Addis Ababa University, Ethiopia October / November 2013

METHODS OF LANDSLIDE INVESTIGATION

Jan Novotný

Charles University in Prague, Faculty of Science, Czech Republic ARCADIS CZ a.s., division Geotechnika, Czech Republic

Jan.Novotny@arcadis.cz

1) Preliminary work

- Study of archival materials
- Terrain reconnaissance
- Talk to local people
- Conceptual engineering geological model

2) Landslide investigation

- Engineering geological mapping
- Longitudinal and cross sections
- Boreholes, trial pits, rock and soil sampling, field tests, geophysics
- Laboratory tests

3) Depth of rupture surface

4) Monitoring

- Monitoring of deformation
- Monitoring of hydrogeogical features, GWL and pore pressure fluctuation, spring yield
- Measurement of stress
- Indirect methods geophysics

5) Methods of prognosis

- Spatial prognosis
- Prognosis of mechanisms and dimension of failure
- Time prognosis

Hummocky terrain of landslide with recent movements (locality Germany, *Gradenbach, photo J. Rybář)*

Hummocky terrain

Carpathian Flysch

Photo J. Rybář, Hervenice, NE from Zázriva

Hummocky terrain

Sakhalin, Russia

Hummocky terrain

Hummocky terrain

Active landslide morphology Photo: J. Rybář

-Minor scarp

Tree bending (Záruba, Mencl)

Photo J. Rybář

Dneboh, Czech Republic

Bending of trees

Dneboh, Czech Republic

Moved gravestones by creep movements Photo: J. Rybář

Moved gravestones by creep movements Photo: J. Rybář

Moved grave monuments by creep movements, Photo: J. Rybář

In winter periods frozen water from springs can be observed in landslide areas, Photo: J. Zvelebil

Road deformed by long-term movements Photo: J. Rybář

Main scarp of a flow

Slickensided surface on surface of rupture

Slickensided surface on surface of rupture

Photo: J. Rybář

Rotation in head area

Ústí nad Labem, Motorway D8, Czech Republic

Rotation in head area

Ústí nad Labem, Motorway D8, Czech Republic

Open tension crack, without rotation in head area

Frank Slide (Canada)

Open crack

Photo: J. Novotný

Open cracks, ditches, grabens

Photo J. Rybář

Beskydy, Lukšinec, Czech Republic

Open cracks, ditches, grabens

Photo: J. Novotný

Potvorov, Czech Republic

Open cracks, ditches, grabens

Photo: J. Novotný

Stretched tree roots in fissures indicate active movement

Photo: J. Rybář

Cracks in buildings can be caused by:

a, c, e – slope movements

b – shrinkage of clayey soils

d - undermining

before

Aerial photography

after

Aerial photography

after

Aerial photography

before

Longitudinal profile

Rupture surface

Photo: J. Rybář

Rupture surface

Photo: J. Novotný

Photo: J. Novotný

Measurements of movements in a well

Landslides mapping

Part of Map of landslides in Czechoslovakia in the scale 1 : 1 000 000

Landslides mapping

Use of colors

Fossil landslide and potential landslide – black line (difference in sign)

Active landslide – red line

Hydrogeological features – blue line, areas

Man-made construction – green line

Landslides – mapping in to scale 1 : 5 - 10 000

Example of landslide representation on the scale 1:5-10,000 with schematic profile 1-2 of the sliding area.

1-scarp and outcropping edges of buried slide block (fossil landslide); 2-outlines of emerging blocks; 3-scarps and accumulation ramparts of two generations of potential landslides; 4-recent active landslides representing two developmental stages, with main joints; 5-springs; 6-watercourses and lakes; 7-wet ground; 8-undrained depressions; 9-plastic clayey rocks; 10-solid rocks.

After Rybář 1973

After Rybář 1973

Landslides – mapping in to scale 1 : 5-10 000

Photo J.Rybář

Photo J.Rybář

Landslides – mapping in to scale 1 : 5 - 10 000

DOMOUSNICE, November 1981, after J.RYBÁŘ

2

3

2

3

Landslides – detailed mapping

9 パトリナトリナドキ 10

1-tension joints; 2a-width of gaping joint in cm; 2b-subsidence of lower block along joint in cm; 2c-depth of gaping joint; 2d-inclination of joint in degrees; 3-tension joint with expressive subsidence (uncovered sliding plane); 4-shear joint with indicated direction of movement; 5, 6, 7different types of failures in the toe of the slide, with exaggeration in cm; 8-undrained depressions; 9-wet ground; 10-contours and gradient hatchings underlining the bulges.

8

After Rybář 1973

1-tension joints; 2a-width of gaping joint in cm; 2b-subsidence of lower block along joint in cm; 2c-depth of gaping joint; 2d-inclination of joint in degrees; 3-tension joint with expressive subsidence (uncovered sliding plane); 4-shear joint with indicated direction of movement; 5, 6, 7different types of failures in the toe of the slide, with exaggeration in cm; 8-undrained depressions; 9-wet ground; 10-contours and gradient hatchings underlining the bulges.

2

After Rybář 1973

9 パトーナ・トイントント 10

1-tension joints; 2a-width of gaping joint in cm; 2b-subsidence of lower block along joint in cm; 2c-depth of gaping joint; 2d-inclination of joint in degrees; 3-tension joint with expressive subsidence (uncovered sliding plane); 4-shear joint with indicated direction of movement; 5, 6, 7different types of failures in the toe of the slide, with exaggeration in cm; 8-undrained depressions; 9-wet ground; 10-contours and gradient hatchings underlining the bulges.

8

0

After Rybář 1973

Landslides – detailed mapping

10

8

9

Landslides – detailed mapping

Photo: J. Novotný

After J. Novotný

Landslides - detailed mapping

After J. Novotný, T, Šmejkalová, J. Rybář

Landslides – detailed mapping

Landslides – detailed mapping

Landslides – detailed mapping

Profil II-II'

Head

Head

Landslides - detailed mapping

Landslides – detailed mapping

Landslides – detailed mapping

Profil I-I'

After J. Novotný, T, Šmejkalová, J. Rybář

Landslides - detailed mapping

horizontal bedding

Landslides – detailed mapping

Profil I-I'

After J. Novotný, T, Šmejkalová, J. Rybář

Slope Deformation Field Checklist

4	Number of slope	Unique number for each clane deformation		
1	Number of slope deformation	Unique number for each slope deformation		
2	Map number	Map number where is marked slope deformation		
3	Near town, village	Near town or village		
4	Coordinates (GPS)	Is related to the highest point of slope deformation in main scarp		
5	Author of documentation and institution	Name of geologist who is documenting slope deformation and his affiliation		
6	Date of documentation	Day / month / year:		
7	Slope deformation	 Single Complex Part of complex 		
8	Type of slope deformation	Classification (Varnes 1978) Falls Topples Slides Lateral spreads Flows Complex		

9	Total length (m)	the minimum from the tip of the landslide to the crown			
10	Width of displaced mass (m)	the maximum breadth of the displaced mass perpendicular to the length of the displaced mass			
11	Width of rupture surface (m)	the maximum width between the flanks of the landslide			
12	Slope deformation according affected depth	Based on estimated vertical distance between surface and base of slope deformation: Shallow (1-5.m) Medium deep (5 -50.m) Very deep (more than 50 m) Unknown			
13	Slope inclination	Average slope inclination of not affected original slope – estimation			
14	Rock / soil type				

15	Hydrogeology	Surface state:			
		 Dry Locally wet Springs Lakes, undrained depressions Brook / river 			
16	Phase of slope	Initial (main movement is being expected)			
	deformation evolution				
		Final (there is not space for next movement)			
17	Degree of activity				
		Dormant			
		□ Stabilized			
18	Main scarp	Height:			
19	Accumulation	Height:			
20	Cracks	□ Yes			
		> width:			
		estimated depth:			
		□ No			

21		 □ Precipitation / water saturation □ Seismic activity / tectonic activity □ Change of slope geometry > natural > anthropogenic □ Human activity □ Unknown
22	Remedy measures	 Performed: Proposed:
23	Land use	 □ Forest □ Bush □ Meadow, pasture □ Field □ Urbanized area (settlements) □ Other

24	Endangered objects:	
25	Remarks, recommendations, (sketch of slope deformation):	

Monitoring of landslides

A) Measurement of deformations

- geodesy
- extensometry
- inclinometry
- dilatometry

B) Monitoring of water state within landslide body

- ground water level and pore pressure observation
- measurement of spring yield

C) Measurement of stress

- stress in anchors

D) Indirect methods

- geophysics

Saddle of Jezerka

- Precise leveling
- Optical long distance measurement

Fault slope

SSZ

- Tape extensomentry
- Spatial dilatometry in fissures

Jezerka

705

- Tilt measurements

Toe of the slope

- Geodesy
- Visual observation

Monitoring boreholes

- Precise inclinometry
- Pore pressure measurement
- Brittle wires

Investigation gallery

- Tape extensometry
- Rod extensometry
- Geodesy

Scheme of reconstruction of rupture surface course based on vector measurement by optical long distance measurements

Selected types of gauges for monitoring of displacements on rock slopes:

- 1 wire extensometer
- 2 rod extensometer
- 3 deflectometer
- 4 rod extensometer with mechanical warning apparatus
- 5 portable rod dilatometer
- 6 points for portable rod dilatometry
- 7 dilatometric gauge TM-71

Long-term monitoring of groundwater level changes and long-term precipitation balance

Třebenice landslide (Cretaceous claystones)

After J. Novotný 2005

Comparison of frequency of regime monitoring with quasicontinual monitoring

Třebenice landslide (Cretaceous claystones)

After J. Novotný 2005

Fluctuation of piezometric level in the P4.1 borehole (tip 9,5 m under the terrain) and the piezometric level in the P4.2 borehole (tip 4,5 m under the terrain). Grey areas represent time period with upward groundwater flow

Třebenice landslide (Cretaceous claystones)

After J.Novotný and M.Kobr 2009

Schematic flow net for the period of seasonal culmination (above) and seasonal minimum (below) in the ground water storage

Třebenice landslide (Cretaceous claystones)

SE

NW

After J.Novotný and M.Kobr 2009

Methods of prognosis

- Spatial prognosis
- Prognosis of mechanism and dimensions of failure
- Time prognosis

Spatial prognosis

Landslide distribution map at 1: 10 000 scale Vsetínská Bečva River site, northern of the town Vsetín (E Moravia)

Landslide susceptibility map at 1: 10 000 scale Vsetínská Bečva River site Δfter

	characteristic of the area regarding stability conditions	conditions for the area to be used as construction site of			
zone		residental and industruial buildings	roads	pipelines	light recreational buildings
L	stable areas	usable areas			
<u>l.1</u>	flat flood plains	foundation conditions suitable for not sophisticated structures (exceptionally even for more sophisticated ones) under specific conditions	roads to be built on an embankment or a bridge, the structure must not reduce flood passage	without limitation	unsuitable area, although cottage building is presently frequent, flood risk is high
1.2	permanently stable slopes with very moderate gradient and flat areas above valleys	simple foundation conditions usually suitable even for more sophisticated structures	the area usually accessible only with difficulties; connections to main roads in valleys difficult	without limitation, connection to main network difficult	without limitation
П.	area where slope instability cannot be excluded	conditionally usable areas			
11.3	moderate slopes without verified sings of more serious failure	suitable for not sophisticated structures, stability failures due to improperly designed earthwork are not excluded (cuttings, cut-offs, embankments, water leakage etc.)	lay-out of the line, as well as earthwork is to be designed with respect to slope stability	slope stability must not be inflicted with deep furrows excavated for long-distance lines	without limitation
 .4	steep slopes without sings of deeper failure	unusable for ordinary building, otherwise enormous expenditures must be accepted	suitable only for local roads (e.g. forest roads)	if the lay-out cannot be changed then increased expenditures are to be accepted	without limitation
× _ II.5	slopes deformed by superficial creep movements	if chosen as construction site increased expenditures for preventive remedy measures must be considered (e.g. for superficial or deep drainage in the area)	suitable only for local roads, othrewise increased expenditures for preventive remedy measures	lay-out of long-distance lines along the dip	unsuitable area
U U U U	slope deformed by landslides and block-type movements in the past time	unusuitable for building, acceptable only with enormous expenditures for survey, monitoring and remedy measures	construction possible only with enormously increased expenditures	unsuitable area, in case of absolute necessity lay-out along the dip	unsuitable area
Ш.	unstable areas	unsuitable areas			
U UII.7 U	slope deformed by present active or dormant deformations, as well as by earthflows	construction has to be avoided unless stabilisation measures carried out beforhand with successful results proved by monitoring	construction possible with enormously increased expenditures for preventive remedy measures and monitoring	entirely unsuitable area	unsuitable area
III.8	erosion gullies of occasional as well as of permanent small flows	entirely unsuitable area	unsuitable area that can be passed by abridge	unsuitable area	unsuitable area, although cottage building, is presently frequent; risk due to floods, spates and earthflows is high
▼	steep rock slopes and their toes where rockfalls may occur	unsuitable area	change of the lay-out is recommended, preventive remedy measures would be too expensive	without limitation under the condition of keeping the lines underground in the area of accumulation	entirely unsuitable area, although cottage building is presently frequent
N.	areas unusable regarding other than stability reasons				
N.1 봋	large water plains				
N.2 🛆	quarries, dump sites, protected areas, etc.				

Explanations to landslide susceptibility maps

Rock fall in Hřensko, Czech Republic, March 1978

30 mm .⊆ b Displacement 20 10 m 10 α Time VIII IX Х XI XII Time prognosis for the outset of a rockfall (a) in the profile (b) near Hřensko in Czech-Saxonian Sandstones (Zvelebil)

Photo J. Rybář

After J. Zvelebil 1984

Real and three year gradually dispersed annual precipitation total from Louny hydrometeorological station, periods of sliding activity are marked by asterisks

After Novotný 2000

After Novotný 2000

Correlation between climate, piezometric levels and movement for Třebenice landslide

