

Physical Volcanology

Vladislav Rapprich

Czech Geological Survey, Klarov 3, 118 21 Prague, Czech Republic, vladislav.rapprich@geology.cz

Volcanoes, lavas

Pyroclastic rocks

Other volcaniclastic rocks

Hazards and benefits

www.geology.cz Petroglyphs in Armenia, 5.000 BC

Vesuvius, 79 AD

Wall-paint in Chatal Huyuk, Turkey, 7.000 BC

Source: internet

Distribution of volcanoes on Earth is not random Mainly follows plate-boundaries

Česká geologická služba | Czech Geological Survey

Schmincke: Volcanism, 2005

Volcanoes occur where magmas ascend to the surface

Volcanoes need magma (molten rock) – how to get molten rock in the solid planet?

Temperature increases with depth, but the same with melting temperature

- Decompression:
 - hot spot
 - mid-ocean ridge
 - continental rift
- Hydratation:
 subduction

Types of volcanoes Polygenetic volcanoes Shield volcano **Stratovolcano** Caldera **Monogenetic volcanoes Spatter cone** Scoria cone **Tuff cone/ring** Maar Lava dome (-complex)

- Magma supply
- Life-span
- Physical properties of magma
- Environment

Stratovolcanoes: San Miguel (El Salvador), Fuji (Japan)

Shield volcano: Mauna Loa (Hawaii), source:internet

www.geology.cz Caldera: Coatepeque (El Salvador)

Spatter and scoria cones: Iceland

Česká geologická služba | Czech Geological Survey

Lava Dome: Boren (Czech Republic)

Maar: Lake Shetan (Ethiopia)

Viscosity – crucial point for magma behaviour

Viscosity depends on:

- Composition (Si, Al frame-builders; Mg, Ca, Na, K – frame-modifiers)
- Temperature
- Crystals, vesicles

38°20'0"E

N..0.01.

Lava tubes (tunnels)

- when still molten lava flows out of the solidified crust
- thermal insultation of lava
- effective proces to get lava far from its source

Autoclastic fragmentation of lavas

autoclastic breccias are:

- monomict (clasts of associated lava)
- clast-supported (empty voids)
- in situ (only angular clasts)
- un-sorted, spaces between clasts can be later filled with pyroclastic or sedimentary material

gical Survey

Columnar jointing - due to thermal contraction of lava - oriented parallel to thermal gradient axes, perpendicular to cooling surfaces and fronts - the original shape of lava body can be interpreted from arrangement of columns

Geological Survey

Lavas in water

Levis lobe extending from Nooke

- supercooling
- lobe-shaped "pillows" with chilled margins
- imperfect crystallization hyaline texture
- pillows have radial (+ concentric cracks)
- pillow lavas associated with hyaloclastites
- hyaline glass is unstable turns to clayminerals

Česká geologická služba | Czech Geological Survey

Česká geologická služba | Czech Geological Survey

Česká geologická služba | Czech Geol

Hyaloclastites

 fragmentation due to shock-contraction (lava-water interaction)

- non-vesiculated

- in-situ: unsorted, clast-supported, jigsaw fit of fractures, angular fragments

- redeposited: increasing sorting and rounding of clasts, sedimentary structures

McPhie et al. 2002, CODES

Root-less eruptions

www.geology

Česká geologická služba

