

Tal Reaction	ble 1 Decay schemes freque Minerals ^a	ntly used for geochronol λ_p	ogy and then $t_{1/2}$	mochronology. Source
		(yr-1)	(Gyr) ^b	
$\begin{array}{c} {}^{147} {\rm Sm} \rightarrow {}^{143} {\rm Nd} \\ {}^{87} {\rm Rb} \rightarrow {}^{87} {\rm Sr} \\ {}^{176} {\rm Lu} \rightarrow {}^{176} {\rm Hf} \\ {}^{232} {\rm LT} \rightarrow {}^{208} {\rm Pb}^6 \\ {}^{40} {\rm K} \rightarrow {}^{40} {\rm Ar} \\ {}^{238} {\rm U} \rightarrow {}^{206} {\rm Pb}^6 \\ {}^{238} {\rm U} + {}^{58} {\rm on} \\ {}^{238} {\rm U} \rightarrow {}^{207} {\rm Pb}^c \\ {}^{238} {\rm Uhercians: Ap \rightarrow -} \\ {}^{8} {\rm Abbercians: Ap \rightarrow -} \\ {}^{8} {\rm Abbercians: Ap \rightarrow -} \\ {}^{8} {\rm tr}_{120} {\rm the half-life of a p} \\ {\rm (Equation (7)). Common } \end{array}$	Grt, Cpx Ms, Bt, Phl, Kfs Grt Mz, Hbl, Ms, Bt, Phl, Kfs Zcn, Mz, Xn, Ttn, Rt, Ap Zcn, Mz, Xn, Ttn, Rt, Ap Zcn, Mz, Xn, Ttn, Rt, Ap Apatite: Bt-Biblic: Cpa-Clinopyro biogeoptic Bt-mulic; Tu-dinate: X amplitude 106/09/3, ar- valy analyzed minerals include Ap. To aly analyzed minerals include Ap. To	$\begin{array}{c} 6.54 \times 10^{-12} \\ 1.42 \times 10^{-11} \\ 1.865 \times 10^{-11} \\ 4.9475 \times 10^{-11} \\ 3.5 \times 10^{-11} \\ 1.55125 \times 10^{-10} \\7 \times 10^{-10} \\ 9.8485 \times 10^{-10} \\ 9.8485 \times 10^{-10} \\ \end{array}$	106.0 48.8 37.2 14.0 11.9 4.5 ~1.0 0.7 ende: Kfs—K-fc thaf-life of a pa the ⁴ He, forming th	Lugmair and Marti (1978) Steiger and Jäger (1977) Steiger and Jäger (1977) Steiger and Jäger (1977) Steiger and Jäger (1977) Min et al. (2000) Steiger and Jäger (1977) Naeser et al. (1989) Steiger and Jäger (1977) Mary, Ma-Maxwite: nent isospe, is equal to 0.690A _p - tehsis for (U-TuVik geschronology
	I I	reatise on Geochem hermochronology in	istry kap. Orogenic	3.08: Geochronology and Systems (K. V. Hodges)

	Rb-Sr	method		
Rubidium	rubidium		strontium	
Alkali, lithophile element	Isotopic composition (%)			
 Substitutes for K (K-feldspars, micas, some clay minerals, evaporites) 	⁸⁵ Rb ⁸⁷ Rb	72.1654 27.8346	⁸⁴ Sr ⁸⁶ Sr ⁸⁷ Sr ⁸⁸ Sr	0.56 9.86 7.0 82.58
	Relative atomic weight			
	Rb	85.46776	⁸⁴ Sr	83.9134
Strontium			⁸⁶ Sr	85.9092
 Alkaline earth; ion radius somewhat greater than that 			⁸⁷ Sr	86.9088
of Ca, substitutes for Ca (plagioclase, carbonates, apatite) sometimes also K (K-feldspars)			⁸⁸ Sr	87.9056
Rb is strongly incompatible element fractionation (esp. high in permatil	t, thus its	amount and I	Rb/Sr rati	io rise with

	Lu-	Hf method	nethod		
Lutetium		lutetium	hafnium		
 The neaviest among Enters the crystal still 	REE ructure of	Isotopic composition (%)			
many accessories: a monazite, apatite an Hafnium	llanite, ¹⁷⁵ Lu d titanite ¹⁷⁶ Lu	97.4 2.6	¹⁷⁴ Hf 0.16 ¹⁷⁶ Hf 5.2 ¹⁷⁷ Hf 18.6 ¹⁷⁸ Hf 27.1 ¹⁷⁹ Hf 13.7		
 Transition metal Geochemical behavio resembles Zr, for whit (zircon) 	ur strongly ch it readily substitu	tes in accessor	¹⁸⁰ Hf 35.2 y minerals		
• ¹⁷⁶ Lu shows branched	l decay:				
 -β emission (97 % of decays) 	$^{176}Lu \xrightarrow{-\beta} ^{176}Hf +$	γ (Patch	$I = 1.94 \times 10^{-11}$ nett & Tatsumoto 19	yr ⁻¹ 980)	
2 Electron capture (3 no geochronological r	% of decays) neaning				

К-А	Ar and Ar	-Ar met	hods		
Potassium	pota	ssium	ar	gon	
Alkali metal Lithophile element	Isotopic composition (%)				
 (8th most common in the Earth's crust) Three naturally occurring 	³⁹ K ⁴⁰ K ⁴¹ K	93.2581 0.01167 6.7302	³⁶ Ar ³⁸ Ar ⁴⁰ Ar	0.337 0.063 99.600	
isotopes: ³⁹ K, ⁴⁰ K, ⁴¹ K		Relative atomic mass			
	A _r (K)	39.098304	A _r (Ar)	39.9476	
 Argon 2nd most common noble gas Three naturally occurring isotopes: ³⁶Ar, ³⁸Ar, ⁴⁰Ar 					
				Ĩ,	

