Addis Ababa University, Ethiopia October / November 2013

CLASSIFICATON OF LANDSLIDES AND OTHER MASS MOVEMENTS BY A.NEMCOK, J.PASEK, AND J.RYBAR

Rock Mechanics 4, 71-78 (1972) by Springer-Verlag 1972

Jan Novotný

Charles University in Prague, Faculty of Science, Czech Republic ARCADIS CZ a.s., division Geotechnika, Czech Republic

Jan.Novotny@arcadis.cz

Nemčok, Pašek & Rybář (1972): Classification of Landslides and Other Mass Movements

MASS MOVEMENT

 Movement of rock/soil masses on a slope by gravitation

Nemčok, Pašek & Rybář (1972): Classification of Landslides and Other Mass Movements

NEMČOK, PAŠEK, RYBÁŘ 1972

4 TYPES OF PROCESSES

Based on geomechanical character and velocity of the movement

- CREEP
- SLIDING
- FLOW
- FALL

In each group elementary phenomena can be further subdivided according to different types determined by regional, morphological, geological or climatic conditions. For this reason it is not possible to consider all possible variations.

CREEP

- Geologically long-term movements of nonincreasing velocity without well-defined sliding surfaces. (In most cases we can speak of deep-seated (or viscous) flow.)
- Displacements are nearly negligible in contrast to space of rock massif affected by creep
- Velocity 0.1 mm/year- mm/day

- The movements are designated as creeping movement, the resulting phenomenon is rock creep, talus creep, soil creep...
- If it achieves a critical acceleration, the creep becomes sliding, flow or fall.

1) LOOSENING OF THE ROCKS IN THE VALLEY SLOPE BY CRACKS PARALLEL TO THE SURFACE

EXFOLIATION

Alps, Grimsel pass

creep : sliding : flow : fall

1) LOOSENING OF THE ROCKS IN THE VALLEY SLOPE BY CRACKS PARALLEL TO THE SURFACE

creep : sliding : flow : fall

1) LOOSENING OF THE ROCKS IN THE VALLEY SLOPE BY CRACKS PARALLEL TO THE SURFACE

creep : sliding : flow : fall

creep : sliding : flow : fall

creep : sliding : flow : fall

Photo: J. Novotný

creep : sliding : flow : fall

2) LOOSENING BY OPENING OF TENSION CRACKS IN UPPER PART OF THE SLOPE

Photo: J. Novotný

creep : sliding : flow : fall

2) LOOSENING BY OPENING OF TENSION CRACKS IN UPPER PART OF THE SLOPE

Photo: J. Novotný

creep : sliding : flow : fall

sliding : flow : fall

3) LOOSENING OF SLOPE BY DEEP SEATED CREEP OF HIGH MOUNTAIN RIDGES

BREAKING OF MOUNTAIN RIDGE, DOUBLE RIDGES

Typical in brittle rocks

creep

3) LOOSENING OF SLOPE BY DEEP SEATED CREEP OF HIGH MOUNTAIN RIDGES

BREAKING OF MOUNTAIN RIDGE, DOUBLE RIDGES

Nemčok, Pašek & Rybář (1972)

sliding : flow :

fall

3) LOOSENING OF SLOPE BY DEEP SEATED CREEP OF HIGH MOUNTAIN RIDGES

creep

BREAKING OF MOUNTAIN RIDGE, DOUBLE RIDGES

Nemčok, Pašek & Rybář (1972) sliding : flow

creep

4) GRAVITATONAL FOLDING BY DEEP SEATED CREEP - DEFORMATION OF HIGH MOUNTAIN SLOPES

fall

BREAKING OF MOUNTAIN RIDGE, DOUBLE RIDGES

5) GRAVITATONAL FOLDING ALONG BASINS MARGINS

GRAVITATIONAL FOLDS

Gravitational folds near Kadaň (according to Rybář 1960)

Typical in coaly and clayey complexes along margins of Tertiary basins in Czech Republic and Germany, occurring also in limestones with marly interlayers in geosynclinal mountains

5) GRAVITATONAL FOLDING ALONG BASINS MARGINS

Evolution of gravitational folding

Rybář, Dobr1966

creep : sliding : flow : fall

5) GRAVITATONAL FOLDING ALONG BASINS MARGINS

6) GRAVITATIONAL FOLDING OF SOFT ROCK IN VALLEY BOTTOM

VALLEY ANTICLINAL, BULGING

More plastic rock are squeezed out in the bottom of erosional valley and form an anticlinal in valley

creep : sliding : flow : fall

7) BLOCK-TYPE MOVEMENTS ON PLASTIC UNDERLYING ROCKS

creep : sliding : flow : fall

7) BLOCK-TYPE MOVEMENTS ON PLASTIC UNDERLYING ROCKS

Czech Republic, Praha, Strahov

Photo J. Novotný

Nemčok, Pašek & Rybář (1972)

creep : sliding : flow : fall

7) BLOCK-TYPE MOVEMENTS ON PLASTIC UNDERLYING ROCKS

Nemčok, Pašek & Rybář (1972)

creep : sliding : flow : fall

8) BLOCK-TYPE MOVEMENTS ON PRE-EXISTING SURFACE

creep : sliding : flow : fall

7) BLOCK-TYPE MOVEMENTS ON PRE-EXISTING SURFACE

creep : sliding : flow : fall

7) BLOCK-TYPE MOVEMENTS ON PRE-EXISTING SURFACE

creep : sliding : flow : fall

9) SUPERFICIAL CREEP

BENDING OF BEDS

Czech Republic, Praha, Hlubočepy

creep

sliding : flow :

fall

9) SUPERFICIAL CREEP

SLIDING

- Slope movements of coherent masses along one or more well-defined rupture surfaces (shear surfaces, slip planes)
- Part of masses is shifted onto original terrain
- Result of movement is landslide
- Velocity m/hour (soils) to km/hour (rocks)

creep : sliding : flow : fall

SLIDING

10) SLIDING ON SIMPLE ROTATIONAL SHEAR SURFACE

ROTATIONAL LANDSLIDE

Pašek 1974

creep : sliding : flow : fall

11) SLIDING ALONG A PLANAR SLIDING SURFACE IN

creep : sliding : flow : fall

12) SLIDING ALONG A PLANAR SLIDING SURFACE IN ROCKS

PLANAR LANDSLIDES IN ROCKS,

PLANAR LANDSLIDES ALONG PRE-DISPOSED

SHEAR SURFACE (BEDDING, SCHISTOSITY, JOINTING, FAULTS...)

Beskydy, Šance

Novosad 1993

creep : sliding : flow : fall

12) SLIDING ALONG A PLANAR SLIDING SURFACE IN ROCKS

Langhe Cunesi, ITALY 1994

12) SLIDING ALONG A PLANAR SLIDING SURFACE IN ROCKS

creep : sliding : flow : fall

12) SLIDING ALONG A PLANAR SLIDING SURFACE IN ROCKS

Vaiont 1963

Photo J.Novotný

creep : sliding : flow : fall

12) SLIDING ALONG A PLANAR SLIDING SURFACE IN ROCKS

creep : sliding : flow : fall

12) SLIDING ALONG A PLANAR SLIDING SURFACE IN ROCKS

: **sliding** : flow : fall

13) SLIDING ALONG COMBINED SLIDING SURFACE

creep

ROTATIONAL PLANAR LANDSLIDE

creep : sliding : flow : fall

13) SLIDING ALONG COMBINED SLIDING SURFACE

14) HORIZONTAL TRANSLATION ON A PRE-EXISTING SLIDING SURFACE

LATERAL LANDSLIDES, TRANSLATIONAL LANDSLIDES

Anchorage 1964

Hansen 1965

14) HORIZONTAL TRANSLATION ON A PRE-EXISTING SLIDING SURFACE

creep : sliding : flow : fall

14) HORIZONTAL TRANSLATION ON A PRE-EXISTING SLIDING SURFACE

creep : sliding : flow : fall

14) HORIZONTAL TRANSLATION ON A PRE-

- 1 Bedrock crystalinic rocks
- 2 Coal seam Josef
- 3 Partly exploited coal seam
- 4 Tufitic clays
- 5 Original dump waste material
- **6 Sliding of waste material**
- 7 State before landslide

creep : sliding : flow : fall

14) HORIZONTAL TRANSLATION ON A PRE-EXISTING SLIDING SURFACE

FLOW

- Slope movement in rock and soil analogous to the movements of liquids. Material flow from source area on a terrain surface on a long distance. There is a sharp contact between flowing material and terrain
- Result of movement is flow
- Velocity km/day (earth flow) to km/hour (debris flow)

creep : sliding : flow : fall

FLOW

creep : sliding : flow : fall

15) FLOW OF CLAYEY AND SILTY SANDY SOILS

EARTHFLOW, FLOW IN SENSITIVE CLAYS

THE SLUMGULLION LANDSLIDE, COLORADO STÁŘÍ CCA 700 LET

creep : sliding : flow : fall

15) FLOW OF CLAYEY AND SILTY SANDY SOILS

LA CONCHITA, USA

creep : sliding : flow : fall

15) FLOW OF CLAYEY AND SILTY SANDY SOILS

LA CONCHITA 2005

Photo J.Novotný

creep : sliding : flow : fall

15) FLOW OF CLAYEY AND SILTY SANDY SOILS

LA CONCHITA 2005

creep :

15) FLOW OF CLAYEY AND SILTY SANDY SOILS

creep : sliding : flow : fall

15) FLOW OF CLAYEY AND SILTY SANDY SOILS

Czech Republic, Bystřička 1997

creep : sliding : flow : fall

15) FLOW OF CLAYEY AND SILTY SANDY SOILS

Czech Republic, Fryšták 2002

creep : sliding : flow : fall

16) FLOW OF SILTY SOILS AND DEBRIS DUE TO THE IMPACT OF HEAVY RAINFALL

DEBRIS FLOW, MUD FLOW

creep : sliding : flow : fall

16) FLOW OF SILTY SOILS AND DEBRIS DUE TO THE IMPACT OF HEAVY RAINFALL

Highway 101 near Ventura, CALIFORNIA 2005

creep : sliding : flow : fall

16) FLOW OF SILTY SOILS AND DEBRIS DUE TO THE IMPACT OF HEAVY RAINFALL

fall sliding creep

16) FLOW OF SILTY SOILS AND DEBRIS DUE TO THE IMPACT OF HEAVY RAINFALL

creep : sliding : flow : fall

16) FLOW OF SILTY SOILS AND DEBRIS DUE TO THE IMPACT OF HEAVY RAINFALL

creep : sliding : flow : fall

16) FLOW OF SILTY SOILS AND DEBRIS DUE TO THE IMPACT OF HEAVY RAINFALL

Debris-flow damage to the city of Caraballeda, located at the base of the Cordillera de la Costan, on the north coast of Venezuela. In December 1999, this area was hit by Venezuela's worst natural disaster of the 20th century; several days of torrential rain triggered flows of mud, boulders, water, and trees that killed as many as 30,000 people. (Photograph by L.M. Smith, Waterways Experiment Station, U.S. Army Corps of Engineers.)

creep : sliding : flow : fall

16) FLOW OF SILTY SOILS AND DEBRIS DUE TO THE IMPACT OF HEAVY RAINFALL

creep : sliding : flow : fall

16) FLOW OF SILTY SOILS AND DEBRIS DUE TO THE IMPACT OF HEAVY RAINFALL

Photo: J. Novotný

creep : sliding : flow : fall

16) FLOW OF SILTY SOILS AND DEBRIS DUE TO THE IMPACT OF HEAVY RAINFALL

creep : sliding : flow : fall

16) FLOW OF SILTY SOILS AND DEBRIS DUE TO THE IMPACT OF HEAVY RAINFALL

This is a photograph showing the aftereffects of a multi-hazard event. It is an aerial view showing part of the Andes Mountains and Nevado Huascaran, the highest peak in Peru, South America. A massive avalanche of ice and rock debris, triggered by the May 31, 1970, earthquake, buried the towns of Yungay and Ranrahirca, killing more than 20,000 people, about 40 percent of the total death toll of 67,000. The avalanche started with a sliding mass of glacial ice and rock about 1,000 meters (3,000 feet) wide and 1.6 kilometers (one mile) long that swept downslope about 5.4 kilometers (3.3 miles) to Yungay at average speed of more than 160 kilometers per hour. The ice picked up morainal material of water, mud, and rocks. (Photograph by Servicio Aerofotográfico National, graphics by George Plafker, U.S. Geological Survey.) Photograph and information from the U.S. Geological Survey Photographic Archives: http://libraryphoto.cr.usgs.gov/

creep : sliding : flow : fall

16) FLOW OF SILTY SOILS AND DEBRIS DUE TO THE IMPACT OF HEAVY RAINFALL

creep : sliding : flow : fall

16) FLOW OF SILTY SOILS AND DEBRIS DUE TO THE IMPACT OF HEAVY RAINFALL

creep : sliding : flow : fall

16) FLOW OF SILTY SOILS AND DEBRIS DUE TO THE IMPACT OF HEAVY RAINFALL

Instability of moraine slope (slides) can produce debris flow

creep : sliding : flow : fall

17) SUPERFICIAL FLOW IN PERIODS OF EXCESSIVE PRECIPITATION OR IN PERIODS OF THAWING

fall

FALL

- Sudden slope movement, moving masses lose their coherence and for a short time also their contact with the underlying rock
- The distance of moved rocks is much higher in contrast to their volume
- Velocity km /hour to 100 km/hour

creep : sliding : flow : fal

FALL

New Zealand

creep : sliding : flow

18) FALL OF SMALL FRAGMENTS BY ROLLING DOWNSLOPE

19) STONE FALL ON STEEP ROCKY SLOPES

DEBRIS CONES, TALUS

creep

creep : sliding : flow : fall

20) ROCK FALL – PART OF ROCK WALL FALLS DOWNSLOPE BY PURE FREE FALL

ROCK FALL

creep : sliding : flow : fall

20) ROCK FALL – PART OF ROCK WALL FALLS DOWNSLOPE BY PURE FREE FALL

creep : sliding : flow : fall

20) ROCK FALL – PART OF ROCK WALL FALLS DOWNSLOPE BY PURE FREE FALL

creep

21) ROCK FALL COMBINED WITH TRANSLATION IN THE FIRST STAGE

PLANAR ROCKFALL

MASS MOVEMENT (SLOPE MOVEMENT)

X

LANDSLIDE

1) LANDLSIDE IS PRODUCT OF SLIDING

2) TERM "LANDSLIDE" IS ALSO USED IN A SENCE OF MASS MOVEMENT

CHINA

Transition between types

