Current IF 1.9
Latest issue (RSS 2.0)
Contact Editorial Office at
bulletin@geology.cz
Bulletin of Geosciences
Published by ©
Czech Geological Survey,
W. Bohemia Museum Pilsen
Individual sponsors
ISSN: 1802-8225 (online),
1214-1119 (print)
The morphology and affinities of Skania fragilis (Arthropoda) from the middle Cambrian Burgess Shale
Published in: Bulletin of Geosciences, volume 90, issue 3; pages: 509 - 518; Received 1 September 2014; Accepted in revised form 21 April 2015; Online 27 May 2015
Keywords: marrellomorph, carapace formation, Burgess Shale,
Supplementary material
Supplementary material: character list
Supporting material for the phylogenetic analysis
Abstract
The enigmatic arthropod Skania fragilis, from the middle Cambrian (Series 3, Stage 5) Burgess Shale Formation (Yoho National Park, British Columbia, Canada), is redescribed based on 14 new specimens reposited at the Royal Ontario Museum. These specimens provide a clearer picture of the morphology of this taxon and help to resolve conflicting opinions regarding potential homology of particular features. Specifically, the anchor-shaped anterior, which has been compared to a similar structure in the putative Precambrian arthropod Parvancorina, is shown to represent an anterior cephalic doublure with features comparable to the mediolateral spines of marrellids, such as Marrella. Beyond a vaguely cordiform outline, no other features are shown to be shared between Skania and Parvancorina, weakening claims that crown-group arthropods were present in the Neoproterozoic. The removal of these taxa from Arthropoda is in keeping with recent molecular clock analyses, which demonstrate a Cambrian diversification of Euarthropoda. A phylogenetic analysis resolved Skania as the most basal member of Acercostraca, a clade of marrellomorphs including Vachonisia and Xylokorys, united by the presence of a cordiform dorsal shield. Similarities between these taxa and marrellids may indicate that the elongate posterior spines of Marrella and related taxa, and the dorsal shield of acercostracans have a common origin akin to the carapace anlagen of extant crustaceans.References
BENGTSON, S. 2000. Teasing fossils out of shale with cameras and computers. Palaeontologia Electronica 3(4), 1-14.
BEURLEN, K. 1930. Vergleichende Stammesgeschichte Grundlagen, Methoden, Probleme unter besonderer Berücksichtigung der höheren Krebse. Fortschritte er Geologie und Paläontologie 8, 317-586.
CONWAY MORRIS, S. 1993. Ediacaran-like fossils in Cambrian Burgess Shale-type faunas of North America. Palaeontology 36, 593-635.
CRABB, P. 2001. The use of polarised light in photography of macrofossils. Palaeontology 44, 659-664.
DELLE CAVE, L. & SIMONETTA, A.M. 1975. Notes on the morphology and taxonomic positon of Aysheaia (Onychophora?) and of Skania (indetermined phylum). Monitore Zoologico Italiano 9, 67-81.
DZIK, J. 2002. Possible ctenophoran affinities of the Precambrian “Sea-Pen” Rangea. Journal of Morphology 252, 315-334.
GARCÍA-BELLIDO, D.C. & COLLINS, D. 2006. A new study of Marrella splendens (Arthropoda, Marrellomorpha) from the Middle Cambrian Burgess Shale, British Columbia, Canada. Canadian Journal of Earth Sciences 43, 721-742.
GEHLING, J.G. 1991. The case for Ediacaran fossil roots to the metazoan tree, 181-223. In RADHAKRISHNA, B.P. (ed.) The world of Martin F. Glaessner. Geological Society of India, Bangalore.
GLAESSNER, M.F. 1980. Parvancorina - an arthropod from the late Precambrian of South Australia. Annalen des Naturhistorischen Museums in Wien 83, 83-90.
GOLOBOFF, P.A. 1999. Analysing large data sets in reasonable times: solutions for composite optima. Cladistics 15, 415-428.
GOLOBOFF, P.A., FARRIS, J.S. & NIXON, K.C. 2008. TNT, a free program for phylogenetic analysis. Cladistics 24, 774-786.
HARRINGTON, H.J. 1968. General description of Trilobita, O38-O117. In MOORE, R.C. (ed.) Treatise on invertebrate paleontology. Part O. Arthropoda. Vol. 1. Geological Society of America & University of Kansas Press, Lawrence.
HAUG, J.T., MAAS, A. & WALOSZEK, D. 2010. †Henningsmoenicaris scutula, †Sandtorpia vestrogothiensis gen. et sp. nov. and heterochronic events in early crustacean evolution. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 101, 1-39.
HOU, X.G. & BERGSTRÖM, J. 1997. Arthropods from the Lower Cambrian Chengjiang fauna, Southwest China. Fossils and Strata 45, 1-116.
HOU, X.G., RAMSKÖLD, L. & BERGSTRÖM, J. 1991. Composition and preservation of the Chengjiang fauna - a Lower Cambrian soft-bodied biota. Zoologica Scripta 20, 395-411.
HUGHES, C.P. 1975. Redescription of Burgessia bella from the Middle Cambrian Burgess Shale, British Columbia. Fossils and Strata 4, 415-435.
HUPÉ, P. 1953. Classification des trilobites. Annales de Paléontologie 39, 59-168.
IVANTSOV, A.Y. 2001. Vendia and other Precambrian “arthropods”. Paleontological Journal 35, 335-343.
KÜHL, G., BERGSTRÖM, J. & RUST, J. 2008. Morphology, palaeobiology and phylogenetic position of Vachonisia rogeri (Arthropoda) from the Lower Devonian Hunsrück Slate (Germany). Palaeontographica, Abteilung A 286, 123-157.
LEE, M.S.Y., SOUBRIER, J. & EDGECOMBE, G.D. 2013. Rates of phenotypic and genomic evolution during the Cambrian explosion. Current Biology 23, 1889-1895.
LEGG, D.A., SUTTON, M.D. & EDGECOMBE, G.D. 2013. Arthropod fossil data increase congruence of morphological and molecular phylogenies. Nature Communications 4(2485), 1-7.
LEGG, D.A., SUTTON, M.D., EDGECOMBE, G.D. & CARON, J.-B. 2012. Cambrian bivalved arthropod reveals origin of arthrodization. Proceedings of the Royal Society B 279, 4699-4704.
LEHMANN, W.M. 1955. Vachonia rogeri n. g. n. sp., ein Branchiopod aus dem unterdevonischen Hunsrückschiefer. Paläontologische Zeitschrift 29, 126-130.
LIN, J.P., GON III, S.M., GEHLING, J.G., BABCOCK, L.E., ZHAO, Y.L., ZHANG, X.L., HU, S.X., YUAN, J.L., YU, M.Y. & PENG, J. 2006. A Parvancorina-like arthropod from the Cambrian of South China. Historical Biology 18, 33-45.
NAIMARK, E.B. & IVANTSOV, A.Y. 2009. Growth variability in the Late Precambrian problematic Parvancorina Glaessner. Paleontontological Journal 43, 12-18.
NIXON, K.C. 1999. The Parsimony Ratchet, a new method for rapid parsimony analysis. Cladistics 15, 407-414.
OLESEN, J. 2013. The crustacean carapace: morphology, function, development, and phylogenetic history, 103-139. In WATLING, L. & THIEL, M. (eds) The Natural History of Crustacea. Vol. 1. Oxford University Press.
OLESEN, J. & MOLLER, O.S. 2014. Notostraca, 40-46. In MARTIN, J.W., OLESEN, J. & HOEG, J.T. (eds) Atlas of crustacean larvae. John Hopkins University Press, Baltimore.
ORTEGA-HERNÁNDEZ, J. & BRENA, C. 2012. Ancestral patterning of tergite formation in a centipede suggests derived mode of trunk segmentation in trilobites. PLoS One 7(12), 1-19.
RAK, Š., ORTEGA-HERNÁNDEZ, J. & LEGG, D.A. 2013. A revision of the Late Ordovician marrellomorph arthropod Furca bohemica from Czech Republic. Acta Palaeontologica Polonica 58, 615-628.
ROTA-STABELLI, O., DALEY, A.C. & PISANI, D. 2013. Molecular timetrees reveal a Cambrian colonization of land and a new scenario for ecdysozoan evolution. Current Biology 23, 392-398.
SCHAARSCHMIDT, F. 1973. Pflanzenfossilien in ungewöhnlichen Licht. Natur und Museum 103, 247-253.
SCHRAM, F.R. & KOENEMMANN, S. 2004. Are the crustaceans monophyletic?, 319-329. In CRACRAFT, J. & DONOGHUE, M.J. (eds) Assembling the tree of life. Oxford University Press, New York.
SIMONETTA, A.M. & DELLE CAVE, L. 1981. An essay in the comparative and evolutionary morphology of Palaeozoic arthropods. Origine dei grandi Phyla dei Metazoi. Accademia Nazional dei Lincei, Atti dei Convegni Lincei 49, 389-439.
SIMONETTA, A.M. & INSOM, E. 1993. New animals from the Burgess Shale (Middle Cambrian) and their possible significance for the understanding of the Bilateria. Bolletino di Zoologia 60, 97-107.
SIVETER, D.J., BRIGGS, D.E.G., SIVETER, D.J., SUTTON, M.D., LEGG, D. & JOOMUN, S. 2014. A Silurian short-great-appendage arthropod. Proceedings of the Royal Society B 281 (in press).
SIVETER, D.J., FORTEY, R.A., SUTTON, M.D., BRIGGS, D.E.G. & SIVETER, D.J. 2007. A Silurian ‘marrellomorph’ arthropod. Proceedings of the Royal Society B 274, 2223-2229.
STORMER, L. 1944. On the relationships and phylogeny of fossil and Recent Arachnomorpha. Skrifter utgitt av det Norske Vidensk Academi i Oslo 5, 1-158.
STÜRMER, W. & BERGSTRÖM, J. 1976. The arthropods Mimetaster and Vachonisia from the Devonian Hunsrück Shale. Paläontologische Zeitschrift 50, 78-111.
TASCH, P. 1969. Branchiopoda, R128-R191. In MOORE, R.C. (ed.) Treatise on invertebrate paleontology. Part R. Arthropoda Vol 4(1). Geological Society of America and University of Kansas Press, Lawrence.
VAN ROY, P., ORR, P.J., BOTTING, J.P., MUIR, L.A., VINTHER, J., LEFEBVRE, B., EL HARIRI, K. & BRIGGS, D.E.G. 2010. Ordovician faunas of Burgess Shale-type. Nature 465, 215-218.
VANNIER, J. & CHEN, J.Y. 2002. Digestive system and feeding mode in Cambrian naraoiid arthropods. Lethaia 35, 107-120.
WAGGONER, B.M. 1996. Phylogenetic hypotheses of the relationships of arthropods to Precambrian and Cambrian problematic fossil taxa. Systematic Biology 45, 190-222.
WALCOTT, C.D. 1931. Addenda to descriptions of Burgess Shale fossils. Smithsonian Miscellaneous Collections 85, 1-46.
WILLS, M.A., BRIGGS, D.E.G., FORTEY, R.A., WILKINSON, M. & SNEATH, P.H.A. 1998. An arthropod phylogeny based on fossil and recent taxa, 33-105. In EDGECOMBE, G. (ed.) Arthropod fossils and phylogeny. Columbia University Press, New York.
ZHANG, X.L., HAN, J., ZHANG, Z.F., LIU, H.Q. & SHU, D.G. 2003. Reconsideration of the supposed naraoiid larva from the Early Cambrian Chengjiang Lagerstätte, South China. Palaeontology 46, 447-465.