Current IF 1.9
Latest issue (RSS 2.0)
Contact Editorial Office at
bulletin@geology.cz

Bulletin of Geosciences
Published by ©
Czech Geological Survey,
W. Bohemia Museum Pilsen
Individual sponsors
ISSN: 1802-8225 (online),
1214-1119 (print)

Carbon and oxygen stable isotopes of selected Cenomanian and Turonian rudists from Egypt and Czech Republic, and a note on changes in rudist diversity
Published in: Bulletin of Geosciences, volume 86, issue 2; pages: 209 - 226; Received 1 June 2009; Accepted in revised form 20 May 2011; Online 13 June 2011
Keywords: rudists, Upper Cretaceous, Cenomanian, Turonian, Egypt, Czech Republic, paleoecology, C and O stable isotopes,
Abstract
The stable isotope record and diversity of Cenomanian and Turonian rudists were compared for areas located at low paleolatitudes (10°N – Northern Egypt; 5 samples; 13 analyses) and middle paleolatitudes (35°N – Czech Republic, Bohemian Cretaceous Basin, BCB; 4 samples; 7 analyses). The oxygen isotope data indicate that the δ18O value of seawater was not identical for both areas. Moreover, local variations in seawater δ18O in the range of at least ±1‰ are probable in the shallow water near-shore environment where the rudists lived. Supposing a value of –1‰ VSMOW for contemporaneous seawater, the paleotemperature can be calculated as being between 24.5 and 31.5 °C for the Late Cenomanian and between 32.9 and 34.7 °C for the Early Turonian in the BCB. The δ18O seawater value for the northern part of Egypt was probably slightly lower. Calculation using a seawater value of –1.5‰ VSMOW gives temperatures for the Egypt in the range of 31.0 to 38.8 °C for the Late Cenomanian and 35.5 to 41.2 °C for the Turonian. The sclerochronological isotope profiles within one shell show changes of the calcite δ18O value, probably reflecting seasonal changes, with the largest observed within-shell temperature shift corresponding to 8 °C. The analyzed pilot sample set shows that the BCB and Egyptian rudists contain valuable paleoenvironmental information and that a detailed isotope study is needed. Rudist generic diversity of both areas was also compared. The Cenomanian and Turonian rudist assemblages from Egypt and the BCB show similar generic diversity, and also display a similar marked diversity decrease across the Cenomanian/Turonian boundary interval. It is important to note that both areas have similar diversity on the generic and partially species level during the Cenomanian and Turonian.References
Abdel-Gawad, G.I., El-Sheikh, H.A, Abdelhamid, M.A., El-Beshtawy, M.K, Abed, M.M., Fürsich, F.T & El-Qot, G.M. 2001. Stratigraphic studies on some the Upper Cretaceous successions in Sinai, Egypt. Egyptian Journal of Paleontology 4, 263-303.
Abdel-Gawad, G.I., El-Qot, G. & Mekawy, M.S.M.E. 2007. Macrobiostratigraphy of the Upper Cretaceous succession from Southern Galala, Eastern Desert, Egypt, 329-349. In Youssef El-Sayed, A.A. (ed.) Proceedings of the 2nd International Conference on the Geology of Tethys, Cairo University 2.
Abdel-Gawad, G.I., Saber, S.G., El-Shazly, S.H. & Felieh, Y. 2011. Turonian rudists from Abu-Roash area, north-western Desert, Egypt. Journal of African Earth Sciences, in press.
Abd-Elshafy, E. & Abd El-Azeam, S. 2010. Paleogeographic relation of the Egyptian Northern Galala with the Tethys during the Cretaceous Period. Cretaceous Research 31(3), 291-303.
Adabi, M.H. & Roa, C.P. 1991. Petrographic and Geochemical evidence for original carbonate (Mozduram Formation) Sarakhs area, Iran. Sedimentary Geology 72, 253-267.
Al-Asam, I. & Veizer, J. 1986. Diagenetic stabilization of aragonite and low Mg-calcite II. Stable isotope in rudists. Journal of Sedimentary Petrology 56, 763-770.
Andreson, T.F. & Arthur, M.A. 1983. Stable isotope of oxygen and carbon and their application to sedimentologic and paleoenvironmental problems. Society of economic paleontologists and mineralogists, Short Course 10, 1-151.
Arthur, M.A., Dean, W.E. & Schlanger, S.O. 1985. Variation in the global carbon cycle during the Cretaceous related to climate volcanism, and changes in the atmospheric CO2. Geophysical Monographs 32, 504-529.
Arthur, M.A., Dean, W.E. & Pratt, L.M. 1988. Geochemical and climatic effects of increased marine organic-carbon burial at the Cenomanian-Turonian boundary. Nature 335, 714-717.
Auclair, A.-C., Joachimski, M.M. & Lécuzer, C. 2003. Deciphering kinetic, metabolic and environmental controls on stable isotope fractionations between seawater and the shell of Terrebratalia transversa (Brachiopod). Chemical Geology 202, 59-78.
Bauer, J., Kuss, J. & Steuber, T. 2002. Platform environments, microfacies and system tracts of the Upper Cenomanian-Lower Santonian of Sinai, Egypt. Facies 47, 1-26.
Bauer, J., Kuss, J. & Steuber, T. 2003. Sequence architecture and platform configuration (Late Cenomanian-Santonian), Sinai, Egypt. Sedimentology 50, 387-414.
Beadnell, H.J.L. 1902. The Cretaceous region of Abu Roash nears the Pyramids of Giza. 48 pp. Geological Survey Report, Part II, Geological Survey Department, Egypt.
Bornemann, A., Norris, R.D., Friedrich, O., Beckmann, B., Schouten, S., Damsté, J. S., Vogel, J., Hofmann, P. & Wagner, T. 2008. Isotopic evidence for glaciation during the Cretaceous supergreenhouse. Science 319(5860), 189-192.
Brocker, W.S. 1989. The salinity contrast between the Atlantic and Pacific Oceans during glacial time. Paleoceanography 4, 207-212.
Buening, N. & Spero, H.J. 1996. Oxygen- and carbon-isotope analyses of the articulate brachiopod Laquesus californians: A recorded of environmental changes in the subeuphotic zone. Marine Biology 127(1), 105-114.
Čech, S. & Váně, M. 1988. K otázkám vývoje cenomanu a spodního turonu v Podkrušnohoří. Časopis pro mineralogii a geologii 33(4), 395-410.
Čech, S., Klein, V., Kříž, J. & Valečka, J. 1980. Revision of the Upper Cretaceous stratigraphy of the Bohemian Cretaceous Basin. Věstník Ústředního ústavu geologického 55(5), 277-298.
Cerling, T.E. 1991. Carbon dioxide in the atmosphere: Evidence from Cenozoic and Mesozoic paleosols. American Journal of Science 291, 377-400.
Craig, H. 1965. The measurement of oxygen isotope paleotemperature, 161-182. In Tongiorgi, E. (ed.) Stable Isotopes in Oceanographic Studies and Paleotemperature. Spoleto: Consiglio Nazionale delle Ricerche Laboratorio di Geologica Nucleare, Pisa.
Deines, P., Langmuir, D. & Harmon, R.S. 1974. Stable Carbon isotope ratios and the existence of a gas phase in the evolution of carbonate ground waters. Geochimica et Cosmochimica Acta 38(7), 1147-1164.
Duplessy, J.C. 1972. La Geochimie des isotopes du carbone dans la mer. 196 pp. Ph.D. thesis, Paris University.
El-Hedeny, M.M. 2007. New taxonomic and biostratigraphic data on the Upper Cenomanian Turonian Radiolitidae (Bivalvia: Hippuritoidea) of Abu Roash, Western Desert, Egypt. Neues Jahrbuch für Geologie und Palaontologie 244(1), 79-98.
El-Hedeny, M.M. & El-Sabbagh, A.M. 2005. Eoradiolites liratus (Bivalvia, Radiolitidae) from the Upper Cenomanian Galala Formation at Saint Paul, Eastern Desert (Egypt). Cretaceous Research 26(4), 551-566.
Epstein, S., Buchsbaum, R., Lowenstam, H.A. & Urey, H.C. 1953. Revised carbonate-water isotopic temperature scale. Geological Society of America Bulletin 64, 1315-1326.
Erez, J. 1978. Vital effect on stable-isotopic composition seen in foraminifera and coral skeletons. Nature 273, 1999-2002.
Fejfar, O., Košťák, M., Kvaček, J.,Mazuch, M. & Moučka, M. 2005. First Cenomanian dinosaur from Central Europe (Czech Republic). Acta Palaeontologica Polonica 50(2), 295-300.
Gili, E., Masse, J.-P. & Skelton, P.W. 1995. Rudist as gregarious sediment-dwellers, not reef-builders, on the Cretaceous carbonate platforms. Palaeogeography, Palaeoclimatology, Palaeoecology 118(3-4), 245-267.
Grossman, E.L. 1987. Stable isotope in modern benthonic foraminifera: a study of vital effect. Journal of Foraminiferal Research 17(1), 48-61.
Haq, B., Hardenbol, J. & Vail, P.R. 1987. Chronology of the fluctuating sea levels since the Triassic. Science 235, 1156-1167.
Hays, J.D. & Pitman III, W.C. 1973. Lithospheric plate motion, sea level changes and climatic and ecologic consequences. Nature 246(5427), 18-22.
Hilbrecht, H., Arthur, M.A. & Schlanger, S.O. 1986. The Cenomanian-Turonian boundary event: sedimentary, faunal and geochemical criteria developed from stratigraphic studies in NW-Germany. Lecture Notes in Earth Sciences 8, 345-351.
Houša, V. 1991. Faciální členění příbřežních mořských sedimentů české křídy. Časopis Národního muzea, Řada přírodovědná 156(1987), 101-115.
Huber, B.T., Hodell, D.A. & Hamilton, C.P. 1995. Middle-Late Cretaceous climate of the southern high latitudes: Stable isotopic evidence for minimal equator-to-pole thermal gradients. Geological Society of America Bulletin 107, 1164-1191.
Jenkyns, H.C., Foster, A., Schoulten, S. & Sinninghe Damsté, J.S. 2004. High temperatures in the Late Cretaceous Arctic Ocean. Nature 432, 888-892.
Jones, D.S. & Nicol, D. 1986. Origination, survivorship, and extinction of rudist taxa. Journal of Paleontology 60(1), 107-115.
Juillet-Leclerc, A. & Reynaud, S. 2010. Light effects on the isotopic fractionation of skeletal oxygen and carbon in the cultured zooxanthellate coral, Acropora: implications for coral-growth rates. Biogeosciences 7, 893-906.
Kauffman, E.G. & Johnson, C.C. 1988. The morphlogical and ecological evolution of Upper Cretaceous reef-building rudists. Palaios 3, 194-216.
Kerr, A.C. 1998. Oceanic plateau formation: a cause of mass extinction and black shale deposition around the Cenomanian-Turonian boundary? Journal of Geological Society London 155, 619-626.
Killingley, J.S. & Berger, W.H. 1979. Stable isotope in mollusk shell: Detection of upwelling events. Science 205, 186-188.
Klein, V. 1962. Litologie a stratigrafie cenomanských organodetritických vápenců v západním okolí Kutné Hory. Sborník Ústředního ústavu geologického, Oddíl geologický 27(1960), 385-399.
Kloučková, B. 2002. Rudisti české křídové pánve. 93 pp. Master thesis, Faculty of Science, Charles University, Prague.
Kolodny, Y. & Raab, M. 1988. Oxygen isotopes in phosphatic fish remains from Israel: Paleothermometry of tropical Cretaceous and Tertiary shelf waters. Palaeogeography, Palaeoclimatology, Palaeoecology 64, 59-67.
Košťák, M., Čech, S., Ekrt, B., Mazuch, M., Wiese, F., Voigt, S. & Wood, C.J. 2004. Belemnites of the Bohemian Cretaceous Basin in a global context. Acta Geologica Polonica 54(4), 511-533.
Košťák, M., Vodrážka, R., Frank, J., Mazuch, M. & Marek, J. 2010. Late Cretaceous nautilid beaks from the near shore/shallow water deposits of the Bohemian Cretacaeous Basin (Czech Republic). Acta Geologica Polonica 60(3), 417-428.
Košťák, M. & Wiese, F. 2011. Extremely rare Turonian belemnites from the Bohemian Cretaceous Basin and their palaeogeographical importance. Acta Palaeontologica Polonica 56(2), 433-437.
Krejčí, J. 1869. Allgemeine und orographische Verhältnisse sowie Gliederung der böhmischen Kreide-Formation. Archiv pro přírodovědecký výzkum Čech I, 39-179.
Kuss, J. 1992. The Aptian-Paleocene shelf carbonate of Northeast Egypt and southern Jordon: Establishment and break-up of carbonate platforms along the southern Tethyan shore. Zeitschrift der deutschen geologischen Gesellschaft 143, 107-132.
Mabrouk, A., Jarvis, I., Belayouni, H., Moody, R.T.J. & Sandman, R. 2007. Sequence stratigraphy, sea level change & paleoenvironments via chemostratigraphy: regional to global correlations. Abstracts of AAPG Annual Convention, Long Beach, California, 2007. http://www.searchanddiscovery.net/abstracts/html/2007/annual/index.htm
Malkovský, M., Benešová, Z., Čadek, J., Holub, V., Chaloupský, J., Jetel, J., Müller, V., Mašín, J. & Tásler, R. 1974. Geologie české křídové pánve a jejího podloží. 262 pp. Ústřední ústav geologický v Nakladatelství Československé akademie věd, Praha.
McConnaughey, T.A. 1989. 13C and 18O isotopic disequilibrium in the biological carbonates: II. In vitro simulation of kinetic isotope effect. Geochimica et Cosmochimica Acta 53, 163-171.
McConnaughey, T.A., Burdett, J.,Whelan, J.F. & Paull, C.K. 1997. Respiration and photosynthesis: Effects on the carbon-13 content of biological carbonates. Geochimica et Cosmochimica Acta 61, 611-622.
Norris, R.D., Bice, K.L., Mango, E.A. & Wilson, P.A. 2002. Jiggling the tropical thermostat in the Cretaceous hothouse. Geology 30, 299-302.
Počta, F. 1889. O rudistech, vymřelé čeledi mlžů z českého křídového útvaru. Rozpravy Královské české společnosti nauk 7(3), 1-92.
Pons, J.M. & Sirna, G. 1992. Upper Cretaceous rudist distribution in the Mediterranean Tethys: comparison between platforms from Spain and south central Italy. Geologica Romana 28, 341-349.
Poulsen, C.J., Barron, E.J., Arthur, M.A. & Peterson, W.H. 2001. Response of the mid-Cretaceous global oceanic circulation to tectonic and CO2 forcings. Paleoceanography 16(6), 574-590.
Poulsen, C.J., Barron, E.J., Peterson, W.H. & Wilson, P.A. 1999. A reinterpretation of mid-Cretaceous shallow marine temperatures through model-data comparison. Paleoceanography 14(6), 679-697.
Poulsen, C.J., Seidov, D., Barron, E.J. & Peterson, W.H. 1998. The impact of paleogeographic evolution on the surface oceanic circulation and the marine environment within the mid-Cretaceous Tethys. Paleoceanography 13(5), 546-559.
Price, G.D. & Hart, M.B. 2002. Isotopic evidence for Early to mid-Cretaceous ocean temperature variability. Marine Micropaleontology 46, 45-58.
Renard, M. 1986. Pelagic carbonate chemostratigraphy (Sr, Mg, 18O, 13C). Marine Micropaleontology 10, 117-164.
Reuss, A.E. 1844. Die Kreidegebilde des westlichen Böhmens, ein monographischer Versuch. Geognostischen Skizzen aus Böhmen 2, 1-304.
Ross, D.J. & Skelton, P.W. 1993. Rudist formation of the Cretaceous: a paleoecological, sedimentological and stratigraphic review, 73-91. In Wright, V.P. (ed.) Sedimentology review, vol. 1. Blackwell, London.
Saber, S., Salama, Y., Scott, R., Abdel-Gawad, G. & Aly, M. 2009. Cenomanian-Turonian rudist assemblages and sequence stratigraphy on North Sinai carbonate shelf, Egypt. GeoArabia 14(2), 113-134.
Sageman, B.B., Meyers, S.R. & Arthur, M.A. 2006. Orbital timescale and new C-isotope record for Cenomanian-Turonian boundary stratotype. Geology 34, 125-128.
Sakai, S. & Kano, A. 2001. Original oxygen isotopic composition of planktic foraminifera preserved in diagenetically altered Pleistocene shallow-marine carbonates. Marine Geology 172(3-4), 197-204.
Shackleton, N.J. & Kennett, J.P. 1975. Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciations: oxygen and carbon isotopic analyses in DSDP sites 277, 279 and 281, 743-755. In Kennet, J.P.& Houtz, R.E. (eds) Initial reports of the Deep Sea Drilling Project (DSDP), Washington, 29.
Schafhauser, A., Götz, S., Baron-Szabo, R. & Stinnesbeck,W. 2003. Depositional Environment of Coral-Rudist Associations inthe Upper Cretaceous Cardenas Formation (Central Mexico). Geologia Croatica 56(2), 187-198.
Shahin, A. 2007. Oxygen and carbon isotopes and foraminiferal biostratigraphy of the Cenomanian-Turonian succession in Gabal Nezzazat, southwestern Sinai, Egypt. Revue de Paléobiologie 26(2), 359-379.
Skelton, P.W. &Wright, V.P. 1987. A Caribbean rudist bivalve in Oman - island-hopping across the Pacific in the Late Cretaceous. Palaeontology 30, 505-529.
Spero, H.J. & Lea, D.W. 1996. Experimental determination of stable isotope variability in Globigerina bulloides: implications for paleoceanographic reconstruction. Marine Micropaleontology 28, 231-246.
Stanley, S.M. 1995. New horizons for palaeontology, with two examples: The rise and fall of the Cretaceous Supertethys and the cause of the modern ice age. Journal of Paleontology 69, 999-1007.
Steuber, T. 1995. Stable isotope sclerochronology of Vaccinites cornuvaccinum (Hippuritidae) from Boeotia (Greece). Revista Mexicana de Ciencias Geológicas 12(2), 307-314.
Steuber, T. 1996. Stable isotope sclerochronology of rudist bivalves: growth rates and late Cretaceous seasonality. Geology 24, 315-318.
Steuber, T. 1999. Isotopic and chemical intra-shell variations in low-Mg calcite. International Journal of Earth Sciences 88, 551-570.
Steuber, T. 2002. Plate tectonic control on the evolution of Cretaceous platform-cabonate production. Geology 30(3), 259-262.
Steuber, T. & Löser, H. 2000. Species richness and abundance patterns of Tethyan Cretaceous rudist bivalves (Mollusca; Hippuritacea) in the central-eastern Mediterranean and Middle East, analysed from a paleontological database. Palaeogeography, Paleoclimatology, Palaeoecology 162(1-2), 75-104.
Steuber, T., Rauch, M., Masse, J.-P., Graaf, J. & Malkoč, M. 2005. Low-latitude seasonality of Cretaceous temperatures in warm and cold episodes. Nature 437(7063, October 27), 1341-1344.
Stoll, H.M. & Schrag, D.P. 2000. High resolution stable isotope records from the Upper Cretaceous rocks of Italy and Spain: Glacial episodes in a greenhouse planet? Geological Society of America Bulletin 112, 308-319.
Svoboda, P. 1989. Korelace svrchnocenomanských marinních sedimentů mezi Kralupy nad Vltavou a Slaným. Bohemia centralis 18, 41-58.
Svoboda, P. 2006. Hercynian Cretaceous and the “plenus event”. Acta Universitatis Carolinae 49, 169-180.
Swart, P.K. 1983. Carbon and oxygen isotope fractionation in scleractinian corals: a review. Earth Science Review 19, 51-80.
Swart, P.K., Leader, J.J., Szmant, A.M. & Dodge, R.E. 1996. The origin and variations in the isotopic record of scleractinian corals II. Geochimica et Cosmochimica Acta 60(15), 2871-2885.
Uličný, D., Hladíková, J. & Hradecká, L. 1993. Record of sea-level changes, oxygen depletion and the ?13C anomaly across the Cenomanian-Turonian boundary, Bohemian Cretaceous Basin. Cretaceous Research 14(2), 211-234.
Uličný, D., Kvaček, J., Svobodová, M. & Špičáková, L. 1997. High-frequency sea-level fluctuations and plant habitats in Cenomanian fluvial to estuarine sucession: Pecínov quarry, Bohemia. Palaeogeography, Palaeoclimatology, Palaeoecology 136, 165-197.
Voigt, S. 1996. Paläobiogeographie oberkretazischer Inoceramen und Rudisten. Ozeanographische und klimatologische Konsequenzen einer neuen Palägeographie. Münchener Geowissenschaftliche Abhandlungen, Reihe A, Geologie und Paläontologie 31, 1-102.
Voigt, S. & Wiese, F. 2000. Evidence for Late Cretaceous (Late Turonian) climate cooling from oxygen-isotope variations and palaeobiogeographic changes in Western and Central Europe. Journal of the Geological Society of London 157, 737-743.
Wagreich, M., Bojar, A.-V., Sachsenhofer, R.F., Neuhuber, S. & Egger, H. 2008. Calcareous nannoplankton, planktonic foraminiferal, and carbonate carbon isotope stratigraphy of the Cenomanian-Turonian boundary section in the Ultrahelvetic Zone (Eastern Alps, Upper Austria). Cretaceous Research 29, 965-975.
Wefer, G. & Berger, W.H. 1991. Isotope paleontology: growth and composition of extant calcareous species. Marine Geology 100, 207-248.
Weissert, H. & Lini, A. 1991. Ice Age includes during the time of Cretaceous greenhouse climate, 173-481. In Mueller, D.W., McKenzie, J.A. & Weissert, H. (eds) Controversies in Modern Geology. Academic Pres, London.
Wiese, F., Čech, S., Ekrt, B., Košťák, M.,Mazuch, M. & Voigt, S. 2004. The Upper Turonian of the Bohemian Cretaceous Basin (Czech Republic) exemplified by the Úpohlavy working quarry: integrated stratigraphy and palaeoceanography of a gateway to the Tethys. Cretaceous Research 25(3), 329-352.
Wiese, F. & Voigt, S. 2002. Late Turonian (Cretaceous) climate cooling in Europe: faunal response and possible causes. Geobios 35, 65-77.
Wiese, F., Košťák, M. & Wood, C.J. 2009. The Upper Cretaceous belemnite Praeactinocamax plenus (Blainville 1827) from Lower Saxony (Upper Cenomanian, Northwest Germany) and its distribution pattern in Europe. Paläontologische Zeitschrift 83(2), 309-321.
Wilson, P.A. & Norris, R.D. 2001. Warm tropical ocean surface and global anoxia during the mid-Cretaceous period. Nature 412, 425-429.
Zachos, J.C., Stott, L.D. & Lohmann, K.C. 1994. Evolution of Early Cenozoic marine temperature. Paleoceanography 9(2), 353-387.
Ziegler, V. 1982. Mineralogicko-petrografická a paleontologická charakteristika chráněného přírodního výtvoru Lom u Radimi (okres Kolín). Bohemia centralis 11, 17-28.
Ziegler, V. 1992. Stratigrafie a vrstevní sled křídových sedimentů v kolínské oblasti české křídové pánve. Časopis Národního muzea, Řada přírodovědná 160(1-4), 29-46.
Žítt, J. & Nekvasilová, O. 1996. Epibionts, their hard-rock substrates, and phosphogenesis during the Cenomanian-Turonian boundary interval (Bohemian Cretaceous Basin, Czech Republic). Cretaceous Research 17, 715-739.
Žítt, J., Nekvasilová, O., Bosák, P., Svobodová, M., Štemproková-Jírová, D. & Šťastný, M. 1997a. Rocky coast facies of the Cenomanian-Turonian Boundary interval at Velim (Bohemian Cretaceous Basin, Czech Republic). First Part. Bulletin of the Czech Geological Survey 72(1), 83-102.
Žítt, J., Nekvasilová, O., Bosák, P., Svobodová, M., Štemproková-Jírová, D. & Šťastný, M. 1997b. Rocky coast facies of the Cenomanian-Turonian Boundary interval at Velim (Bohemian Cretaceous Basin, Czech Republic). Second Part. Bulletin of the Czech Geological Survey 72(2), 141-155.
Žítt, J., Kopáčová, M., Nekovařík, Č. & Peza, L.H. 1998. New data on the Late Cenomanian taphocoenose at Kuchyňka near Brázdim (Bohemian Cretaceous Basin). Journal of Czech Geological Society 47(1-2), 55-64.