THE MAPPING OF GEOLOGICAL STRUCTURES

Krystof Verner
Czech Geological Survey in Prague
Czech Republic

Content:

1. Part

Introduction to structural geology
Fabrics and structures of rocks
Mapping techniques of field structural research

2. Part Field course of structural mapping

3. Part

Tectonic evolution of the Main Ethiopian Rift (MER)
Structural data processing and interpretation

STRUCTURAL GEOLOGY

Structural geology is the three-dimenstional study of processes and products of deformation of sedimentary, magmatic and metamorphic rocks.

The main goal of **structural geology** is to use tectonic measurements of rock anisotropy to uncover information about the history of rock deformation and understanding the regional stress field.

Structural geology is also important for engeneering geology, which is concerned with the physical and mechanical properties of natural rocks.

Fabrics and structures of rocks (brittle, brittle-ductile and ductile) such as e. g. faults, joints, folds and foliations are internal weaknesses of rocks which may affect the stability of underground depositories.

METHODS OF STRUCTURAL RESEARCH

Field structural mapping and microstructural analyses

Description of structures and textures including analyses of their temporal and space relationships

Application of analytical methods in structural geology

Verification of field-structures using by analytical methods

Geophysical methods such as gravity or seismic modelling Remote sensing and image interpretation

Processing of synthetic structural map and 3D sross-sections

DEFORMATION:

Modification of shape and original structures of rock as the efect of regional stress-field

EVOLUTION DES AXES PRINCIPAUX DE LA DEFORMATION

cisaillement pur, déformation coaxiale

cisaillement simple, déformation non coaxiale

Pure Shear

Angles and sizes (sides) of deformed object remain unchanged

Simple Shear

Angles between the sides of the original object changes

Transpression

1/a	g(a-1)ln a	0
0	1	0
0	$\boldsymbol{\mathit{O}}$	a

Simple shear and pure shear act simultaneously

Transtension

Mezoscopic evidence of regional strain-field

Mezoscopic structural observation provides basic information about

type,

character,

orientation,

relationships

of the fabrics or structures.

Micro-scale evidence of regional strain-field

Size
Distribution
Internal structures
Preferred orientation
Mineral composition

Micro-scale observation brings additional information about evolution of rocks

Strain-rate

Mechanisms of deformation

PT condition of deformation

DEFORMATIONAL STRUCTURES:

- A. Non-tectonic structures originate close to the Earth's surface, most likely due to gravitational forces
- B. Tectonic structures are related with regional stressfield as the response to geodynamic (tectonic) processes

NON-TECTONIC STRUCTURES

Folds as a result of mud-flow

TECTONIC STRUCTURES:

Primary structures

Primary structures are related with the origin of rocks

Sedimentary bedding Preferred orientation of minerals in magmatic rocks

Secondary (superimposed) structures

Their origin is related according to regional stress-field

Superimposed metamorphic foliation Cleavage

Tectonic structures

On the basis of different strain regimes we can distinguish several deformational stages:

FIGURE 10.6 Rocks are deformed by folding or by faulting when they are subjected to different kinds of tectonic forces. Geologists see the pattern of deformation in the field and infer the nature of the forces that caused it.

EXTENSIONAL REGIME - Rifting

Tectonic model of development of Variscan root

Extensional (transtensional structures)
Increasing heat-flow and related HT metamorphism
Magma orgin and ascent and emplacement
Crustal thinning and reduction of topography

COMPRESSIVE REGIME - Collision

Tectonic model of development of Variscan root

ELEVATION

Prograde metamorphism

Magma ascent and emplacement driven by tectonic forces

Thickening of the orogenic root systém

Growth of the topography

The origin of tectonic structures with respect to rheology

Brittle structures

Brittle-ductile structures

Ductile structures

Ductile structures

Deformational structures as the result of regional geodynamic evolution of rocks emplacement processes at higher depth (more than 15 km)

Folded intrusive contact of and magmatic fabric defined by space orientation of K-feldspars

Brittle-ductile structures

Localized planar fabrics of later stages of deformation, often accompanied with retrograde metamorphism and partial recrystallization of rocks (15-10 km in depth)

Shear zone with an evidence right-lateral kinematics (tonalite)

Low-temperature shear structures reflecting thrusting kinematics (migmatite)

Brittle structures

Extensional joints

Faults and joints Results of deformation in brittle environment

Fault plane with kinematic indicators

Primary fabrics in sedimentary rocks

Sedimentary bedding

Primary accumulation planar structure in sedimentary rocks defined by bedding lithology, grain-size, grain-shape and grain-fabrics

Sedimentary structures, composition and character of material gives us information about:

Composition of source material

Processes and conditions of sedimentary deposition

Rate of sedimentation and tectonic evolution of sedimentary basins

Subhorizontal sedimentary bedding (beach sands)

Matrix supported debris-flow deposits (no structure apparent)

Types of cross-bedding

Fabrics and structures of magmatic rocks

Types and shapes of magmatic bodies

Planar and tabular bodies:

Dikes, tabular plutons, lacolites

Eliptical and irregular boides:

stock > 10 km² > pluton > 100 km² > batholith

Pluton / Batholith

Batholith is a magmatic body compound of several plutons

⁴ H. Maluski, unpublished data cited in Janoušek et al.,

J Geol Soc London (1997)

⁵ Dörr and Zulauf
in press Int J Earth Sci

E14°

E13°30'

Lacolite

Tabular body concaved upward with rigid base

Copyright @ 1998 Tasa Graphic Arts, Inc. All rights reserved.

Obligated to upper (brittle) – crustal conditions

Lacolite

Lopolite

Tabular body concaved downward with rigid roof restricted to upper-crustal conditions

Magmatic diapires

Cartoon of a granitic diapir showing the major structural features that should be developed in the granite and the surrounding country rock. Numbers refer to features mentioned in the text. The arrowheads on the lineations indicate plunge directions, rather than flow senses.

Steep-sided regular magmatic body with the shape of reverse tear.

Structural relationships between magmatic bodies and host rocks

Discordant bodies

Concordant boides

Structural relationships between magmatic bodies and host rocks

Posttectonic Syntectonic Pretectonic

Contacts of magmatic bodies in the geological map

Contact / structural aureole

Chilled margins

Fabrics and structures of magmatic rocks

MAGMATIC FOLIATION MAGMATIC LINEATION

Types of fabrics in magmatic rocks

Hypersolidus fabrics

Melt-dominated suspension Crystal-dominated suspension 100 % crystals in magma

Hypersolidus fabric

Submagmatic fabric

Magmatic fabric

Subsolidus fabric

No evidence or rare evidence for crystal-plastic deformation

Magmatic foliation

Porphyritic biotite granite

Magmatic foliation

Medium-grained tonalite

Magmatic lineation

Medium-grained weakly porphyritic granite

Magmatic foliation

Preferred orientation of mafic enclaves

Magmatic foliation

Deflection of K-feldspars around rigid objects

Schlieren layers

Residues after magma mixing Accumulation of mafic minerals

Synmagmatic fracture and faults

High strain-rate

Magmatic folds

Low strain-rate

N S

Magmatic flow-folds Low strain-rate

Magmatic layeringFlow foliation

Subsolidus fabrics

HT (>450°C)

Exclusively deformational fabrics in magmatic rocks related with recrystallization

Ductile (asymmetric folding and shearing, rotate porfyroblasts, S-C fabrics)

LT (<450°C)

Brittle (fracturation, segmentation of rigid parts, faulting)

Localized shear zones, S-C fabrics

Ribbons of quartz aggregates and elongated biotite

Microstructural evidence for subsolidus fabrics

Grain-size reduction

Deformation of biotite aggregates

Overview of possible deformational mechanisms depending on melt (%)

Fabrics of magmatic rocks in the geological map

Fabrics of metamorphic rocks

FOLIATION

A mesoscopically penetrative parallel alignment of planar fabric elements in a rock, usually a metamorphic or magmatic rock.

LINEATION

The subparallel to parallel alignment of elongate, linear fabric elements in rocks.

L, S, a LS fabrics

linear (L>S) fabrics

linear shape fabric

linear crystal fabric

planar (L<S) fabrics

planar shape fabric

planar crystal fabric

Metamorphic foliation

Metamorphic foliation is a penetrative planar fabrics usually produced by deformation and recrystallization of mineral grains to produce planar preferred orientation of new minerals.

Designated as "S" (So to Sx)

Individual types of metamorphic foliation:

1. Cleavage (slaty cleavage)

Sharply superimposed penetrative planar fabric in low-grade fine-grained rocks

Crenulation cleavage is produced by microfolding of a preexisting foliation Fracture cleavage consists of closely-spaced fractures Pressue-solution cleavage produces a mineral segregation along the planes Slaty cleavage

Cleavage plane

Cleavage (slaty cleavage)

Individual types of metamorphic foliation:

2. Metamorphic foliation

Original or superimposed planar fabric in higher-grade metamorphic rocks

Schistosity – foliation defined by preferred orientation of phylosilicates and / or mineral segregation into bands parallel with the foliation

Compositional banding

Mylonitic foliation – a penetrative foliation developed in zones of high-shear strain (ductile shear zones). Typical is tectonic reduction in grain-size of the rocks.

Schistosity defined by preferred orientation minerals

Compositional banding defined by preferred orientation minerals or banding parallel with the foliation

Mylonitic foliation –foliation developed in high strain shear zones.

Mylonite developed along fault zones

SUPERIMPOSITION OF METAMORPHIC FABRICS

Metamorphic lineation

Linear structures are important in structural mapping as than can be used to:

distinguish various deformation phases

determine the kinematics of deformation

Metamorphic lineation

Mineral lineation
Stretching lineation
Crenulation lineation
Intersection lineation
Linear preferred orientation of boudins

FOLDS

Folds are continuous compressional structures. Their origin are related with the deformation of rocks mainly in compressional regime.

Three main structural elements determine the geometry of the fold in space

Fold axis / Hinge line/

The line of maximal curvature

Axial plane

Imaginary plane defined by fold axis and interlimb angle

Wavelength

The distance between adjacent fold axes

Geometry of folds I_Mitection line fold limb

- Fold plane (cleavage)
- Fold axis (b-axis)

Geometry of folds

Symmetric and asymmetric folds

Fold axis and symmetry

Clasification of fold based on interlimb angle

Interlimb angle classification

- Gentle 180°-120°
- Open 120°- 70°
- Close 70°- 30°
- Tight 30°-0°
- Isoclinal 0°

Clasification of fold based on plunge of hinge-line and dip of axial surface

Dip of axial surface

Upright folds
Inclined folds
Recumbent folds

Plunge of hinge line

Horizontal Plunging Vertical

Shear folds

How to make a shear fold

note that layer changes thickness

PASSIVE

Kink-bands

Kink-bands folds occur in strongly foliated rocks

Kinky folds

In rocks with

very strongly-developed layering

(planar anisotropy)

kink
band
kink
band
real
examples

return to menu

Large-scale folds

syncline

Dome and basin structures

Interference of folds

Brittle structures

FAULTS

Faults are brittle to semi-brittle planar discontinuites along which significant displacement has occured

The origin and evolution of **faults** usually form in the upper crust (less than 15 km).

Indentification of faults in the field

- Faults on outcrops
- Evidence for movement (slickensides)
- Brittle deformation of rocks (cataclastic deformation)
- Secondary mineralization and alteration
- Fault-related morphology
- Linear distribution of springs

Faults

Vector of displacement along the fault plane

- Displacement along the fault plane
- Dip-slip and strike-slip component

Geometric classification of faults

Anderson's dynamic classification of faults consideres the stress field responsible for the faulting and simple descriptive scheme based upon the geometry and separation across a fault plane.

Stereographic projection of the faults and stress systems

Translation and rotation faults

Kinematic classification of faults

Sinistral

Normal fault as the evidence of regional exstension

Thrusting fault

Brittle deformation of rocks (tectonic breccia)

Slickensides (fault lineation) on the fault plane

Strike-slip fault

Strike-slip fault

Psedotachylites

Display of faults in geological maps and cross-sections

- Discontinuity of geological units
- Termination of geological units and bodies perpendicular to regional fabrics and lithological contacts
- Repeating of similar sedimentary layers

Horst

Graben

Crust - Mantle -

Large-scale faults

Joints

Joints are planar fracture (cm to km in length) with the origin related with tension (extension) often infilled with remobilised minerals.

Stretch (σ 1) is parallel to the plane of fracture. In some cases evidences of weak shear deformation can be present.

Three genetical groups of joints:

Dilational joints are extensional joints with the fracture plane normal to the principal stress (σ3) during joint formation

Shear joints reveal small amounts of shear displacement. They are often conjugate enclosing angle of 60° or more

Hybrid joints show components of both dilatational and shear displacement

Shear joints

Shear joints reveal evidence for displacement (slickensides) similar to minor faults

Shear joints are often conjugate

SURFACE OF THE JOINTS

Α

Asymmetry of the hackles indicates character of joint origin

Joints often contain some ornaments that indicate the beginning of the promotion of cracks and also show the direction in which the crack propagated.

These characters are:

The beginnings - the original promotion places, which are analogous to the promotion of earthquake hypocenter. These points correspond to locations of defects in the material.

"Vochle"- are straight or curved lines that begin at the beginning, to which also converge.

Ribs - represent the position of the front propagation of cracks during the joint origin. The ribs are generally perpendicular to the vochle.

Joints

Three diferent genetical modes of joints:

- 1) Mode I. Opening
- 2) Mode II. Sliding
- 3) Model III Scissoring

Age relationships of joints

X – **intersection of joints**. It is possible to distinguish relatively younger and older system of joints

Younger joint do not generally cut older joints. They have T or H patterns (upright of the T or the cross-bar of the H)

Column joints in volcanic rocks

The origin of column joints depens on magma flow and rate of magma cooling

Joint is usually terminated by hook shape

Geological map and structural cross-section

Geological map

- Views intersection of geological bodies with the Earth's surface
- Plotted in the horizontal plane (the plane topographic maps)

Geological map provides a three-dimensional image of the distribution, age, shape and orientation of geological bodies and their contacts on the displayed area

Geological and structural cross-section

Display of geological structures and their relationships below the surface

Cross-section is plotted in the vertical plane (section) below the selected line in the geological map

Blockdiagram

The combination of geological maps and structural cross-section

Geological map 1:25.000

Necessary field data for processing of the geological / tectonic map

Locality number

Geographic localization and coordinates

Outcrop description

Lithology and mineral composition

Description and orientation of structural data

Regional fabrics and their relationships Lithological / tectonic contacts Brittle structures (joints, faults)

Drawing of schematic blockdiagram or photograph (oriented)

Orientation data in structural geology

Azimuth – angle of the line from north (0 $^{\circ}$ = 360 $^{\circ}$), measured in the horizontal plane

Circular data - 2D, measured either in the horizontal plane as the azimuth or in any plane as an angle relative to the reference line

Axial data

Directional data (vectors)

Spherical data - orientation of structural elements in 3D

Spherical data - orientation of structural elements in 3D

Three the most important numbers

Direction of the plane (azimuth)
Dip direction of the plane (= direction + 90°)
Dip of the plane

How to measure structures

Foliation (S)

schistosity, schistosité, Schieferung

Strike and Dip

Strike (0°- 360°) Dip (0°- 90°) $S = 320^{\circ}/50^{\circ}$

Transfer:
The right hand rule

Dip direction and Dip

Dip direction (0°- 360°)

Dip (0°- 90°)

 $S = 230^{\circ}/50^{\circ}$

Lineation (L)

L = 351/53

Quadrant method:

 $S = N40^{\circ}W/50^{\circ}SE$

Strike, dip, trend, plunge, pitch

Display of planes and lines in the stereographic projection

Contour orientation diagram

Directional orientation of joints or faults

Compression Direction During Alleghanian Orogeny

Principles of geological intersection

Principles of geological intersection

Summary of the field research (Arba Minch)

