

×.		Cla	assificatio	on of igi	neou	s rock	S	
Quar	ntitative p	arameters						
· Ch	emical com	position						
	silica col	<i>ntents:</i> ultrab	asic, basic, i	intermediat	e, acio	ł		
	Total Alk	ali (Na ₂ O + k	(20) – Silica	diagram (7	AS)			
	normati	e compositio	n					
Liiteo	hasia	Decia	Interr	nodiata		Asid	/ A sidis	
Ultra	Dasic	Basic	Interr	neciate		Acia	ACIDIC	
40	45	50 S Mass	52 55 % of SiO ₂ i	60 n rock	63	65	70	
							Gill (2010)	

man and the second s Simple recalculations $FeOt = FeO + 0.89981 \times Fe_2O_2[wt.\%]$ Niggli (1948) defined simple cationic values. Several of them, *si, al, fm, c, alk, k, mg, ti, p, c/fm,* and *qz* are still in use. $mg \# = 100 \frac{MgO}{FeO + MgO} [mol.\%]$ $Mg \# = 100 \frac{MgO}{FeOt + MgO} [mol.\%]$ Mg# or mg# represent useful index of fractionation for binary plots showing differentiation trends.

O.	Multicationic classifications						
Example of	Example of calculation						
	Wt. %	MW	n	Cationic proportions	Millications (per 100 g of rock)		
SiO ₂	73.60	60.09	×1	1.225	1225		
TiO ₂	0.10	79.90	×1	0.001	1		
Al ₂ O ₃	13.17	101.96	x2	0.258	258		
Fe ₂ O ₃	0.99	159.69	x2	0.012	12		
FeO	1.61	71.85	x1	0.022	22		
MgO	0.06	40.30	×1	0.001	1		
CaO	0.70	56.08	x1	0.012	12		
Na ₂ O	3.69	61.98	x2	0.119	119		
K ₂ O	5.38	94.20	x2	0.114	114		
$R_1 = 4Si - 11$ $R_2 = 6 Ca + 2$	(Na + K) - 2 (Fe Mg + Al = 72 +	e + Ti) = 4900 - 1 + 2 + 258 = 332	11(233) - 2(12 + 22 + 1) = 22 De la Roche Batchelor and Bi	267 2 et al. (198 owden (198		

Ó	Multicationic classifications						
Example of calculation							
-					Millications		
		Wt. %	MW	n	(per 100 g		
					of rock)		
	SiO ₂	66.95	60	x1	1116		
	TiO ₂	0.35	80	x1	4		
	Al ₂ O ₃	16.16	102	x2	317		
	Fe ₂ O ₃ ^t	2.95	160	x2	37		
	MnO	0.10	71	x1	1		
	MgO	0.68	40	x1	17		
	CaO	3.96	56	x1	71		
	Na ₂ O	4.27	62	x2	138		
	K ₂ O	2.97	94	x2	63		
Q = Si/3 P = K - (A = AI - (B = Fe +	- (K + Na + 2C Na + Ca) = -1 K + Na + 2 Ca Mg + Ti =58	Ca/3) = <u>124</u> 46) = -26		Debor	n and Le Fort (19		

25	Petrogene	etic classifi	cation of g	ranitoid rocks
	I	S	М	A
SiO ₂	53-76 %	65-74 %	46-70 %	High
K ₂ O/Na ₂ O	Low	High	Low	Na ₂ O high
Shand`s index	A/ CNK < 1.1	A/ CNK > 1.1	A/ CNK < 1.0	A/ CNK > 1.0
(⁸⁷ Sr/ ⁸⁶ Sr) _i	< 0.705	> 0.707	< 0.705	variable
δ ¹⁸ Ο	< 9 ‰	> 9 ‰	< 9 ‰	variable
Special geochemical features				Low CaO, high Fe/Mg Ta, Nb, Zr, REE, F
Source rocks	Basic to intermediate igneous rocks, usually subduction-related	Sedimentary rocks	Partial melting of subducted oceanic crust, fractional crystallization from basaltic magma	Anorogenic settings, variable models, e.g remelting of granuliti residue left behind b extraction of (normal granitic melt
A/	$CNK = \frac{Al_2O_3}{CaO + Na_2O + K_2}$	[mol. %]	$A/NK = \frac{Al_2C}{Na_1O_2}$	$\frac{D_3}{K O}$ [mol. %]

