history of water and salts in the Lake Vanda area, Antarctica. iGeochemical Journal 9i, 7-24.View article

Oba, T. & Pedersen, T.F. 1999. Paleoclimatic significance of eolian carbonates supplied to the Japan Sea during the last glacial maximum. iPaleoceanography 14i, 34-41.View article

Ohlendorf, C. & Sturm, M. 2001. Precipitation and dissolution of calcite in a Swiss high alpine lake. iArctic, Antarctic, and Alpine Research 33i, 410-417.View article

Onac, B.P. 1997. Crystallography of speleothems, 230-235. iIn iHill, C. & Forti Cave, P. (eds) iMinerals of the World. 2supndsup editioni. National Speleological Society, Alabama, USA.

Opdyke, B.N. & Walker, J.C. 1992. Return of the coral reef hypothesis Basin to shelf partitioning of CaCOsub3sub and its effect on atmospheric COsub2sub. iGeology 20i, 733-736.View article

Peryt, T.M. & Peryt, D. 2012. Geochemical and foraminiferal records of environmental changes during the Zechstein Limestone (Lopingian) deposition in Northern Poland. iGeological Quarterly 56i, 187-198.

Porębski, S.J., Prugar, W. & Zacharski, J. 2013. Silurian shales of the East European Platform in Poland - some exploration problems. iPrzegląd Geologiczny 61i, 630-638.

Pytkowicz, R.M. 1965. Rates of inorganic calcium carbonate nucleation. iThe Journal of Geology 73i, 196-199.View article

Quade, J., Rech, J.A., Latorre, C., Betancourt, J.L., Gleeson, E. & Kalin, M.T. 2007. Soils at the hyperarid margin The isotopic composition of soil carbonate from the Atacama Desert, Northern Chile. iGeochimica et Cosmochimica Acta 71i, 3772-3795.View article

Raiswell, R. & Berner, R.A. 1985. Pyrite formation in euxinic and semi-euxinic sediments. iAmerican Journal of Science 285i, 710-724.View article

Rao, D.S., Al-Yamani, F. & Rao, C.N. 1999. Eolian dust affects phytoplankton in the waters off Kuwait, the Arabian Gulf. iNaturwissenschaften 86i, 525-529.View article

Ridgwell, A.J., Kennedy, M.J. & Caldeira, K. 2003. Carbonate deposition, climate stability, and Neoproterozoic ice ages. iScience 302(5646)i, 859-862.View article

Ridgwell, A. & Zeebe, R.E. 2005. The role of the global carbonate cycle in the regulation and evolution of the Earth system. iEarth and Planetary Science Letters 234i, 299-315.View article

Riding, R. 2005. A Late Silurian extinction event and anachronistic period Comment and reply. iGeology 33i, e91.View article

Riding, R. 2006. Cyanobacterial calcification, carbon dioxide concentrating mechanisms, and Proterozoic-Cambrian changes in atmospheric composition. iGeobiology 4i, 299-316.View article

Riding, R. & Liang, L. 2005a. Geobiology of microbial carbonates metazoan and seawater saturation state influences on secular trends during the Phanerozoic. iPalaeogeography, Palaeoclimatology, Palaeoecology 219i, 101-115.View article

Riding, R. & Liang, L. 2005b. Seawater chemistry control of marine limestone accumulation over the past 550 million years. iRevista Espanola de Micropaleontología 37i, 1-11.

Robbins, L. & Blackwelder, P. 1992. Biochemical and ultrastructural evidence for the origin of whitings a biologically induced calcium carbonate precipitation mechanism. iGeology 20i, 464-468.View article

Robbins, L., Tao, Y. & Evans, C. 1997. Temporal and spatial distribution of whitings on Great Bahama Bank and a new lime mud budget. iGeology 25i, 947-950.View article

Rosenbaum, J. & Sheppard, S. 1986. An isotopic study of siderites, dolomites and ankerites at high temperatures. iGeochimica et Cosmochimica Acta 50i, 1147-1150.View article

Samtleben, C., Munnecke, A. & Bickert, T. 2000. Development of facies and CO-isotopes in transects through the Ludlow of Gotland evidence for global and local influences on a shallow-marine environment. iFacies 43i, 1-38.View article

Samtleben, C., Munnecke, A., Bickert, T. & Pätzold, J. 1996. The Silurian of Gotland (Sweden) facies interpretation based on stable isotopes in brachiopod shells. iGeologische Rundschau 85i, 278-292.View article

Sandberg, P.A. 1983. An oscillating trend in Phanerozoic nonskeletal carbonate mineralogy. iNature 305i, 19-22.View article

Schönlaub, H.P. 1986. Significant geological events in the Paleozoic record of the Southern Alps (Austrian part), 161-167. iIni Walliser, O.H. (ed.) iGlobal bio-eventsi. Springer-Verlag, Berlin & Heidelberg.View article

Shinn, E.A., Steinen, R.P., Lidz, B.H. & Swart, P.K. 1989. Whitings, a sedimentologic dilemma. iJournal of Sedimentary Research 59i, 147-161.View article

Soreghan, G.S. 1992. Preservation and paleoclimatic significance of eolian dust in the Ancestral Rocky Mountains province. iGeology 20i, 1111-1114.View article

Soreghan, G.Sě. & Soreghan, M.J. 2002. Atmospheric dust and algal dominance in the late Paleozoic a hypothesis. iJournal of Sedimentary Research 72i, 457-461.View article

Stabel, H.H. 1986. Calcite precipitation in Lake Constance Chemical equilibrium, sedimentation, and nucleation by algae1. iLimnology and Oceanography 31i, 1081-1094.View article

Stel, J.H. & de Coo, J.C. 1977. The Silurian Upper Burgsvik and Lower Hamra-Sundre Beds, Gotland. iScripta Geologica 44i, 1-43.

Stricanne, L., Munnecke, A. & Pross, J. 2006. Assessing mechanisms of environmental change Palynological signals across the Late Ludlow (Silurian) positive isotope excursion (δsup13supC, δsup18supO) on Gotland, Sweden. iPalaeogeography, Palaeoclimatology, Palaeoecology 230i, 1-31.View article

Strong, A.E. & Eadie, B.J. 1978. Satellite observations of calcium carbonate precipitations in the Great Lakes. iLimnology and Oceanography 23i, 877-887.View article

Stuut, J.-B.W. 2014. Subaquatic Dust Deposits, 443-462. iIn iKnippertz, P. & Stuut, J.-B.W. (eds) iMineral Dusti. Springer, Netherlands.View article

Sumner, D.Y. & Grotzinger, J.P. 1996. Were kinetics of Archean calcium carbonate precipitation related to oxygen concentration iGeology 24i, 119-122.View article

Swart, P., Oehlert, A., Mackenzie, G., Eberli, G. & Reijmer, J. 2014. The fertilization of the Bahamas by Saharan dust A trigger for carbonate precipitation iGeology 42i, 671-674.View article

Swart, P.K. 2008. Global synchronous changes in the carbon isotopic composition of carbonate sediments unrelated to changes in the global carbon cycle. iProceedings of the National Academy of Sciences 105i, 13741-13745.View article

Talent, J.A., Mawson, R., Andrew, A.S., Hamilton, P.J. & Whitford, D.J. 1993. Middle Palaeozoic extinction events faunal and isotopic data. iPalaeogeography, Palaeoclimatology, Palaeoecology 104i, 139-152.View article

Taylor, M., Drysdale, R. & Carthew, K. 2004. The formation and environmental significance of calcite rafts in tropical tufa - depositing rivers of northern Australia. iSedimentology 51i, 1089-1101.View article

Thompson, J.B. 2000. Microbial whitings, 250-260. iIni Riding, R.E. & Awramik, S.M. (eds) iMicrobial Sedimentsi. Springer-Verlag, Berlin & Heidelberg.View article

Thompson, J.B. & Ferris, F. 1990. Cyanobacterial precipitation of gypsum, calcite, and magnesite from natural alkaline lake water. iGeology 18i, 995-998.View article

Thompson, J.B., Schultze-Lam, S., Beveridge, T.J. & Des Marais, D.J. 1997. Whiting events biogenic origin due to the photosynthetic activity of cyanobacterial picoplankton. iLimnology and Oceanography 42i, 133-141.View article

Urbanek, A. 1970. Neocucullograptinae n. subfam.(Graptolithina) - their evolutionary and stratigraphic bearing. iActa Palaeontologica Polonica 15i, 163-388.

Urbanek, A. 1993. Biotic crises in the history of Upper Silurian graptoloids a palaeobiological model. iHistorical Biology 7i, 29-50.View article

Urbanek, A. 1997. Late Ludfordian and early Pridoli monograptids from the Polish Lowland. iActa Palaeontologica Polonica 56i, 87-231.

Valero-Garcés, B.L., Delgado-Huertas, A., Ratto, N. & Navas, A. 1999. Large sup13supC enrichment in primary carbonates from Andean Altiplano lakes, northwest Argentina. iEarth and Planetary Science Letters 171i, 253-266.View article

Wainright, S.C. 1987. Stimulation of heterotrophic microplankton production by resuspended marine sediments. iScience 238i, 1710-1712.View article

Warren, J. 2000. Dolomite occurrence, evolution and economically important associations. iEarth-Science Reviews 52i, 1-81.View article

Wells, A. & Illing, L. 1964. Present day precipitation of calcium carbonate in the Persian Gulf, 429-435. iIni Van Straaten, L.M.J.U. (ed.) iDevelopments in Sedimentology 1, Deltaic and Shallow Marine Depositsi. Elsevier, Amsterdam.View article

Wigforss-Lange, J. 1999. Carbon isotope sup13supC enrichment in Upper Silurian (Whitcliffian) marine calcareous rocks in Scania, Sweden. iGFF 121i, 273-279.View article

Wigforss-Lange, J. 2007. Tidal facies in the Upper Silurian Öved-Ramsasa Group of Scania, Sweden Linkages of radial and cerebroid ooids and evaporite tracers to subtidal, lagoonal environment. iGFF 129i, 7-16.View article

Wignall, P. & Newton, R. 1998. Pyrite framboid diameter as a measure of oxygen deficiency in ancient mudrocks. iAmerican Journal of Science 298i, 537-552.View article

Wilkin, R.T., Barnes, H.L. & Brantley, S.L. 1996. The size distribution of framboidal pyrite in modern sediments An indicator of redox conditions. iGeochimica et Cosmochimica Acta 60i, 3897-3912.View article

Yan, D., Chen, D., Wang, Q., Wang, J. & Wang, Z. 2009. Carbon and sulfur isotopic anomalies across the Ordovician-Silurian boundary on the Yangtze Platform, South China. iPalaeogeography, Palaeoclimatology, Palaeoecology 274i, 32-39.View article