v řádu desetek hodin a rychlé vyprázdnění systému během několika dnů naznačuje jen něveký objem periodicky zaplavených volných krasových dutin a otevřených a zkrasovělých puklin. Uvedené vody velmi rychlého krasového oběhu se pravděpodobně mísí s ostatními složkami až někde v bezprostředním skolejší podloží akumulace pěnovců. Do záznamu parametrů pramene vnáší tato složka krátkodobé nárůst vydatnosti spojené s poklesem teplopt, krátkodobé poklesy koncentrací rozpuštěných složek (viz kap. 6.) a krátkodobé výrazné výkyvy v hodnotách δ¹⁸O vody.

Ve většině, dominantní části hydrogeologického povodí svatojanského pramene odtéká povrchový odtok a rychlý oběh podzemní vody vázaný na připovrchovou zónu zvětralin a reliktní křidly a neogenní částečně do povrchových tektonických mimohydrogeologických povodí svatojanského pramene. Část podzemní vody se dostavá prostřednictvím zvětralin a drobných puklin připovrchové zóny i prostřednictvím přímých krasových vstupů do hlubších částí hory hříškopoští skynkoviny, kde vytváří hlavní zdroje studovaného pramene.

V rámci vodopádových z hlavní části hydrogeologického povodí pramene lze rozlišit dvě složky, složku získanou v podzemí v řádu prvních měsíců a objemově nejvýznamnější složku s velmi pomalým oběhem a velkou dobovou ztrátou. Je zjevné, že voda velmi pomalého oběhu tvoří podstatnou část vývěru pramene (v průměru 60–70 %, v obdobích s nedostatkem srážek přes 90 %). Odhad velikosti kolektoru i modelování na základě aktivit triodia odpovídá střední době zdržení mobilní vody zhruba 22 let. Podle zvýšené teplopt může tento typ oběhu zasahovat hluboko pod drovečí dna údolí Kačáku, a tedy pod úroveň hladiny vody.

Voda rychlého oběhu s průměrnou dobou zdržení v podzemí v řádu prvních měsíců představuje relativně rychlé odvodnění stěžejních komunikujících puklin i krasových dutin, které jsou však buď zatížené sedimenty, nebo spojeny s vývěrovým systémem jen drobnými puklinami. Tato složka se vytváří nejen v geografickém povodí pramene, ale i v podstatné části hydrogeologického povodí. Představuje zpravidla do 30 % vývěrající vody a vnáší do záznamu parametrů pramene dlouhodobé výkyvy výdatnosti v řádu měsíců a variabilitu v koncentracích a izotopovém složení rozpuštěných složek. Hlavní podzemní vody v této komunikující stíh mikropuklin, puklin a krasových dutin je v hlavní části hydrogeologického povodí zakleslý desítky metrů pod povrchem, v závislosti na snížené výšce oblasti osciluje až o 20 m a vyprázdnění systému po velmi vydatných snížkách trvá mnoho měsíců. Pokud jsou zaplavení tohoto systému a hydrostatický tlak v těmto době přítomen, v rámci snížení vývěru částečně omezení vývěru vody s velkou dobou zdržení. Tím dochází k zvýšení hodnot δ¹⁸O okolo hodnoty podzemní vody s velkou dobou zdržení. Tento mechanismus tvorby a vyprázdnění podzemní vody v systému svatojanského pramene byl použit pro diskusi chemismu.

6. Chemické složení vody svatojanského pramene a její kontaminace nitráty

6.1. ÚVOD

Většina krasových pramenů na území Českého krasu má ve svých povodích kromě zalesněných ploch i zemědělské půdy, na kterých probíhá intenzivní hospodaření. Státem dotovaná aplikace průmyslových a statkových hnojiv (hlavně v šedesáti až osmdesáti letech) vedla k po- stupnému zralé koncentrací nitrátů v podzemních vodačích (Kadlecova – Žák 1998). Mnoho pramenů v oblasti Českého krasu má dnes koncentrace nitrátů v rozmezí 50 až 100 mg l⁻¹. Jako příklad lze jmenovat pramen Petránka v Karlickém údolí, pramen vodovodu ve Vronských nebo Kostkou v Rybníku. Většina těchto vodních zdrojů
překročila nevyšší doporučenou hodnotu obsahu nitratů podle ČSN 75 7111 „Pitná voda“ (tj. 50 mg l-1) kolem poloviny osmdesátých let. Prameny odvádějící zásahové povodí se svými oblastmi nitratů pohybují v současnosti většinou mezi 10 a 20 mg l-1.


Pro určení významu jednotlivých biogenických konverz v cyklu dusíku, jako jsou např. nitritačka a denitrifikace, nejsou data o obsazích jednotlivých forem dusíku v půdách a podzemních vodách postačující, protože neumožňují kvantifikovat význam jednotlivých procesů. Proto je třeba kombinovat data o obsazích jednotlivých forem dusíku se studiem změn v izotopovém složení dusíku. Větších bakteriálních konverz v cyklu dusíku je spojena se značnými izotopovými frakcemi.

Pro studium kontaminace podzemních vod dusíkatými látkami a jejich vývoj v čase je krasové prostředí mimořádně vhodné z několika důvodů. Vzhledem k hlboké zalesněné hladině podzemní vody a tedy velmi mocně nesaturované zóně, v se v půdách krasových oblastí se vytváří s redukčními podmínkami umožňujícími denitrifikaci bakteriální reakce je v menší míře. Dominantním procesem v cyklu dusíku v krasových půdách je nitritačka – bakteriální oxidace organického dusíku. Jakmile podzemní voda opustí půdní profil a vstoupí do horninového prostředí, chovají se nitrity (vzhledem k převážně oxidaci nitrátu a povětšinou rychlému transportu) v podstatně konzervativní a jejich obrazy ani izotopové složení se již většinou významně němují.


6.2. NOVÉ VÝZKUMNÉ PRÁCE, LOKALIZACE A CHARAKTERISTIKA STUDOVANÝCH OBJEKTŮ


Pro posouzení chemismu typů vod, které mohou dotovat hlavní zdroje svatojanského krasového pramene, a pro sledování cyklu dusíku v jeho povodí bylo průběžně zkoumáno i chemické složení vod a izotopové složení dusíku rozpuštěných nitratů v dalších třech vybraných objektech v infračervené oblasti pramene nebo v jejím těsném okolí – v Bubovicím potoce, ve studni u Kozolup a v prameni v Sediči. Kromě toho bylo jednorázově ve vegetačním období stanoveno i zastoupení forem dusíku a jejich izotopové složení v půdních profiloch ve dvou kopaných sondách. Získaná data jsou v tabulární formě shrnuta v příložích 13 (základní chemismus vod), 14 (koncentrace některých stropových prvků a kontaminantů ve vodách), 15 (izotopová...
data dusíku nitrátů), 16 (popis půdních profilů) a 17 (analytická data zemědělských půd z jednotlivých půdních horizontů).

6.2.4. Bubovický potok


6.2.5. Kopané půdní sondy

Dvě kopané sondy pro odhled půdních vzorků a analýzu hlavních hornin dusíku a jejich izotopového složení v jednotlivých půdních horizontech byly vybouzeny v hlavním vegetačním období dne 11. 6. 1996. Pro vyh Luceni sondy byla vybrána dvě místa s odlišným skalním podložím a s rozdílnou historií hnojení v posledních třech letech (lokalizace viz obr. 23).

Půdní sonda lokalizovaná na vápencovém podkladu se nacházela z. od Vysokého Újezdu, na jižní straně lesíka Čítovice asi 150 m ss. od kóty 421 na křižovatce polních cest, v nadmořské výšce zhruba 422 m n. m. Aktuální porost v době vzorkování představovala šporka. Zaznamenali byl hora nad podkladem v 10. 6. 1995 u 150 m n. m. Většina zemědělých půd byla hnojená rolární hnojiva. Sonda byla postavena na obdu vznikla v letech 90. z hnojení a jeho efektivita se odhledal podloží na místě.
6.3. CHARAKTERISTIKA CHEMISMU POVRCHOVÝCH A PODZEMNÝCH VOD VE STUDOVÁNÍM POVDÍ

6.3.1. Svatojanský krasový pramen

Svatojanský krasový pramen má malou variabilitu chemického složení vody. Jde o vodu molárního typu HCO₃−Ca-SO₄, s celkovou mineralizací zpravidla mezi 680 a 690 mg. l⁻¹. K poklesu celkové mineralizace a změně poměru hlavních složek dochází zřídka, po velmi vydatných dešťích, kdy celková mineralizace klesne v důsledku většího zastoupení podzemního vod rychlého oběhu ze zalesněného geografického podvědu pramenu (viz též kap. 5.7.1. - vyhodnocení podílu přímo vstupujících srážek na základě δ¹⁸O). Přímý vstup srážek a povrchových vod způsobuje pokles koncentrací nitrátů, chloridů a řady dalších rozpuštěných solí. Opáčná tendence je patrná v případě sulfátů.

Poměrně vysoké koncentrace sulfátů ve všech vodách ve studovaném povodí vznikají oxidací pyritu v sedimentárních horninách, nelze však vyloučit ani vliv hnojiv (sříman amoným, superfosfát). Povrchový a mělký podzemní odtok ze zalesnění částí území tvorového prahočelí a příležitostmi srbského souvrství (sůlů svahové prameny a potok Pod Boubouvou, povrchový tok vstupující do občasného poronu Arni, viz data v příloze 13) vykazují velmi nízké koncentrace nitrátů (i pod 1 mg. l⁻¹), ale anomálně vysoké koncentrace sulfátů, běžně přes 200 mg. l⁻¹. V případě sulfátů tedy dochází po vydatných srážkách ke zvýšení koncentrací sulfátů v prameni. Nejvyšší obsahy sulfátu byly proto zjištěny ve svatojanském prameni v období vysokých výdatností v červnu 1995 (111 mg. l⁻¹).

Kromě vysokých obsahů nitrátů, které budou podrobněji diskutovány níže, jsou zde koncentrace dalších dusičnatých látek (dusítanů, amoným i chloridů) v vodě svatojanského prameni pod mezí detekce použitých analytických metod. Byly stanoveny i obsahy tenzidů, nepolárních extrahovačných látek (NEL) a pesticidů, které byly vesměs pod mezí detekce. Nízké jsou i obsahy fosforu a těžkých kovů (viz příloha 14).

Ve starších pracích z počátku století jsou uváděny analyzy udávající velmi vysoké koncentrace lithia v vodě svatojanského prameni (např. většina citovaná analýza dr. Kučery z počátku 20. století uvádí 0.0763 g Li₂CO₃ v litru), tedy zhruba 14,3 mg Li⁺ v litru). Zvýšenému obsahu lithia byly přikládány lečivé účinky. Nově provedené analýzy zvýšené obsahu lithia nepotvrdily (viz příloha 13).

Stanoveno bylo i izotopové složení síry rozpuštěných sulfátů ve vodě svatojanského krasového pramenu a některých dalších studovaných obdobích (tab. 9). Izotopové složení síry sulfátů ve vodě svatojanského pramenu je blízko hodnoty 0 % a pravděpodobně reprezentuje průměrnou hodnotu pro diagenetické sulfidy ve větších pásmách. Podzemní voda vyvěrající v kotelně kláštera a v jeho studně vykazuje nižší hodnoty δ³⁴S, jako důsledek dílčího měšení vod Kačák, který přináší z kladského oblasti sulfát s nižšími hodnotami δ³⁴S. Bubovický potok měl vyšší hodnotu δ³⁴S sulfátu.

Zda je to příčinnou odlišné izotopové složení síry v sedimentech srbského souvrství nebo větší podíl sulfátu z průmyslových hnojiv (sříman amoným i superfosfát mají mírně pozitivní hodnoty δ³⁴S) nelze jednoznačně říci.

Izotopové složení uhličku rozpuštěného bikarbonátu má v svatojanském krasovém prameni během sledovaného období nevelké nepravidelné změny (viz obr. 42). Izotopové složení uhličku bikarbonátu krasových vod obecně odlišný měšení uhličku ze dvou hlavních zdrojů: CO₂ půdního původu, který vzniká v půdním profilu zejména bakteriální oxidací organické hmoty (δ¹³C okolo -25 %) a uhličku z rozpuštěných paleozoických vápenců (δ¹³C okolo 0 %). Zjistěné změny jsou důsledkem variabilit půdních procesů a do systému je vžádlo složení výhodněm oběhem (viz kap. 5). Lze předpokládat, že dominující složka s dlouhým zdržením v podzemí bude mít hodnoty δ¹³C bikarbonátu téměř konstantní v čase. Nejvyšší hodnoty δ¹³C bikarbonátu byly zjištěny na podzim roku 1994, tedy po několikatém srážkovém desfinitivním období, kdy byly velmi vysoké hodnoty δ¹⁸O vnitřního obsahu Mg. Hodnoty δ¹³C bikarbonátu a hodnoty δ¹⁸O vodních pramenů krasového pramení korelovali.

6.3.2. Pramen v Sedlič

Krasový pramen v Sedliči s výdatností zpravidla pod 0,1 l. s⁻¹ charakterizuje podzemní vody v krasovém území krytém lesním porostem. Celková mineralizace, nejčastěji v rozmezí 690 až 740 mg. l⁻¹, je oproti svatojanskému prameni mírně vyšší, zejména díky vyšším koncentracím sulfátů i mírně vyšším koncentracím bikarbonátu. Oproti svatojanskému prameni pfetězelné vyšší obsah Mg je výsledkem interakce podzemní vody s diabasy. Pramen vykazoval po celé sledované období nízké obsahy nitrátů (mezi 9 a 19 mg. l⁻¹) a chloridů (pod 10 mg. l⁻¹). V zimním období se pravidelně objevuje mírně zvýšené obsahy amonýmch iontů do 0,4 mg. l⁻¹.

6.3.3. Studna u Kozolup

Obsah nitrátů ve sledované studně u Kozolup kolísal ve sledovaném období mezi cca 75 a 90 mg. l⁻¹ a celková mineralizace se pohybovala nejčastěji mezi 800 a 900 mg. l⁻¹. Od-
Přestože jsou hodnoty izotopového složení jednotlivých zdrojů dusíku značně odlišné, není určeno pravděpodobného zdroje kontaminace jednoduché a často ani jednoznačné. Důvody pro to jsou několik:

a) probíhající reakce – mezi jednotlivými formami dusíku obecně dochází tak v nenásycené zóně, tak v zóně k bakteriálně kontrolovaným reakcím – oxidací a redukci. Během těchto reakcí se vzhledem ke kinetice izotopové frakcované (nestabilní rychlosti jednotlivých izotopových speciál) mění izotopové složení reaktantu i produktu. Tyto změny zázemí na rozsahu a typu reakce, reakčních podmínek a typu reakčního systému (jeho otevřenost či uzavřenost vůči reakčním produktům).

V podmínkách krasových oblastí probíhají tyto reakce, zejména v půdních horizontech, a představuje je hlavně nejběžnější reakce – nitrifikace (bakteriální oxidace), při níž je mineralizovaný dusík v amonné formě transformován na dusitany a nitrat. Tato reakce je doprovázena v otevřeném reakčním systému (výstup vody a výstup reaktantů i produktů) změnou δ¹⁵N o hodnotu ε, která se pohybuje mezi 10 a 25‰ (Hübner 1986):

\[ δ¹⁵N_{NO_3} = δ¹⁵N_{NH₄} + ε \]

Reakční produkt má tedy nížší hodnotu δ¹⁵N než reaktant. Pokud by takový proces probíhal v systému s omezeným rezervórem amonných i nitrátů, budou se hodnoty δ¹⁵N zbytkového dusíku v amonné formě zvyšovat. Je důležité vědět, že trocha dusitého znečištění vody, musíme tedy monitorovat jak nitráty, tak i amonné ionty, ze kterých jsou vytvářeny.

Tabulka 10. Typické izotopové složení dusíku hlavních možných zdrojů, hodnoty δ¹⁵N v ‰ proti vzdušnému dusíku; data izotopového složení atmosférických forem dusíku podle Buzka et al. (1998a)

Table 10. Typical isotopic composition of nitrogen of possible nitrate sources, δ¹⁵N values in ‰, relative to air N₂ (data for air-borne species after Buzka et al. 1998a)

<table>
<thead>
<tr>
<th>zdroj N</th>
<th>atmosférický NO₃</th>
<th>atmosférický NH₄⁺</th>
<th>anorganický NO₃ či NH₄⁺</th>
<th>organický NH₄⁺</th>
<th>organický NO₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ¹⁵N (%)</td>
<td>-6 až +8</td>
<td>-14 až +2</td>
<td>-3 až +2</td>
<td>+12 až +30</td>
<td>+5 až +20</td>
</tr>
</tbody>
</table>
6.5. SEZONNÍ ZMĚNY V OBSAZÍCH NITRÁTŮ
A V IZOTOPOVÉM SLOŽENÍ JEJICH DSUŠÍ
VE SLEDOVANÝCH OBJEKTECH
A VYHODNOCENÍ VLIVU
JEDNOTLIVÝCH ZDROJŮ DSUŠÍ NA KONTAMINACI KRÁSOVÉ ZVODNĚ

6.5.1. Izotopové složení dusíku v kopaných půdních sondách

Abychom získali obraz o rychlosti postupu a konverzích jednotlivých forem dusíku v zemědělských půdách, bylo analyzováno zastoupení jednotlivých forem dusíku a jejich izotopové složení na dvou místech (Vysoký Újezd = VU a Bubovice = BV) v infiltrační oblasti promene s velmi odlíšnou historií hnojení v několika letech předcházejících vzorkování. Lokalizace a popis kopaných půdních sond jsou v obrázku 23 a v příloze 16. Analýza izotopového složení zdrojů dusíku a studium agronomických záznamů o aplikovaných hnojivech by měly být dostatečně k rekonstrukcii izotopového složení nitrátů infiltrujících do zvodně. Vzory byly odebrány v relativně suchém období, půda byla pod hranicí maximálního nasycení kapilární vodou.

Vzorky jednotlivých půdních horizontů (vzorek B25: Bubovice, hloubka 0 až 25 cm; vzorek B71: Bubovice, hloubka 25 až 71 cm; vzorek B100: Bubovice, hloubka 71 až 100 cm; vzorek B110: Bubovice, hloubka 100 až 110 cm; vzorek VU25: Vysoký Újezd, hloubka 0 až 25 cm; vzorek VU71: Vysoký Újezd, hloubka 25 až 71 cm; vzorek VU121: hloubka 71 až 121 cm; vzorek VU140: Vysoký Újezd, hloubka 121 až 140 cm) byly homogenizovány a množství a izotopové složení amonlivých a nitrátových iontů bylo určeno z půdního extraktu pro jednotlivé půdní horizonty extraktem 500 g půdy v 1 litru jednomárného roztoku KCL. Výsledky jsou shrnuty v obrázcích 43 a 44.

Amonlivé ionty přítomné v obou půdních profiltech jsou organického půdového a vůbec cíleně nitrifikované. Nevyšší koncentrace amonlivých iontů byly zcela podle očekávání nalezny v nejsvětřších horizontech sondy u Bubovic, na pozemku, kde byl v posledních letech používán výhradně hnojiva.

Hodnocení půdového nitrátu je složitější. Podle očekávání měly nitráty ze vzorků VU25, VU71 a VU121 hodnoty 815N v oblasti typické pro anorganická průmyslová hnojiva, zatímco vzorky B25, B71 a B100 nitráty odvozené od organického amonlivého dusíku. Nitráty ze nejhlubšího jílovitého horizontu (VU140) v sondě u Vysokého Újezda je také organického půdového. Překvapivá byla nízká hodnota 815N nitrátu ve vzorku B110 – ze nejhlubšího půdního horizontu. Zřejmě jde o směsný nitrát odvozený z aplikace průmyslových hnojiv během drživých období. Z těchto dat je patrná výrazná jak hluboká, tak i geografická (a časová) nehomogenita v izotopovém složení dusíku nitrátů. Tato nehomogenita v geografickém smyslu a časová prodleva mezi aplikací a infiltrací komplikuje odhad izotopového složení dusíku nitrátů vstupujících do zvodně.
43. Koncentrace amonických iontů a jejich δ^{15}N ve výluzích ze vzorků půd ze sond v zemědělských půdách infiltráční oblasti Pramene.

44. Concentration and δ^{15}N of ammonium ions in soil solutions of agricultural soils in the spring recharge area.

44. Koncentrace nitrátů a jejich δ^{15}N ve výluzích z půdních vzorků ze sond v zemědělských půdách infiltráční oblasti Pramene.

44. Concentration and δ^{15}N of nitrate ions in soil solutions of agricultural soils in the spring recharge area.

6.5.2. Sezónní variabilita koncentrace a izotopového složení dusíku rozpuštěných nitrátů v monitorovaných objektech v Infiltráční oblasti

Konzentrace nitrátů a izotopové složení dusíku nitrátů monitorovaných objektů se mění v průběhu roku v závislosti na biologické aktivitě v mělké půdní zóně a na době zdržení podzemní vody, respektive v závislosti na zastroupení vod s různou dobovou zdržením v jednotlivých studovaných objektech. Výsledky analýz jsou shrnuty v obr. 45.

Krasový pramen v Sedlici vykazuje postupně se zvýšující obsah nitrátů, který je ovšem hluboko pod řvrností ostatních studovaných objektů více ovlivněných zemědělskou činností. Podle izotopového složení dusíku jsou nitráty převážně anorganického původu a jejich nárůst může souviset se zvyšováním koncentrací oxida dusíku ve srážkách v posledních desetiletích. V období červenoprosinec 1996 se v prameni objevily nitráty organické. Tyto poměrně rychlé změny byly pravděpodobně způsobeny změnou režimu pramene, kdy v období podstatné výšších srážek došlo k intenzivnějšímu vymývání dusíku vodami rychlého podzemního oběhu. Studiem tohoto objektu prokázalo, že poměrně stálý podíl vod infiltrujících do krasového podzemí v zalesněných plochách není pro posouzení vývoje nitrátové kontaminace v hlavní zvodní svatojanského pramene podstatný.

Sezónní výkyvy v koncentracích a izotopovém složení dusíku nitrátů vykazuje i další studovaný objekt – studna u Kozolup. Voda ve studně má ze všech sledovaných objektů nejvyšší koncentrace nitrátů. V obdobích vysokého hladinového podzemní vody a protoku vody je patrný výššíí podíl nitrátů organického původu příznaky zvýšených vodou mělkého oběhu. V takových obdobích, kdy je hladina ve studně zaznamená několik metrů pod povrchem, dominují směšné nitráty. Data z tohoto objektu dokazují, že i několik
let po omezení dávek hnojiv jsou koncentrace nitrátů v infiltrujících vodách v oblasti s ornými půdami velmi vysoké. Během monitorovacího období byl patrný nepravidelný mírný pokles koncentrací nitrátů.


6.5.3. Variabilita koncentrací nitrátů a izotopového složení jejich dusíku ve svatojanském krasovém prameni

Svatojanský pramen měl, oproti pozorovaným objektům v infiltrační oblasti, během sledovaného období méně variabilní obsah nitrátů a kromě velkého výkyvu na počátku monitoringu i méně variabilní $\delta^{15}N$ (obr. 45, 46). Zjištěná variabilita koncentrace nitrátů a jejich hodnot $\delta^{15}N$ je ve

45. Časová variabilita obsahu nitrátů a jejich hodnot $\delta^{15}N$ ve vodě svatojanského pramene, Bubovického potoka, studny v Kozolupech a pramene v Sedlci.

46. Variabilita obsahu nitrátů a jeho hodnot $\delta^{15}N$ ve vodě svatojanského pramene během sledovaného období.

46. Variability of nitrate content and $\delta^{15}N$ in water of the Svatý Jan pod Skalou spring, Bubovice creek, Kozolupy well and Sedlec spring.
svatojanském prameni dána složitou tvorbou podzemního odtoku a různorodostí zdrojů nitrátů.

Zobrazíme-li všechny monitorované zdroje do závislosti δ15N na obsahu nitrátů (způsob určení výchozích zdrojů směsi, viz obr. 47), jde odvodit obsah nitrátů ve svatojanském pramenci a jejich izotopové složení mšením dvou typů vod odpovídajících lesnímu prostředí (reprezentovanému pramenem v Sedlici) a prostředí zemědělských půd (studna v Kozolupech).

Tato interpretace postrádá logiku koncepčního modelu, protože typy vod, představované uvedenými dvěma objekty, jistě nepopisují geografickou a časovou variabilitu v možných zdrojích nitrátů ve skutečné infiltrační oblasti. Mimoto Bubovický potok, který sbírá nitráty v infiltrační oblasti svatojanského pramene, má výrazně odlišné hodnoty δ15N. Soustředí se proto na vlastní analýzu dat z pramene.

6.6. MODELOVÁNÍ VZNIKU A DALŠÍHO VÝVOJE NITRÁTOVÉ KONTAMINACE SVATOJANSKÉHO PRAMENE

Rozložení bodů v grafech závislosti koncentrace nitrátů a δ15N (obr. 48) a koncentrace chloridů a δ18N (obr. 49) je obdobné a naznačuje dvě linie mšení, které odpovídají třem koncovým členům:

a) složce s nízkými koncentracemi chloridů a nitrátů a nízkými hodnotami δ15N, což jsou vody z lesní části povodí, tedy převážně přímo vstupující srážky, uplatňující se bezprostředně po vydatných dešťích (typické hodnoty δ15N okolo -4 až -6‰ a obsahu nitrátů pod 10 mg. l⁻¹),
b) složce s vysokými koncentracemi chloridů a nitrátů a vysšími hodnotami δ15N, která odpovídá střední době zdržení a reprezentuje vyprázdnování krasově-puklínové části zvodně (rychle infiltrované srážky po vydat-
ných dešťích hlavně v letním období, v hlavní části po-
vodí se zemědělsky obdělávanými půdami, způsobují
vymývání volných nitrátů produkovaných částečně nitrifi-
kací (δ^{15}N +7 %o a koncentrace nitrátů 60 mg l^-1), a
c) složce s vysokými koncentracemi chloridů a nitrátů
s hodnotou δ^{15}N blízkou hodnotám průmyslových hnoj-
iv, představující podzemní vody s velkou dobou zdře
žení, kontaminované nitráty zejména v minulosti, během aplikace vysokých dávek průmyslových hnojiv
v šedesátých až osmdesátých letech (δ^{15}N okolo +2 %o a koncentrace nitrátů zhruba 52 mg l^-1).

Takovýto koncepční model je plně v souladu s modelem
tvorby odlouku a zároveň není v rozporu s datovým soubo
rem obsahu a izotopového složení nitrátů. Použijeme-li
však hodnoty obsahu a izotopového složení nitrátů těchto
dobových článků a dosadime je do výpočtu modelu tvorby
odloku podle Yurtsevera (1983, viz. kap. 5.), je rozdíl

mezi změřenými a vypočtenými hodnotami δ^{15}N nitrátů ve
vodě svatojanského pramene větší, než můžeme pokládat
za uspokojující (obr. 50). Vypočtená křivka variability
δ^{15}N je oproti průměrným datům podstatně více vyhla
zena.

Důvodů větší variability skutečných dat oproti modelu je
více, hlavní přičina je však v dosazení odhadnutých prů
měrných hodnot koncentrace nitrátů a δ^{15}N u jednotlivých
složek. Přímo krasovými vstupy infiltrované srážky a po
vrchový odtok v údolí Propadě vody a její zeměna složka
s rychlým oběhem ve skutečnosti vykazují jak časovou, tak
regionální variability koncentrací nitrátů a jejich izotopo
vého složení v závislosti na změnách v aplikaci hnojiv,
na změnách teploty a změnách v množství srážek. I nejdé
ležitější komponenta - voda z hlavní části zvětšuje s velkou
dobou zdržení - prodlužující během času určitý vývoj kon
centrace nitrátů a jejich hodnot δ^{15}N.

49. Závislost hodnot δ^{15}N a koncen-
trace chloridů ve vodě svatojanského
pramene.

49. Nitrate δ^{15}N vs. chloride concen-
tration plot for the Svatý Jan spring.

50. Porovnání variability δ^{15}N vypoč
tené dosazenou odhadnutých koncen-
trací nitrátových složek a její
izotopového složení dutku do
hydrologického modelu (Yurtsever
1983) s průměrnými hodnotami δ^{15}N ve
svatojanském krasovém pram

50. Comparison of δ^{15}N variability
calculated using estimated nitrate
concentrations and δ^{15}N values of
individual components, and hydrolo-
gical model of Yurtsever (1983), and
directly measured nitrate δ^{15}N values
in the Svatý Jan spring.

52. Odhad průměrných koncentrací nitrátů v infiltrujících srážkách v změnění část v povodí a odhad vývoje koncentrace nitrátů ve zvodní s velkou dobou zdržení.

52. Estimate of average nitrate concentrations in waters in the cultivated part of the recharge area and estimate of evolution of nitrate concentration in the main aquifer with long residence time.

Pro zpřesnění modelu vývoje koncentrací nitrátů a jejich hodnot δ¹⁵N ve vodě svatojanského krasového pramene jsme se pokusili na základě známých dat odhadnout časové změny vstupních parametrov jednotlivých složek a zpřesnit odhad jejich poměrů.

6.6.1. Časový vývoj koncentrace a izotopového složení nitrátů podzemní vody s velkou dobou zdržení v hlavní zvodní

Protože podzemní voda s velkou dobou zdržení tvoří největší složku svatojanského pramene (v průměru 60 až 70 % vyvěrající vody, viz kap. 5.), je odhad časového vývoje koncentrací nitrátů a jejich hodnot δ¹⁵N u této složky zásadní pro modelování vývoje nitratové kontaminace pramene. Pro výhled vývoje nitratové kontaminace hlavní zvodné do budoucnosti je výpočet založen na poznatkách o velikosti a tedy střední době zdržení vody v této zvodně, získaných na základě dat koncentrací tritia a izotopů kyslíku. Pro stěhování nitrátů ve zvodně byl použit stejný předpoklad jako pro tritium či izotopy kyslíku — uvažuje se pouze s objemem mobilní vody.

Vsypky do zvodně ve vzdálenější minulosti, tedy koncentrace nitrátů a jejich δ¹⁵N v infiltrujících srážkách, je obtížné určit. Vzhledem k průměrné době zdržení vody v hlavní zvodně okolo 22 let (viz kap. 5.7.2.) nejsou parametry infiltrujících srážek z období chruba před rokem 1970 pro kalibraci modelu důležité. Za období od roku 1971 do současnosti je k dispozici dostatek dat o obsazích nitrátů ve vodě svatojanského pramene, nikoliv však dat o chemismu dalších objektů v infiltrační oblasti. Vývoj koncentrací nitrátů ve vodě svatojanského pramene za období 1971–1997 ukazuje obrázek 51. Koncentrace nitrátů ve vyvěrající vodě v tomto období nepravidelně rostly, v průměru o 1 mg ročně. Za tři roky podrobného sledování
6.6.3. Časový vývoj koncentrace nitrátů a hodnot $\delta^{15}N$ podzemní vody rychlého oběhu

Srážky přimějí vstupovat do termální části systému krasovými vstupy v zalesněném údolí Propadlé vody v srážkovej bohatých obdobích řeďí (vzhledem k své nízké koncentraci nitrátů) zbývající dvě složky, na izotopové složení dusíku nitrátů ve vyvádíčí vodě však nemají podstatný vliv. Zjistěním variabilit $\delta^{15}N$ ve svatojanském vývěru proto způsobují podzemní vody rychlého oběhu v zemědělské části povodi.

Pokud použijeme odhad koncentrace nitrátů a jejích izotopového složení ve složce s velkou dobou zdržení (kap. 6.6.1., koncentrace nitrátu zhruba 50 mg . l$^{-1}$ a nárůst o 2 mg . rok$^{-1}$, $\delta^{15}N$ okolo +2%), jsou oba izotopové složení vody rychlého oběhu závislé pouze na oddadu poměru zastoupení složek poramečního a rychlého oběhu.

Pro vypočtené odhady zastoupení jednotlivých složek byl ze změněných koncentrací nitrátů vypočten časový vývoj koncentrace nitrátů pro vody rychlého oběhu v zemědělské části povodi a pomocí této závislosti odhadnuty ze změněných hodnot $\delta^{15}N$ v odrocích i hodnoty $\delta^{15}N$ vody rychlého oběhu. Vypočtené závislosti se dobře shodují s experimentálními daty (viz obr. 53).

Vypočtené izotopové složení dusíku nitrátů ve složce s rychlým oběhem má tři lokální maxima (v zimařích měsících), respektive minima (v letních měsícech, nitráty spořádají biologické procesy). Během zimního období dochází...
6.7. KONTAMINACE PRAMENNE NÍTRATY – SHRNUTI

Provedené monitorování koncentrací nitrátů a jejich hodnot 85K g N v několika objekttech v infiltrační oblasti pramene a ve svatojanském prameni samotném umožňuje odhad vývoje kontaminace krásové zvědově do budoucnosti.

Koncentrace nitrátů v povrchových a mělkých podzemních vodách v infiltrační oblasti v současné době jen dosáhla nízkých kladných hodnot po roce 1990, ale koncentrace nitrátů v prameni samotném zatím stále roste. Přičemž je nejhorší:

a) Vzhledem k působivě době zdržení podzemní vody po-máloho oběhu ve zvodní zhruba 22 let se pokles koncentrací nitrátů v infiltrovacích vodách může projít až s příslušným zpožděním. Voda vyvěřovací koncem devadesátých let infiltrovala v průměru koncem sedmdesátých let, kdy koncentrace nitrátů v infiltrovací vodě ještě výrazně rostly. Pokračující měrný nárůst koncentrací nitrátů ve vodě pramene lze očekávat nejméně do roku 2005.

b) Pokles koncentrací nitrátů v vyvěračích vodách v bu-doucnosti může být brzden postupným vymýváním nitrátů z mociích soustav ve vodách, zaplňujících nerovný krasový povrch v infiltrační oblasti.

c) Pokles koncentrací nitrátů v vyvěračích vodě může být dále brzden i difúzi nitrátů ze zemní vody v hlavní zvodní do vody mobilní. Vzhledem k tomuto skutečnosti bude neohodnocený pokles koncentrací nitrátů ve vodě pramene asi podstatně pomaleji než udává modelová kalkulace uvažující pouze mobilní vodu.

Poděkování


Při vyčištění výzkumné šachtice v pícnovcích ve Světém Janu pod Skalou a jejím následném zabezpečení nám poskytl neocentenčnou pomoc jeskyňáři Z 0 - 05 Geospeleo os České speleologické společnosti a členové Společnosti pro zachování důlních a průmyslových památek Barbor.

Díky jejich terénní aktivitě a včasnému objevu občasného ponoru Arnika po anomálních srážkách v červnu 1995 bylo možné i provedení stopovací zkoušky z tohoto ponoru.


Za technickou pomoc při připravě rukopisu děkujeme Mgr. I. Jačkové, Jazykové úpravu anglicky psaných tabulek, popisů obrázků a anglického resumé provedl dr. M. Novák.

Za zvětrně recenzii posouzení rukopisu práce, jakož i připomínky a doplňky, které podstatně přispěly k jeho zkvalitnění, děkujeme oběma recenzentům, doc. J. Kovandovi a prof. J. Šilářovi.