Baseflow assessment

Jiri Sima

Baseflow definition

- Drought flow, groundwater recession flow, low flow, fair-weather flow, groundwater flow
- It is a part of total river flows which represent groundwater seepage into a stream channel from natural storage
- It is a streamflow which result from precipitation that infiltrates into soil and aquifers (recharge)
- Geomorphology controls on regional baseflow

Dynamic – static GWR

Baseflow assessment methods

- Kille method (monthly minima long-term average – regional assessment)
- Separation of hydrograph (daily data assessment of baseflow in various years – interval in which baseflow values varies)

Kille method

- The application of the method can be summarized as follows:
- For each month in a year the minimum daily discharge rate
- Plot rates against the corresponding orders
- The linear zone of the distribution curve represents the baseflow.
- Average groundwater recharge rate R = baseflow

Kille

Hydrogrph separation

Graphical approaches to partitioning baseflow vary in complexity and include:

- constant slope method (black line on the chart) connecting the start of the rising limb
- constant discharge method (green line)
- concave method (red line) attempting to represent the assumed initial decrease in baseflow and delay in aquifer recharge

Graphical methods

Comparing Kille and separation

. . . .

Map ID	River	Area [km²]	Specific runoff [l/s.km ²]	Kille method [m³/s]	Hydrograph separation [m³/s]	Specific baseflow		Aquifer
						[l/s.km²]	[mm]	
112001	Abbay / Kessie	65,784.0	7.97	117.790	196.84	1.79/2.99	76.8	Volcanic + sedimentary
112027	Aleltu / Muka Ture	447.0	9.82	0.990	1.32	2.21/2.95	70.6	Volcanic
112029	Robi Gu- mer/Lemi	887.0	9.90	0.140	0.26	0.16/0.29	7.1	Volcanic
112034	Jemma / Lemi	5,412.0	14.78	37.370	39.74	6.91/7.43	221.6	Volcanic + sedimentary
112002	Mugher	489.0	15.87	0.240	1.52	0.49/3.11	64.5	Volcanic + sedimentary
112044	Gorfo / Gorfo	49.2	20.35	0.020	0.18	0.41/3.65	64.4	Volcanic
112012	Aleltu / Chancho	29.0	16.20	0.014	0.019	0.48/6.40	108.8	Volcanic

Abay – average discharge

Kille

Abay - average

Abay - maximum

Abay – minumum

Specific baseflow and recharge

	Dodola	Ginnir	Negele	Filtu	Addis Ababa
Volcanic rocks	5.0	4.0			
Basement rocks	1.0		1.0		
Sedimentary rocks	0.14	1.0	0.14	0.14	
Average specific baseflow [l/s/km2]	2.8	1.0	0.6	0.14	2.0
Recharge [mm/y]	178.5	59.5	30.5	4.5	62.5
Precipitation (%)	21	7	4.5	1.1	5

BILAN model

Baseflow and Recharge

River	Baseflow (l/s)	Specific baseflow	Recharge (mm)
Beressa	180	0.88	27/ <mark>25</mark>
Aleltu	110	0.25	8
Chacha	140	0.33	11/23
Robi Gumero	140	0.16	5
Robi Jida	90	0.12	4
Jemma	1,700	0.31	10/30
Jemma (model)	2,300	0.15	5

Home made software

- Kille (kille.exe) and (river kille.txt)
- Hydrogram (hydrogram.exe) and river hydrogram.txt

Sources and Recommended Readings:

Lerner, D.N. – Issar, A.S. – Simmers, I. (1990): Groundwater Recharge.– IAH Contrib.8, Heise, Hannover.

Scanlon, B.R. & Cook, P.G. (2002): Choosing appropriate techniques for quantifying groundwater recharge.- Hydrogeology Journal 2002, 10:18-39,Springer Verlag, Berlin.