Pelagic or benthic? Mode of life of the remopleuridid trilobite Hypodicranotus striatulus

 

Authors: Shiino Y, Kuwazuru O, Suzuki Y, Ono S, Masuda C

Published in: Bulletin of Geosciences, volume 89, issue 2; pages: 207 - 218; Received 28 January 2013; Accepted in revised form 15 November 2013; Online 11 March 2014

Keywords: biomechanics, ecomorphology, evolution, hybrid, multi-functionality, Remopleurididae, Trilobita,

full text (PDF, 2.03 MB)

Export to RIS

 

Abstract

The mode of life of the remopleuridid trilobite Hypodicranotus striatulus Walcott (1875) was examined hydrodynamically with a special focus on the relationship between the autecological performances of swimming and feeding. To understand the effect of swimming height from the sea bottom on the hydrodynamic performance of the exoskeleton, we performed computational fluid dynamics simulations on four models at differing distances from the sea bottom. The results indicated that Hypodicranotus could launch itself from the sea bottom with a relatively strong hydrodynamic lift force from slow walking or swimming speeds. However, the lift force decreased as the swimming height increased at slow swimming speeds. Hence, Hypodicranotus would have had to increase its swimming speed to greater than 0.2 m/s and to obtain the most stable lift force at a swimming height equal to half of its own body height. Its exoskeletal morphology, with a forked hypostome, enabled it to launch itself at a slow velocity and swim at a modest distance, i.e., close to its own height, from the sea bottom. Feeding from the median vortex flows along the food groove between the two prongs of the hypostome may have been the best strategy near the sea bottom, where a large amount of food matter would have been available. Because arthropod musculature consists of striated muscles, which exhibit inferior endurance, Hypodicranotus most likely adapted to the near-bottom environment, where it could rest at times on the sea bottom as part of a nektobenthic mode of life.

References

ABE, K., KONDO, T. & NAGANO, Y. 1995. A new turbulence model for predicting fluid flow and heat transfer in separating and reattaching flows-II. Thermal field calculations. International Journal of Heat and Mass Transfer 38(8), 1467-1481.View article

ABE, K., NAGANO, Y. & KONDO, T. 1992. An improved k-ε model for a prediction of turbulent flows with separation and reattachment. Transactions of Japan Society of Mechanical Engineers Series B, 58(554), 3003-3010. [in Japanese with English abstract]View article

ADKINS, D. & YAN, Y.Y. 2006. CFD Simulation of fish-like body moving in viscous liquid. Journal of Bionic Engineering 3(3), 147-153.View article

AMATI, L., ARMITAGE, J.L., MIDDLEBROOK, N.R. & SMITH, A.K. 2009. Geographic and environmental distribution of two late Ordovician Remopleuridid trilobites and their implications for lifestyle. Geological Society of America Abstracts with Programs 41, 89.

AMATI, L. & WESTROP, S.R. 2006. Sedimentary facies and trilobite biofacies along an Ordovician shelf to basin gradient, Viola Group, south-central Oklahoma. Palaios 21(6), 516-529.View article

AZUMA, A. 2006. The Biokinetics of Flying and Swimming. 518 pp. American Institute of Aeronautics and Astronautics, Inc., Reston.

BERGSTRÖM, J. 1969. Remarks of the appendages of trilobites. Lethaia 2(4), 395-414.View article

BERGSTRÖM, J. 1973. Organization, life, and systematics of trilobites. Fossils and Strata 2, 1-69.

BERTRAM, V. 2000. Practical Ship Hydrodynamics. 270 pp. Butterworth-Heinemann, Oxford.

BOUCOT, A.J. 1981. Principles of Benthic Marine Paleoecology. 463 pp. Academic Press, New York.

BRETT, C.E., WHITELEY, T.E., ALLISON, P.A. & YOCHELSON, E.L. 1999. Walcott-Rust Quarry: Middle Ordovician trilobite Konservat-Lagerstätten. Journal of Paleontology 73(2), 288-305.View article

BRIGGS, D.E.G., DALINGWATER, J.E. & SELDEN, P.A. 1991. Biomechanics of locomotion in fossil arthropods, 37-56. In RAYNER, J.M.V. & WOOTTON, R.J. (eds) Biomechanics in Evolution. Cambridge University Press, Cambridge.

CHAN, T.Y. 1998. Shrimps and prawns, 851-971. In CARPENTER, K.E. & NIEM, V.H. (eds) FAO species identification guide for fishery purposes. The living marine resources of the Western Central Pacific, volume 2. Cephalopods, Crustaceans, Holothurians and Sharks. FAO, Rome.

CHATTERTON, B.D.E. & SPEYER, S.E. 1997. Ontogeny, 173-247. In KAESLER, R.L. (ed.) Treatise on invertebrate paleontology. Part O, Arthropoda 1, Trilobita, Revised. The Geological Society of America & The University of Kansas, Boulder & Lawrence.

CLARKSON, E.N.K. 1967. Environmental significance of eye-reduction in trilobites and recent arthropods. Marine Geology 5(5-6), 367-375.View article

CLARKSON, E.N.K. 1975. The evolution of the eye in trilobites. Fossils and Strata 4, 7-31.

CLARKSON, E.N.K. & AHLBERG, P. 2003. Ontogeny and structure of a new, miniaturised and spiny olenid trilobite from southern Sweden. Palaeontology 45(1), 1-22.View article

DINESHBABU, A.P. & MANISSERY, J.K. 2009. Food and feeding of the ridgeback shrimp, Solenocera choprai Nataraj, along Karnataka coast. Indian Journal of Fisheries 56(1), 21-26.

DORIT, R.L., WALKER, W.F. & BARNES, R.D. 1991. Zoology. 1009 pp. Saunders College Publishing, Philadelphia.

ESTEVE, J., ZAMORA, S., GOZALO, R. & LINÁN, E. 2010. Sphaeroidal enrolment in middle Cambrian solenopleuropsine trilobites. Lethaia 43(4), 478-493.View article

ESTEVE, J., HUGHES, N.C. & ZAMORA, S. 2011. Purujosa trilobite assemblage and the evolution of trilobite enrollment. Geology 39(6), 575-578.View article

FEIST, R., LEROSEY-AUBRIL, R. & JOHNSON, R. 2010. Coaptative devices, enrollment, and life habits in Paralejurus, a particular case in scutelluid trilobites. Palaeobiodiversity and Palaeoenvironments 90(2), 125-137.View article

FORTEY, R.A. 1985. Pelagic trilobites as an example of deducing the life habits of extinct arthropods. Transactions of the Royal Society of Edinburgh, Earth Sciences 76, 219-230.View article

FORTEY, R.A. 2004. The lifestyles of the trilobites. American Scientist 92(5), 446-453.View article

FORTEY, R.A. & CHATTERTON, B.D.E. 1988. Classification of the trilobite Suborder Asaphina. Palaeontology 31(1), 17-19.

FORTEY, R.A. & OWENS, R.M. 1990. Trilobites, 121-142. In MCNAMARA, K.J. (ed.) Evolutionary Trends. The University of Arizona Press, Tuscon.

FRYER, G. 1988. Studies on the functional anatomy and biology of the Notostraca (Crustacea: Branchiopoda). Philosophical Transactions of the Royal Society of London Series B, Biological Sciences 321, 27-124.View article

FUJIWARA, S. & HUTCHINSON, J.R. 2012. Elbow joint adductor moment arm as an indicator of forelimb posture in extinct quadrupedal tetrapods. Proceedings of the Royal Society Series B, Biological Sciences 279(1738), 2561-2570.View article

HANSEN, T., NIELSEN, A.T. & BRUTON, D.L. 2011. Palaeoecology in a mud-dominated epicontinental sea: A case study of the Ordovician Elnes Formation, southern Norway. Palaeogeography, Palaeoclimatology, Palaeoecology 299(1-2), 348-362.View article

HEGNA, T. 2010. The function of forks: Isotelus-type hypostomes and trilobite feeding. Lethaia 43(3), 411-419.

HOLTHUIS, L.B. 1980. FAO species catalogue. Vol. 1. Shrimps and prawns of the world. An annotated catalogue of species of interest to fisheries. FAO Fisheries Synopsis 125(1), 1-271.

HUGHES, N.C. 2007. The evolution of trilobite body patterning. Annual Review of Earth and Planetary Sciences 35, 401-434.View article

HUGHES, N.C. & CHAPMAN, R.E. 1995. Growth and variation in the Silurian proetide trilobite Aulacopleura konincki and its implications for trilobite palaeobiology. Lethaia 28(4), 333-353.View article

JACKLYN, P.M. & RITZ, D.A. 1986. Hydrodynamics of swimming in scyllarid lobsters. Journal of Experimental Marine Biology and Ecology 101(1-2), 85-99.View article

JOHANSEN, P.O. & BATTEGARD, T. 1998. Observation on behavior and distribution of Natatolana borealis (Lilljeborg) (Crustacea, Isopoda). Sarsia 83(4), 347-360.View article

KAJI, T., MOLLER, O.S. & TSUKAGOSHI, A. 2011. A bridge between original and novel states: ontogeny and function of “suction discs” in the Branchiura (Crustacea). Evolution & Development 13(2), 119-126.View article

KUNJU, M.M. 1970. Synopsis of biological data on the penaeid prawn Solenocera indica Nataraj, 1945. FAO Fisheries Report 4(57), 1317-1333.

LAND, M.F. 2000. On the functions of double eyes in midwater animals. Philosophical Transactions of the Royal Society Series B, Biological Sciences 355(1401), 1147-1150.View article

LEROSEY-AUBRIL, R., HEGNA, T.A. & OLIVE, S. 2011. Inferring internal anatomy from the trilobite exoskeleton: the relationship between frontal auxiliary impressions and the digestive system. Lethaia 44(2), 166-184.View article

LOWRY, J.K. & DEMPSEY, K. 2006. The giant deep-sea scavenger genus Bathynomus (Crustacea, Isopoda, Cirolanidae) in the Indo-West Pacific, 163-192. In RICHER DE FORGES, B. & JUSTINE, J.-L. (eds) Tropical Deep-Sea Benthos, volume 24. Mémoires du Muséum national d’histoire naturelle 193.

LUDVIGSEN, R. & CHATTERTON, B.D.E. 1991. The peculiar Ordovician trilobite Hypodicranotus from the Whittaker Formation, District of Mackenzie. Canadian Journal of Earth Sciences 28(4), 616-622.View article

MARSHALL, N.J. & DIEBEL, C. 1995. ‘Deep-sea spiders’ that walk through the water. The Journal of Experimental Biology 198(6), 1371-1379.View article

MATSUI, T., MORIYAMA, T. & KATO, R. 2011. Burrow plasticity in the deep-sea isopod Bathynomus doederleini (Crustacea: Isopoda: Cirolanidae). Zoological Science 28(12), 863-868.View article

MATSUMURA, Y. & YOSHIZAWA, K. 2012. Homology of the internal sac components in the leaf beetle subfamily Criocerinae and evolutionary novelties related to the extremely elongated flagellum. Journal of Morphology 273(5), 507-518.View article

MCCORMICK, T. & FORTEY, R.A. 1999. The most widely distributed trilobite species Ordovician Carolinites genacinaca. Journal of Paleontology 73(2), 202-218.View article

NISHINO, H. & SAKAI, M. 1996. Behaviorally significant immobile state of so-called thanatosis in the cricket Gryllus bimaculatus DeGeer: its characterization, sensory mechanism and function. Journal of Comparative Physiology A 179(5), 613-624.View article

NIKOLAISEN, F. 1988. The Middle Ordovician of the Oslo Region, Norway, 32. Trilobites of the family Remopleurididae. Norsk Geologisk Tidsskrift 62, 231-329.

NOWELL, A.R.M., JUMARS, P.A. & ECKMAN, J.E. 1981. Effects of biological activity on the entrainment of marine sediments. Marine Geology 42, 133-153.View article

ONO, S. 2011. Adaptive design of trilobite compound eyes: Integration between their optical features and mode of growth. Fossils 89, 1-2. [in Japanese]

PARK, T.-Y. & CHOI, D.K. 2011. Ontogeny of the Furongian (late Cambrian) remopleuridioid trilobite Haniwa quadrata Kobayashi, 1933 from Korea: implications for trilobite taxonomy. Geological Magagine 148(2), 288-303.View article

RASMUSSEN, C.M.O. & HARPER, D.A.T. 2011. Did the amalgamation of continents drive the end Ordovician mass extinctions? Palaeogeography, Palaeoclimatology, Palaeoecology 311(1-2), 48-62.View article

RUPPERT, E.E., FOX, R.S. & BARNES, R.D. 2003. Invertebrate Zoology: A Functional Evolutionary Approach, Seventh Edition. 963 pp. Brooks/Cole, Belmont.

SCHOENEMANN, B., CLARKSON, E.N.K., AHLBERG, P. & ÁLVAREZ, M.E.D. 2008. A Furongian polymerid planktonic trilobite, 361-364. In RÁBANO, I., GOZALO, R. & GARCÍA-BELLIDO, D. (eds) Advances in trilobite research. Instituto Geológico y Minero de Espana, Madrid.

SCHOENEMANN, B., CLARKSON, E.N.K., AHLBERG, P. & ÁLVAREZ, M.E.D. 2010. A tiny eye indicating a planktonic trilobite. Palaeontology 53(4), 695-701.View article

SCHOTTE, M., KENSLEY, B.F. & SHILLING, S. 1995. World list of Marine, Freshwater and Terrestrial Crustacea Isopoda. National Museum of Natural History Smithsonian Institution, Washington D.C., USA. http://invertebrates.si.edu/isopod/

SHIINO, Y. 2010. Passive feeding in spiriferide brachiopods: an experimental approach using models of Devonian Paraspirifer and Cyrtospirifer. Lethaia 43(2), 223-231.View article

SHIINO, Y. & KUWAZURU, O. 2010. Functional adaptation of spiriferide brachiopod morphology. Journal of Evolutionary Biology 23(7), 1547-1557.View article

SHIINO, Y. & KUWAZURU, O. 2011a. Theoretical approach to the functional optimisation of spiriferide brachiopod shell: Optimum morphology of sulcus. Journal of Theoretical Biology 276(1), 192-198.View article

SHIINO, Y. & KUWAZURU, O. 2011b. Comparative experimental and simulation study on passive feeding flow generation in Cyrtospirifer. Memoirs of the Association of Australasian Palaeontologists 41, 1-8.

SHIINO, Y., KUWAZURU, O., SUZUKI, Y. & ONO, S. 2012. Swimming capability of the remopleuridid trilobite Hypodicranotus striatus: Hydrodynamic functions of the exoskeleton and the long, forked hypostome. Journal of Theoretical Biology 300(1), 29-38.View article

SHIINO, Y., KUWAZURU, O. & YOSHIKAWA, N. 2009. Computational fluid dynamics simulations on a Devonian spiriferid Paraspirifer bownockeri (Brachiopoda): Generating mechanism of passive feeding flows. Journal of Theoretical Biology 259(1), 132-141.View article

SHIINO, Y. & SUZUKI, Y. 2007. Articulatory and musculatory systems in a Permian concavo-convex brachiopod Waagenoconcha imperfecta Prendergast, 1935 (Productida, Brachiopoda). Paleontological Research 11(3), 265-275.View article

SHIINO, Y. & SUZUKI, Y. 2011. The ideal hydrodynamic form of the concavo-convex productide brachiopod shell. Lethaia 44(3), 329-343.View article

SHIINO, Y., SUZUKI, Y. & KOBAYASHI, F. 2011. Sedimentary history with biotic reaction in the Middle Permian shelly sequence of the Southern Kitakami Massif, Japan. Island Arc 20(2), 203-220.View article

SNELGROVE, P.V.R. 1998. The biodiversity of macrofaunal organisms in marine sediments. Biodiversity and Conservation 7(9), 1123-1132.View article

SUZUKI, Y. & BERGSTRÖM, J. 2008. Respiration in trilobites: a reevaluation. GFF 130(4), 211-229.View article

SUZUKI, Y., KONDO, A. & BERGSTRÖM, J. 2008. Morphological requirements in limulid and decapod gills: A case study in deducing the function of lamellipedian exopod lamellae. Acta Palaeontologica Polonica 53(2), 275-283.View article

VOGEL, S. 1994. Life in Moving Fluids. 467 pp. Princeton University Press, Princeton.

WALCOTT, C.D. 1875. New species of trilobite from the Trenton Limestone at Trenton Falls, New York. Cincinnati Quarterly Journal of Science 2, 347-349.

WHITTINGTON, H.B. 1952. A unique remopleuridid trilobite. Breviora 4, 1-9.

WHITTINGTON, H.B. 1959. Silicified Middle Ordovician trilobites: Remopleurididae, Trinucleidae, Raphiophoridae, Endymioniidae. Bulletin of The Museum of Comparative Zoology 121(8), 369-496.

WHITTINGTON, H.B. 1975. Trilobites with appendages from the Middle Cambrian, Burgess Shale, British Columbia. Fossils and Strata 4, 97-136.

ZHANG, X. & BARNES, C.R. 2007. Late Ordovician to Early Silurian conodont faunas from the Kolyma Terrane, Omulev Mountains, northeast Russia, and their paleobiogeographic affinity. Journal of Paleontology 81(3), 490-512.View article