Publisher © Czech Geological Survey, ISSN: 2336-5757 (online), 0514-8057 (print)

Hydraulic properties of biologically initiated rock crust on sandstone


Martin Slavík, Jiří Bruthans, Alžběta Kobrlová, Petr Vorlíček, Martin Paděra

Geoscience Research Reports 50, 2017, pages 117–123
Map sheets: Sobotka (03-34)

Full text (PDF, 1.16 MB)

Published online: 29 June 2017

Export to RIS



It is well known that the presence of biologically initiated rock crust (BIRC in further text) increases the resistance of slightly cemented sandstone to erosion. As moisture and its transport are critical for many weathering processes, this study is focused on the effect of BIRC on hydraulic properties of sandstone. Changes in water vapor permeability, saturated hydraulic conductivity and capillary water absorption (both in laboratory and in situ) due to BIRC were measured and its influence on the weathering processes was discussed. Hydraulic properties of sandstone surface with BIRC were compared to those of its subsurface since we believe that this is the only way to quantify correctly the effect of BIRC.
Our research clearly shows that the studied BIRC considerably changes the hydraulic properties of sandstone surfaces. It significantly reduces saturated hydraulic conductivity (˜28 times, Table 2, Fig. 6) and capillary water absorption - measured on samples in laboratory, and in situ using the Karsten tube (6, resp. 5.4 times, Table 2) - which affects both the infiltration rate and moisture content. Therefore, BIRC is sufficient to influence most of the weathering processes controlled by moisture content and flux. However, it was found that the presence of BIRC has no measurable effect on water vapor diffusion rate. To our knowledge, this is for the first time that capillary water absorption measurements in a laboratory were compared to measurements in situ using the Karsten tube.
It was also found that BIRC only occurs on surfaces of the volumetric moisture content over ˜1 % (Table 1). Biocolonization of sandstone surfaces is thus controlled by sandstone moisture content. It can appropriately explain why, after clearing the trees which kept the humid microclimate, microorganisms on sandstone surfaces die out. Therefore, environmental factors affecting sandstone moisture content such as exposure to sun radiation and rain may control - via the occurrence/absence of BIRC - the erosion rate of sandstone surfaces.


Adamovič, J. - Mikuláš, R. - Schweigstillová, J. - Böhmová, V. (2011): Porosity changes induced by salt weathering of sandstones, Bohemian Cretaceous Basin, Czech Republic. - Acta Geodyn. Geomater. 8, 1 (161), 29-45.

Bruthans, J. - Světlík, D. - Soukup, J. - Schweigstillová, J. - Válek, J. - Sedláčková, M. - Mayo, A. L. (2012): Fast evolving conduits in clay-bonded sandstone: Characterization, erosion processes and significance for origin of sandstone landforms. - Geomorphology 177-178, 178-193.View article

Concha-Lozano, N. - Gaudon, P. - Pages, J. - de Billerbeck, G. - Lafon, D. - Eterradossi, O. (2012): Protective effect of endolithic fungal hyphae on oolitic limestone buildings. - J. culture. Heritage, 120-127.View article

Domenico, P. A. - Schwartz, F. W. (1998): Physical and Chemical Hydrogeology. - 528 str. John Wiley and Sons. Inc. New York.

Hendrickx, R. (2013): Using the Karsten tube to estimate water transport parametres of porous building materials: the possibilities of analytical and numerical solutions. - Materials Structures 46, 1309-1320.View article

Kurtz, H. D. - Netoff, D. I. (2001): Stabilization of friable sandstone surfaces in desiccating, wind-abraded environment of south-central Utah by rock surface microorganism. - J. Arid Env. 48, 89-100.View article

Mikuláš, R. - Adamovič, J. - Cílek, V. (2010): Vliv vody stékající po povrchu pískovců na mikroreliéf pískovcových skalních útvarů. - Zpr. geol. Výzk. v Roce 2010, 31-35.

Mol, L. - Viles, H. A. (2013): Exposing drying patterns: using electrical resistivity tomography to monitor capillary rise in sandstone under varying drying conditions. - Env. Earth Sci. 68, 1647-1659.View article

Myrin, M. - Malaga, K. (2006): The durability of hydrophobic treatments on Gotland Sandstone. - Fracture Failure Natural Building Stones, 577-590. - Springer.

Paradise, T. R. (2002): Sandstone weathering and aspect in Petra, Jordan. - Zeitschrift Geomorph. 46, 1-17.View article

Pavlík, Z. - Michálek, P - Pavlíková, M. - Kopecká, I. - Maxová, I. (2008): Water and salt transport and storage properties of Mšené sandstone. - Construct. Building Materials, 1736-1748.View article

Seifert, D. - Engesgaard, P. (2012): Sand box experiments with bioclogging of porous media: hydraulic conductivity reductions. - J. Contaminant Hydrology 136-137, 1-9.View article

Schweigstillová, J. - Bruthans, J. - Falteisek, L. - Válek, J. - Soukup, J. (2013): Rychlá tvorba skalních kůr na povrchu hruboskalského pískovce. - Zpr. geol. Výzk. v Roce 2012, 228-234.

Siegesmund, S. - Dürrast, H. (2011): Physical and Mechanical Properties of Rocks. - Stone in Architecture, 97-226. - Springer.

Shirtcliffe, N. J. - Pyatte, F. B. - Newten, M. I. - McHale, G. (2006): A lichen protected by a super-hydrophobic and breathable structure. - J. Plant Physiology 163, 1193-1197. View article

Slavík, M. (v přípravě): Konceptuální model pohybu vlhkosti v pískovcovém skalním městě. Doktor. disert. práce. - Přírodověd. fak., Univ. Karl. Praha.

Slavík, M. - Bruthans, J. - Schweigstillová, J. - Falteisek, L. (2017): Vliv biokolonizace na erozi a odolnost různých typů pískovcových povrchů v lomu a na přirozených výchozech. - Zpr. geol. Výzk. v Roce 2016.

Thullner, M. - Zeyer, J. - Kinzelbach, W. (2002): Influence of microbial growth on hydraulic propeties of pore networks. - Transport Porous Media 49, 99-122.View article

ČSN EN ISO 12572: Tepelně vlhkostní chování stavebních materiálů a výrobků - Stanovení prostupu vodní páry.