Palaeopedologic research of a new Upper Pleistocene loess-palaeosol record in Brno-Bohunice

 

Katarína Adameková, Jan Petřík, Ivo Světlík, Jarmila Bíšková, Aleš Bajer, Jan Novák, Richard Bíško

Geoscience Research Reports 54, 2021, pages 41–50
Map sheets: Ivančice (24-34)

Full text (PDF, 7.68 MB)

Published online: 2021-07-01

Export to RIS

 

Abstract

A number of important loess sites have been discovered in the area of the Brno-Bohunice district. Most of them are related to archaeological research, and apart from Karel Valoch work, their palaeopedological record has not been studied in detail. A new loess section exposed by the recent construction works in Brno-Bohunice provides an opportunity for a comprehensive multiproxy evaluation of the Upper Pleistocene loess-palaeosol record. This work provides a complex information on palaeoenvironment and soil development using a combined approach, including micromorphological observations and physical, anthracological, malacological, and geochemical data along with radiocarbon dating. The excavated section Brno-Bohunice 2018 (49,1773775N; 16,5749161E), approximately 400 cm in thickness, was divided into ten lithostratigraphic units: loess (units 6 and 1), soil horizons (units 5, 4, 2c, 2b and 2a) and a colluvium (units 3c, 3b and 3a). The basal loess was probably deposited before the Last Glacial Period (MIS 6 or older). The overlying Bt horizon of luvisol was probably developed in the Eem Interglacial and the chernozem in the Early Glacial period (both in MIS 5). The loess-palaeosol sequence is followed by colluvial deposits of unknown age, plausibly resulting from both traction and, frost-related processes. Bw horizon of cambisol affected by secondary gleying process developed from the upper part of the colluvium. Radiocarbon dating (45,004–43,344 and 43,350–42,346 cal BP) indicates that this palaeosol belongs to some of MIS 3 interstadials, as does the overlaying reductaquic horizon of tundra gley. Both palaeosols were affected by freezing processes. The MIS 3 soil complex terminates by the uppermost regosol, which is covered by loess deposited in MIS 2 (27,302–26,463 cal BP). Our research has shown that the palaeosol development in the Brno-Bohunice area is more complex than expected.
 

References

Adameková, K. – Lisá, L., Neruda, P. – Petřík, J. – Doláková, N. – Novák, J. – Volánek, J. (2021): Pedosedimentary record of MIS 5 as an interplay of climatic trends and local conditions: Multi-proxy evidence from the Palaeolithic site of Moravský Krumlov IV (Moravia, Czech Republic). – Catena 200, 105174.

Antoine, P. – Rousseau, D.-D. – Degeai, J. P. – Moine, O. – Lagroix, F. – Kreutzer, S. – Fuchs, M. – Hatté, Ch. – Gauthier, C. – Svoboda, J. – Lisá, L. (2013): High-resolution record of the environmental response to climatic variations during the Last Interglacial–Glacial cycle in Central Europe: the loess-paleosol sequence of Dolní Věstonice (Czech Republic). – Quat. Sci. Rev. 67, 17–38.

Antoine, P. – Rouss eau, D.-D. – Moine, O. – Kunesch, S. – Hatté, Ch. – Lang, A. – Tissoux, H. – Zöller, L. (2009): Rapid and cyclic aeolian deposition during the Last Glacial in European loess: a high-resolution record from Nussloch, Germany. – Quat. Sci. Rev. 28, 25–26, 2955–2973.

Bábek, O. – Chlachula , J. – Grygar, J. (2011): Non-magnetic indicators of pedogenesis related to loess magnetic enhancement and depletion: examples from the Czech Republic and southern Siberia. – Quat. Sci. Rev. 30, 967–979.

Bouma, J. – Fox, C. A. – Miedema, R. (1990): Micromorphology of hydromorphic soils: applications for soil genesis and land evaluation. In: Douglas, L. A., ed.: Soil Micromorphology: A Basic and Applied Science. Developments in Soil Science 19, 257–278. – Elsevier.

Bronk Ramsey, C. (2009): Bayesian analysis of radiocarbon dates. – Radiocarbon 51, 1, 337–360.

Bullock, P. – Fedoroff , N. – Jongerius, A. – Stoops, G. – Tursina , T. – Babel, T. (1985): Handbook for Thin Section Description. – 152 str. Waine research Publications. Wolverhampton.

Carcaillet, C. – Talon, B. (1996): Aspects taphonomiques de la stratigraphie et de la datation de charbons de bois dans les sols: exemple de quelques sols des Alpes. – Géogr. Phys. Quat. 50, 233–244.

Dearing, J. A. – Dann, R. J. L. – Hay, K. – Lees, J. A. – Loveland, P. J. – Maher, B. A. – O’Grady, K. (1996): Frequencydependent susceptibility measurements of environmental materials. – Geophys. J. Int. 124, 1, 228–240.

Demek, J. – Havlíček, M. – Kirchner, K. – Nehyba, S. – Lisá, L. (2005): K rozšíření poznatků o kvartérních sedimentech na Červeném kopci v Brně. In: Geomorfologický sborník 4, 159–163. – Jihočeská univerzita v Českých Budějovicích. České Budějovice.

Flašarová, K. – Lauer, T. – Žatecká, M. – Strouhalová, B. – Kadlec, J. – Kolařík, P. (2018): Paleoclimate change record in the Dejvice loess-paleosol sequence (Prague, Czech Republic): preliminary results. In: Moscow-Volgograd: Russian Academy of Science: Diversity of loess: properties, stratigraphy, origin and regional features, 45–46. – Russ. Acad. of Sci. Moscow.

Frank, Ch. (2006): Plio-pleistozäne und holozäne Mollusken Österreichs. – 860 str. Verlag Öster. Akad. Wiss. Wien.

Frechen, M. – Zan der, A. – Cílek, V. – Ložek, V. (1999): Loess chronology of the Last Interglacial/Glacial cycle in Bohemia and Moravia, Czech Republic. – Quat. Sci. Rev. 18, 1467–1493.

Horsák, M. – Juřičková, L. – Picka, J. (2013): Měkkýši České a Slovenské republiky. – 270 str. Nakl. Kabourek. Zlín.

Hošek, J. – Hambac h, U. – Lisá, L. – Matys Grygar, T. – Horáček, I. – Meszn er, S. – Knésl, I. (2015): An integrated rock-magnetic and geochemical approach to loess/paleosol sequences from Bohemia and Moravia (Czech Republic): implications for the Upper Pleistocene paleoenvironment in central Europe. – Palaeogr., Palaeoclimatol., Palaeoecol. 418, 344–358.

Chlupáč, I. – Brzobohatý, R. – Kovanda, J. – Stráník, Z. (2011): Geologická minulost České republiky. – 436 str. Academia. Praha.

Jull, A. J. T. – Burr, G. S. – Beck, J. W. – Hodgins, G. W. L. – Biddulph, D. L. – Gann, J. – Hatheway, A. L. – Lange, T. E. – Lifton, N. A. (2006): Application of accelerator mass spectrometry to environmental and paleoclimate studies at the University of Arizona. – Radioact. in the Environment 8, 3–23.

Kolb, M. F. (2017): Analysis of Carbon, Nitrogen, pH, Phosphorus, and Carbonates as Tools in Geoarchaeological Research. In: Gilb ert, A. S., ed.: Encyclopedia of Geoarchaeology. Encyclopedia of Earth Sciences Series, 15–24. – Springer.

Kukla, J. – Ložek, V. – Záruba, Q. (1961): Zur Stratigraphie der Lösse in der Tschechoslowakei. – Quartaer 13, 1–29.

Kühn, P. – Aguila r, J. – Miedema, R. (2010): Textural features and related horizons. In: Stoops , G. – Marcelino, V. – Mees, F., ed.: Interpretation of Micromorphological Features of Soils and Regoliths, 217–250. – Elsevier.

Li, Y. – Zhan g, E. – Aydin, A. – Deng, X. (2018): Formation of calcareous nodules in loess-paleosol sequences: Reviews of existing models with a proposed new “per evapotranspiration model”. – J. Asian Earth Sci. 154, 8–16.

Lisiecki, L. – Raymo, M. E. (2005): http://www.lorrainelisiecki. com/LR04_MISboundaries.txt.

Luo, Y. L. – Chen, H. C. – Wu, G. X. – Sun, X. J. (2001): Records of natural fire and climate history during the last three glacialinterglacial cycles around the South China Sea. – Sci. China Ser. D, Earth Sci. 44, 897–904.

Molnár, M. – Rinyu, L. – Veres, M. – Seiler, M. – Wac ker, L. – Synal , H.A. (2013): EnvironMICADAS: a mini 14C-AMS with enhanced gas ion source interface in the Hertelendi Laboratory of Environmental Studies (HEKAL), Hungary. – Radiocarbon 55, 2–3, 338–344.

Reimer, P. J. – Austin, W. E. N. – Bard, E. – Bayliss, A. –Blac kwell , P. G . – Bronk Ramsey, C. – Butzin, M. – Cheng. H, – Edwa rds, R. L. – Friedrich, M. – Grootes, P. M . – Guilderson, T. P. – Haj das, I. – Heaton, T. J. – Hogg, A. G. – Hughen, K. A. – Kromer, B. – Mann ing, S. W. – Muscheler, R. – Pal mer, J. G. – Pearson, C. – van der Plicht, J. – Reimer, R. W. – Richards, D. A. – Scott, E. M. – Southon, J. R. – Turney, C. S. M. – Wac ker, L. – Adolp hi, F. – Büntgen, U. – Capan o, M. – Fahrni, S. M. – Fogtmann-Schulz, A. – Friedrich, R. – Köhler, P. – Kudsk, S. – Miyake, F. – Olsen, J. – Reinig, F. – Sakamoto, M. – Sookd eo, A. – Talamo, S. (2020): The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kBP). – Radiocarbon 62, 4,725–757.

Richter, D. – Tostevin, G. – Škrdla, P. – Davies, W. (2009): New radiometric ages for the Early Upper Palaeolithic type locality of Brno-Bohunice (Czech Republic): comparison of OSL, IRSL, TL and 14C dating results. – J. Archaeol. Sci. 36, 708–720.

Schweingruber, F. H. (1978): Microscopic Wood Anatomy. – 226 str. Swiss Federal Inst. of Forestry Res. Birmensdorf.

Stoops, G. (2003): Guidelines for Analysis and Description of Soil and Regolith thin Sections. – 256 str. Soil Sci. Soc. of America. Madison.

Škrdla, P. – Tostevin, G. (2005): Brno-Bohunice, analýza materiálu z výzkumu v roce 2002. – Přehled Výzk. 46, 35–61.

Valoch, K. (1976): Die altsteinzeitliche Fundstelle in Brno-Bohunice. – 120 str. Stud. Archeol. Úst. Čs. Akad. Věd (Brno), 4, 1.

Valoch, K. (2008): Brno-Bohunice, eponymous Bohunician site: New data, new ideas. In: Sulgostowska, Z. – Tomaszewski, A. J., ed.: Man – Millennia – Environment. Studies in honour of Romuald Schild, 225–236. – Polish Acad. of Sci. Warsaw.

Van Vliet-Lanoe, B. (2010): Frost action. In: Stoops, G. – Marcelino, V. – Mees, F., ed.: Interpretation of Micromorphological Features of Soils and Regoliths, 81–108. – Elsevier.

Vidal-Matutano, P. –Blasco, R. – Sanudo, P. – Fernández Peris, J. (2019): The Anthropogenic Use of Firewood During the European Middle Pleistocene: Charcoal Evidence from Levels XIII and XI of Bolomor Cave, Eastern Iberia (230–160 ka). – Environmental Archaeol. 24, 3, 269–284.

Wentworth, C. K. (1922): A scale of grade and class terms for clastic sediments. – J. Geol. 30 (5), 377–392.

Zaidelman, F. R. (2008): A concept of Gleyization and its role in the pedogenesis. Arch. Agro. Soil Sci. 38, 5, 323–335.