Publisher © Czech Geological Survey, ISSN: 2336-5757 (online), 0514-8057 (print)

Stratigraphy, depositional environment and tectonic setting of the so-called Kozly Sandstone in northwestern part of the Bohemian Cretaceous Basin


Roland Nádaskay, Jaroslav Valečka, Stanislav Čech

Geoscience Research Reports 51, 2018, pages 167–180

Full text (PDF, 12.67 MB)

Published online: 24 October 2018

Export to RIS



Kozly Sandstone forms up to 59.5 m thick body situated mostly within the deepest tectonic depression of the Bohemian Cretaceous Basin (BCB), and cropping out in the SW vicinity of Česká Lípa (Fig. 1). Within this study, the Kozly Sandstone is defined as a succession of predominantly quartzose sandstones, exposed in the mentioned area, together with underlying succession of amalgamated sandstone beds. Because of complicated geological setting of the area, previous age constraints as well as interpretation of spatial extent of the Kozly Sandstone differed significantly (see Fig. 2). Recently, a complete stratigraphic section of this unit was penetrated by cored borehole 4730_B (Fig. 4). It proved that the Kozly Sandstone is separated from Turonian sandstones of the Jizera Fm. by ca. 25 m thick sequence of mudstones, containing bivalves Didymotis (Didymotis event 0), Mytiloides scupini (Heinz) as well as ammonite Prionocyclus germari (Reuss) (Fig. 7). Bivalves and ammonites allowed for the first time to determine the upper Turonian age for the mudstones underlying the Kozly Sandstone, belonging to the middle part of the Teplice Fm. On its top, an accumulation of glauconite and phosphates covering erosional truncation is interpreted as a transgressive lag comprising condensed lowermost part of the Coniacian. The overlying mudstones are the uppermost lower Coniacian in age. Based on drill core and outcrop data, individual lithofacies of the studied section (Table 1), incl. the Kozly Sandstone, are interpreted as having been deposited in deltaic environment: 1) facies S, G as delta-slope foresets, formed by alternation of downslope gravity currents and reworking by tidal currents; 2) facies Sgf/Hgf as bottomsets, deposited by gravity currents; 3) facies Ste, formed by calcareous bimodal sandstone, as a tempestite, although originally deposited as bottomset turbidite; 4) both facies Ms and Mm/Mc as offshore deposits. Alternatively, the Kozly Sandstone, as sheet like body with an extent of at least 80 km2, might be interpreted as isolated sand field detached from the nearshore sands. The sand field, often covered by ripples and dunes, migrated to the SSW under fair weather wave base due to the activity of strong bottom currents, namely ebb currents.
Well-logs allowed correlation of the Kozly Sandstone (Fig. 3) within genetic sequence TUR 7 consisting of middle-upper part of the Teplice Fm (upper Turonian). The correlation shows that foresets developed southward from borehole Vf-1, in which succession of up to 20 m coarsening-upward cycles dominate the sequence TUR 7. This enigmatic sharp contrast of depositional architectures within TUR 7 sequence may reflect basinward shift of deposition resulting from the increase of clastic supply or rapid sea-level fall; both hypotheses, however, require further investigation. Further to the S/SW, the foresets pinch out into thick sequence of Coniacian mudstones. However, thick sequence of sandstones, correlated from the Kozly area into the vicinity of Děčín, indicate possible greater extent of the interpreted Kozly Sandstone than expected. Revision of archival boreholes and brief field survey allowed re-interpretation of the tectonic setting of the study area - proposed tectonic framework and idealized structure of the area is shown in Fig. 1.


Adamovič, J. (1994): Paleogeography of the Jizera Formation (Late Cretaceous sandstones), Kokořín area, Central Bohemia. ? Sbor. geol. věd, Geol. 46, 103-123.

Andert, H. (1929): Die Kreideablagerungen zwischen Elbe und Jeschken. II. Die Nordböhmische Kreide zwischen Elbsandsteingebirge und Jeschken und das Zittauer Sandsteingebirge. ? Abh. Preuss. Geol. Landesanst., N. F. 117, 1-223.

Andert, H. (1934): Die Kreideablagerungen Zwischen Elbe und Jeschken. Teil III. Die Fauna der Obersten Kreide in Sachsen, Böhmen und Schlesien. - Abh. Preuss. Geol. Landesanst., N. F. 159, 1-477.

Coubal, M. - Klein, V. (1992): Development of the Saxonian tectonics in the Česká Lípa region. - Věst. Čes. geol. Úst. 67, 1, 25-45.

Čech, S. - Hercogová, J. - Knobloch, E. - Pacltová, B. - Pokorný, V. - Sajverová, E. - Slavík, J. - Švábenická, L. - Valečka, J. (1987): Svrchní křída ve vrtu Volfartice Vf-1. - Sbor. geol. věd, Geol. 42, 113-59.

Čech, S. ? Klein, V. ? Kříž, J. ? Valečka, J. (1980): Revision of the Upper Cretaceous stratigraphy of the Bohemian Cretaceous Basin. - Věst. Ústř. Úst. geol. 55, 5, 277?296.

Čech, S. - Švábenická, L. (1992): Macrofossils and nannofossils of the type locality of the Březno Formation (Turonian-Coniacian, Bohemia). - Věst. Ústř. Úst. geol. 67, 5, 311-326.

Čech, S. - Švábenická, L. (2017): Inoceramids and calcareous nanoplankton at the Lower and Middle Coniacian substage boundary in the Bohemian Cretaceous Basin. In: Sames, B., ed.: 10th International Symposium on the Cretaceous. Abstracts, 21?26 August 2017, Vienna. - Berichte Geol. Bundesanst. 46.

Daniell, J. J. - Harris, P. T. - Hughes, M. G. - Hemer, M. - Heap, A. (2008): The potential impact of bedform migration on seagrass communities in Torres Strait, Northern Australia. - Continent. Shelf Res. 28, 16, 2188-2202.

Frič, A. (1883): Studien im Gebiete der böhmischen Kreideformation. III. Die Iser Schichten. - Archiv naturwiss. Landesdurchforsch. Böhmen 5 (2), 1-138.

Herčík, F. ? Herrmann, Z. ? Valečka, J. (1999): Hydrogeologie české křídové pánve. - 115 str. Čes. geol. úst. Praha.

Hibsch, J. E. (1932): Erläterungen zur geologischen Karte der Umgebung von Graber U. Kosel westl. Böhm. Leipa. - Knih. St. geol. Úst. Čs. Republ. 12.

Horný, R. et al. (1963): Vysvětlivky k přehledné geologické mapě ČSSR 1?: 200 000, M-33-XV Praha. - Ústř. úst. geol. Praha.

Klein, V. et al. (1966): Vysvětlivky k listu mapy 1 : 50 000 M-33-53-B Úštěk. - MS Čes. geol. služba. Praha.

Klein, V. - Růžička, M. (1990): Geologické mapování na Českolipsku (02-42 Česká Lípa). - Zpr. geol. Výzk. 1988, 49-52.

Klein, V. - Růžička, M. (1993): Geologická mapa ČR. List 02-42 Česká Lípa. Měřítko 1:50 000. Soubor geologických a účelových map. - Čes. geol. úst. Praha.

Kopecký, L. (1963): Vysvětlivky k přehledné geologické mapě ČSSR 1 : 200 000, M-33-I Děčín. - Ústř. úst. geol. Praha.

Van Landeghem, K. J. J. - Uehara, K. - Wheeler, A. J. - Mitchell, N. C. - Scourse, J. D. (2009): Post-glacial sediment dynamics in the Irish Sea and sediment wave morphology: Data-model comparisons. - Continent. Shelf Res. 29, 14, 1723-36.

Van der Molen, J. (2002): The influence of tides, wind and waves on the net sand transport in the North Sea. - Continent. Shelf Res. 22, 18-19, 2739-2762. View article

Mulder, T. - Syvitski, J. P. M. (1995): Turbidity currents generated at river mouths during exceptional discharges to the world oceans. - J. Geology 103, 3, 285-99. View article

Nádaskay, R. - Čech, S. - Švábenická, L. - Valečka, J. (2017): Stratigraphy of the Lower-Middle Coniacian core section (NW-part of the Bohemian Cretaceous Basin): Deciphering T-R history and linking offshore to proximal deposits. In: Sames, B., ed.: 10th International Symposium on the Cretaceous. Abstracts, 21-26 August 2017, Vienna. - Berichte Geol. Bundesanst.120, 192.

Nádaskay, R. - Uličný, D. (2014): Genetic stratigraphy of Coniacian deltaic deposits of the northwestern part of the Bohemian Cretaceous Basin. - Ztschr. Dtsch. Ges. Geowiss. 165, 4, 547-75.

Nádaskay, R. ? Valečka, J. ? Čech, S. (2017): Příspěvek jádrových vrtů projektu Rebilance zásob podzemních vod ke stratigrafii, sedimentologii a tektonice svrchní křídy v sz. části české křídové pánve. - Zpr. geol. Výzk. 50, 1, 129-136.

Németh, A. A. - Hulscher, S. J. M. H. - de Vriend, H. J. (2002): Modelling sand wave migration in shallow shelf seas. - Continent. Shelf Res. 22, 18-19, 2795-2806.

Skoček, V. - Valečka, J. (1983): Paleogeography of the Late Cretaceous Quadersandstein of Central Europe. - Palaeogeogr. Palaeoclimat. Palaeoecol. 44, 1-2, 71-92. View article

Uličný, D. (2001): Depositional systems and sequence stratigraphy of coarse-grained deltas in a shallow-marine, strike-slip setting: The Bohemian Cretaceous Basin, Czech Republic. - Sedimentology 48, 3, 599-628.View article

Uličný, D. - Jarvis, I. - Gröcke, D. R. - Čech, S. - Laurin, J. - Olde, K. - Trabucho-Alexandre, J. - Švábenická, L. - Pedentchouk, N. (2014): A high-resolution carbon-isotope record of the Turonian stage correlated to a siliciclastic basin fill: Implications for mid-Cretaceous sea-level change. - Palaeogeogr. Palaeoclimat. Palaeoecol. 405, 42-58.View article

Uličný, D. ? Laurin, J. ? Čech, S. (2009): Controls on clastic sequence geometries in a shallow-marine, transtensional basin: the Bohemian Cretaceous Basin, Czech Republic. - Sedimentology 56, 4, 1077?1114.

Uličný, D. ? Špičáková, L. ? Cajz, V. ? Hronec, L. (2015): Podklady pro prostorový model hydrogeologicky významných stratigrafických rozhraní ve vybraných hydrogeologických rajonech. Geofyzikální ústav AV ČR. Závěrečná zpráva. - MS Čes. geol. služba. Praha.

Valečka, J. (1972): Strukturní vrt J-432640 Heřmanice. - MS Čes. geol. služba. Praha.

Valečka, J. (1973): Strukturní vrt J-488727 Kravaře. - MS Čes. geol. služba. Praha.

Valečka, J. (1979): Paleogeografie a litofaciální vývoj severozápadní části české křídové pánve. - Sbor. geol. Věd, Geol., 33, 47-81.

Valečka, J. (1994): Litologické změny v nejvyšší části jizerského souvrství v ssv. okolí České Kamenice a jejich vztah k paleoproudovému režimu. - Zpr. geol. Výzk. 1993, 96-97.

Valečka, J., ed. (2006): Základní geologická mapa České republiky 1 : 25 000 s vysvětlivkami, list 02-242 Dolní Podluží. - Čes. geol. služba. Praha.

Valečka, J. (2010): Šikmé zvrstvení a erozní plochy v pískovcích Příhrazských skal v Českém ráji. - Zpr. geol. Výzk. 2009, 70-73.

Vodrážka, R. - Sklenář, J. - Čech, S. - Laurin, J. - Hradecká, L. (2009): Phosphatic intraclasts in shallow-water hemipelagic strata: A source of palaeoecological, taphonomic and biostratigraphic data (upper Turonian, Bohemian Cretaceous Basin). - Cretaceous Res. 30, 1, 204-222.View article

Wiese, F. - Kröger, B. (1998): Evidence for a shallowing event in the upper Turonian (Cretaceous) Mytiloides Scupini zone of northern Germany. - Acta Geol. pol. 48, 3, 265-284.