

Aqueous Geochemistry and Stability of Minerals

Lecturer:

Juraj Farkas, PhD

Czech Geological Survey (CGS), Prague

E-mail contact: juraj.farkas@geology.cz

Arba Minch, Ethiopia, Oct 16, 2014

Aquatic geochemistry is concerned with chemical processes affecting the distribution and circulation of chemical compounds in natural waters

It aims to provide theoretical basis for the chemical behaviour of the Earth's hydrosphere, including its main domains:

- ocean waters,
- estuaries (i.e. partly enclosed coastal bodies with brackish waters)
- river systems
- lakes and ponds
- groundwaters
- and soil water systems

Geochemistry of natural waters thus represents a research field where one needs knowledge of **chemistry**, **mineralogy**, **geology** and **biology**

Uniqueness of water physico-chemical properties

The triple point of a substance is the temperature and pressure at which three phases gas, liquid, solid coexist at equilibrium

Water triple point: T = 0.01° C P = 611 Pa (0.006 atm)

At Earth's surface: T = 20°C P = 101 kPa (1 atm)

Uniqueness of water: Importance of hydrogen bonds

Water (hydride of oxygen, H_2O) has much higher boiling point compared to other hydrides, hence it is commonly present in liquid form at the earth surface

In contrast, other common hydrides such as ammonia (nitrogen hydride = NH_3), methane (carbon hydride = CH_4), (fluorine hydride = HF), that have their boiling points just below the room temperature, so they are all at Earth's surface as gases

Water is able to form **four hydrogen bonds** *(i.e. attraction between positive hydrogen atoms and partially negative oxygen atom)* because it possesses two hydrogens (bond donors) and a pair of negative charges on oxygen (acceptor)

Source: Principles of General Chemistry, Silberberg (2009)

Uniqueness of water: Importance of hydrogen bonds

Hydrogen bonding is what gives water its adhesive and cohesive properties, allowing water to form thin films as it spreads of smooth surfaces (adhesion), and stick together (cohesion) as droplets,

Thus, water has the **greatest surface tension** of any liquid on Earth's surface

Surface tension is a contractive tendency of the surface of a liquid that allows it to resist an external force

H₂O is a very good solvent for ionic compounds, which are compound that dissociate into positively and negatively charged ionic species (e.g. NaCl)

Hydration of Na⁺ and Cl⁻ ions thus provides a sort of protective shield around them, thus reducing the probability of their recombination.

The dipolar water molecule align their positive and negative ends in such way that the **ion attraction** between Na+ and Cl- is **partially neutralized**, and thus the attraction between these hydrated ions is weakened. This is the main reason for a high solubility of NaCl in water

H₂O is a very good solvent for ionic compounds, which are compound that dissociate into positively and negatively charged ionic species (e.g. NaCl)

The effectiveness of water (H_2O) as solvent is reflected in its **high dielectric constant** (ϵ_{H2O}) which is the ability of a substance to insulate charges (ions) from each other

Liquid water has dielectric constant of 80.4 units, which means that charged ions in water are attract to each other with a force of only 1/80 (~1.2%) as strong as in a vacuum

In contrast, acetone (C_3H_6O) has dielectric constant of 21 units, and acetic acid $(C_2H_4O_2)$ of only 6 units

Concept of Chemical Equilibrium

An example of a simple chemical reaction that achieves an equilibrium state:

NaCl *≈* **Na⁺ + Cl⁻** sodium chloride (table salt) being dissolved in pure water

Basics of Chemical Reactions – Law of Mass Action

Let's consider a simple chemical reaction: $A + B \rightleftharpoons C + D$

The rate of the forward reaction (r_f) can be defined as: $r_f = k_f(A)^*(B)$

And the rate of the backward reaction (r_b) b is then: $r_b = k_b (C)^*(D)$

where (A), (B), (C), and (D) are the concentrations of the elements, or compounds and $k_{f,b}$ are the proportionality or rate constants (i.e. a relationship between "reaction rate" and "concentrations of reactants")

At equilibrium conditions: $r_f = r_b$ or $k_f(A)^*(B) = k_b(C)^*(D)$

Which can be rewritten as:

$$\frac{k_f}{k_b} = \frac{(C)^*(D)}{(A)^*(B)} = K$$

where **K** is the *equilibrium constant* for this reaction

Law of Mass Action and Equilibrium Constant (K)

Apparent Equili. Constant

Concentrations

True Equili. Constant

Activities (a)

Concentration vs. Activity Relationship

The concept of the **activity** of ions in aqueous geochemistry

High activity (no interfering ions)

Low activity (due to interferences)

Hence, also the concentration of our particle (i.e. car...) is same in both cases, the activity for this particle is very different for these two scenarios ...

Concentration vs. Activity Relationship

The Activity (a) of an ion in solution is related to its Molar Concentration (c) and its Activity Coefficient (γ), following the expression:

a = γ * *c*

How to calculate Activity Coefficient (γ) ...

Most popular method for the calculation of activity coefficients (γ), and thus activities (a), of ions in a solution is based on the **Debye–Hückel theory**:

$$log(\gamma) = - \frac{0.5 \cdot (Z)^2 \cdot \sqrt{I}}{1 + \sqrt{I}}$$
 Where:
$$\begin{aligned} Z &= \text{oxidation number of the ion} \\ I &= \text{ionic strength of a solution} \end{aligned}$$

Ionic strength:
$$I = \frac{1}{2} \sum \mathbf{C} \cdot (\mathbf{Z})^2$$

c = molar concentration

The

I

wh

The

1

wh

Most popula First step in

 $I = \frac{1}{2} \sum e^{i t}$

where C_i is a charged mo

Second step

 $\log f_z = -$

Activity coef formula in w

And now the

 $a_{ion} = f_z C$

Concentration vs. Activity Relationship

Debye–Hückel theory provides mathematical explanation for departures of ion activities from the "ideality" in a solutions

Practical Example of Calculations (Ionic Strength, Activities, etc.)

			C	Z	logγ	γ	а
	lon	ppm	mol/kg	Charge	Activity Coeffi	icient	Activity
anion	HCO3-	116	0,00190	-1	-0,0310184	0,9 <mark>311</mark>	0,001769
anion	SO42-	25,5	0,00027	-2	-0,1240738	0,7515	0,000199
anion	CI-	10,3	0,00029	-1	-0,0310184	0,9311	0,000270
anion	NO3-	2,7	0,00004	-1	-0 <mark>,031018</mark> 4	0,9311	0,000040
cation	Ca2+	34	0,00085	2	-0,1240738	0,7515	0,000639
cation	Mg2+	8,9	0,00037	2	-0, <mark>1240</mark> 738	0,7515	0,000278
cation	Na+	11,9	0,00052	1	- <mark>0,031018</mark> 4	0,9311	0,000481
cation	K+	1 ,9	0,00005	1	-0 <mark>,0310</mark> 184	0,9 <mark>311</mark>	0,000046
cation	Fe2+	0,14	0,00000	2	-0,1240738	0,7515	0,000002
neutral	SiO2	11,7	0,00019	0	0		

Chemical composition of water from Mississippi River (from Faure, page 140)

Ionic Strength (I)

0,0044 mol per kg

$$I = \frac{1}{2} \cdot \sum c_i \cdot Z_i^2 \qquad \qquad \log(\gamma) = -\frac{0.5 \cdot (Z_i)^2 \cdot \sqrt{I}}{1 + \sqrt{I}} \quad \text{so} \quad \gamma = 10^{-\log(\gamma)}$$

Step-By-Step Approach to Calculate Ion Activities

1st Step:

Measure the **concentrations (molar)** of cations and anions in your solution

2nd Step:

From the concentrations (c) and ion charges (Z) calculate the lonic Strength (I)

3th Step:

Using the ionic strength (I) and charges (Z) calculate the Activity Coeff. (γ)

4th Step:

Using the concentrations and activity coefficients calculate the ionic Activity (a)

Then you are done ... you have your activities !

Typical Oxidation (valence) Number of Elements

Oxidation Number (Ionic Charges)

Anions

The **oxidation number** of an element indicates the number of electrons lost, gained, or shared as a result of chemical bonding

Relationship between Activity of Ions and Ionic Strength (I)

In general, the activities of ions progressively decrease with an increasing Ionic Strength (I) of a solution (due to more interferences)

Ionic Strength (I) for Selected Natural Waters

Water	Typical Ionic Strength		
Rivers and lakes	0.001 - 0.005		
Potable groundwater	0.001 - 0.02		
Seawater	0.7		
Oil field brines	>5		

Note that the **Debye–Hückel theory** provides reliable results only for solutions with lower lonic Strength, e.g. *I* < 0.1

For solutions with higher lonic Strength (I), other theories are proposed, e.g. **extended Debye-Hückel**, or **Davies theory**, which give reliable results for *I* > 0.5 or 1

Increase of activity coefficients in highly saline solution (I > 1) can be attributed to "crowding" of ions, which counteracts the interferences

Solubility of Minerals in Aqueous Solutions

Photo: M. Brook

Dissolution of gypsum in pure water can be represented by the reaction:

$$CaSO_4 \cdot 2H_2O \rightleftharpoons Ca^{2+} + SO_4^{2+} + H_2O$$

Solubility of Gypsum in Pure water

ReactantsProducts
$$CaSO_4 \cdot 2H_2O$$
 \Rightarrow $Ca^{2+} + SO_4^{2+} + H_2O$

Solubility = the ability of a substance or mineral to dissolve

At the chemical equilibrium (at 25°C and 1 atm):

$$K_{eq} = \frac{a_{Ca2+}^{*} a_{SO42-}^{*} a_{H2O}^{2}}{a_{CaSO4^{*}2H2O}}$$

Note that we always write **Products over Reactants**

 K_{eq} = this constant (also called **Solubility Product constant**, K_{sp}) reflects equilibrium conditions for a solid (mineral) and its respective ions in a solution; and it identifies **the ability of a substance or mineral to dissolve in water**

This constant can be used as reference to estimate if some mineral will precipitate (or rather dissolve) in a specific water solution

Solubility of Gypsum in Pure water

$$K_{eq} = \frac{a_{Ca2+}^{*} a_{SO42-}^{*} a_{H2O}^{2}}{CaSO4^{*}2H2O}$$

Since, H_2O and $CaSO_42H_2O$ are neutral species (their *a* = **1**), so we can write:

$$K_{eq (gypsum)} = a_{Ca2+} * a_{SO42-} = (\gamma * C)_{Ca} * (\gamma * C)_{SO4} = 10^{-4.59}$$

This value represents the **Solubilit Product constant (K**_{sp}) for gypsum mineral

Rule of thumb: the lower K_{sp} value, the less soluble a mineral is in the water

NAME	FORMULA	K _{sp}	
Barium carbonate	BaSO ₄	5.0 × 10 ⁻⁹	
Barium chromate	BaCrO ₄	$2.1 imes 10^{-10}$	
Barium fluoride	BaF ₂	$1.7 imes 10^{-6}$	
Barium oxalate	BaC ₂ O ₄	$1.6 imes 10^{-6}$	
Barium sulfate	BaSO ₄	$1.1 imes 10^{-10}$	
Cadmium carbonate	CdCO ₃	$1.8 imes 10^{-14}$	
Cadmium hydroxide	Cd(OH) ₂	$2.5 imes 10^{-14}$	
Cadmium sulfide*	CdS	$8.0 imes 10^{-28}$	Less
Calcium carbonate (calcite)	CaCO ₃	4.5×10^{-9}	Solu
Calcium chromate	CaCrO ₄	7.1×10^{-4}	
Calcium fluoride	CaF ₂	3.9×10^{-11}	Leas
Calcium hydroxide	Ca(OH) ₂	$6.5 imes 10^{-6}$	Solu
Calcium phosphate	Ca ₃ (PO ₄) ₂	$2.0\times 10^{\text{-}29}$	
Calcium sulfate	CaSO ₄	2.4×10^{-5}	ר

Mineral Saturation and Ion Activity Product

The **Ion Activity Product** (IAP) has basically the same form as the Equilibrium Constant (K_{sp}), but IAP involves the **actual (measured) ion activities**

$$|AP_{(gypsum)} = (a_{Ca2+})_{actual} * (a_{SO42-})_{actual}$$

Saturation Index (SI) quantifies if a certain mineral or solid will precipitate (or dissolve) in a solution, and **SI** is defined as:

$$\frac{SI_{(gypsum)}}{K_{sp}} = \log \frac{IAP_{actual}}{K_{sp}}$$

SI = 0, the solution is *just saturated* (*IAP=Ksp*), neither dissolve nor precipitate

SI > 0, the solution is *supersaturated* (*IAP > Ksp*), mineral will precipitate

SI < 0, the solution is *undersaturated* (*IAP < Ksp*), mineral will dissolve

Practical Calculation of Mineral Saturation in Waters

Suppose, the concentrations of Ca²⁺ and SO₄²⁻ in a sa water are $5 \times 10^{-2} m$ and $7 \times 10^{-3} m$, respectively. Let find out the saturation state of the solution with re gypsum. For simplicity, we will assume that $a_{Ca^{2+}} = m$ $a_{SO_4^{2-}} = m_{SO_4^{2-}}$

Real-life applications ...

IAP (solution) =
$$a_{Ca^{2+}} a_{SO_4^{2-}} = (5 \times 10^{-2}) (7 \times 10^{-3})$$

= $35 \times 10^{-5} = 10^{-3.5}$ Ion Activity Product (IAP)

 $K_{\rm sp\ (CaSO_4)} = 10^{-4.59}$ Solubility Product Constant (Ksp)

Since *IAP* (solution) > K_{sp} (gypsum), the water sample is oversaturated with respect to gypsum, and some gypsum should precipitate out of this solution to restore equilibrium.