BLATNÍČKA – VÝZNAMNÝ PROFIL V MAGURSKÉM FLÝŠI PRO VÝZKUM HRANIČNÍHO EVENTU PALEOCÉN/EOCÉN V HĽUBOKOMORSKÝM PROSTRIEDÍ POD CCD

Miroslav Bulík1 – Marie Adamová2 – Eva Francová1 – Juraj Francová1 – Přemysl Gazl3 – Lilian Švabenicka4

1Český geologický ústav, Litaurova 22, 658 69 Brno (bulik@czu.cz)
2Český geologický ústav, Geologická 6, 152 00 Praha 5
3Institute of Geological Sciences, Polish Academy of Sciences, Serakka 1, 31-002 Kraków, Poland
4Český geologický ústav, Kitařova 3/131, 118 21 Praha 1

(35-11 Veselí nad Moravou)

Key words: Magura Group of Nappes, Bílé Karpaty Unit, Paleocene/Eocene Boundary, Biostratigraphy, Taphonomy, Events, Sedimentology, Foraminifera, Calcareaous nanofossils, Dinoflagellata

Abstract: The changes in the Paleocene/Eocene boundary were studied in the sub-ccd flysch facies of the Bílé Karpaty Unit at Blatnica. A detailed taphonomic and sedimentological analysis of the selected turbidite layers revealed a bioturbation of at least upper 11 cm of the turbidite marl and indicated the CCD drop for a relatively long period after deposition of the turbidite. Preliminary results of the biostratigraphic study (calcareaous nanofossils, agglutinated foraminifera) allowed to assign the studied 17 m thick section to upper part of the Paleocene/Eocene boundary interval. Palynological study evidenced the presence of Apectodinium, sp. ac. Preliminary geochemical analysis evidenced oxygenated environment and increasing redox potential trend up the section.

ÚVOD

Ačkoliv v hraniciém intervalu PoE rozhodně nedošlo k vymírání prvního řádu, hlbokomorská bentónání spočetnost byla postižena s intenzitou několiknásobně převyšující mnohem známější údaje na hranici KT. Náhle vymřely četné druhy abysního a batinálního foraminiferového bentonu převážně z k dy (Taisnja – Lohmann, 1983). Výsledky studia stabilních izotopů kyslíku ukázaly extrémně vysoko teply obnovy v 10°C, které přetrvávaly po zhruba 100 tisíc let (Stotz, 1992). Hodnoty δ13C hranicích foraminiferů z tětišových oblastí vykazují náhle negativní posun o 5% krát v době výrazného vymírání a nízká hodnota přetrvává po zhruba 1 milion let (Schmert et al., 1996). Tyto hodnoty δ13C svědčí pro zvýšenou produktivitu v fotickém zóně. Výskyt produktivita se projevila v tětišových pánech sedimentací sapropelových pohol (Spéler et al., 1997), zvýšeným obsahem Ba, SiO₂, a P₂O₅ (Schmert et al., 1997) a oponentickými společenstvy foraminifer (Spéler et al., 1997; Kaminski et al., 1996).

Spoledenstva aglutinovaných foraminifer ve spodním batinélu a abysního pod CCD byla rovněž výrazně postižena, ačkoliv o něco méně než výpátrný benton na kontinentálních svazích. Na hranici PoE uváděl Geroch – Nowak (1984) 7 posledních výskytků (LO) a 3 prvních výskytků (FO) pro karatský flyš, Kaminski et al. (1988) 15 LO a 1 FO na Trini-
dalu, Winkel (1984) 6 LO a žádný FO ve Schliere flyši, Švýcarska a Kaminski et al. (1996) lokalitu vymírání 13 drah z více než 78 v německém flyši Maroka. Nejdra-
motčejší výměna aglutinovaných faun s 20 LO a 35 FO na hranici PoE byla pozorována v Severním moři (Charnock – Jones, 1990).

Asociace výpátných nanofossilů vykazují menší změny na hranici PoE ve slování s vymíráním během událostí KT.

Pozoruhodně jsou změny společenstev dinocyst v hraničním intervalu PeE. Celkově rozšířená akmezóna rodu Apectodinium dobře koreluje s obdobím teplotního maxima (Buiak – Brügge, 1998).

PROFIL BLATNICKÁ

Hranici PeE sedimenty v Blatničce patří nivnickému sousvrství bělokarpatské jednotky. Odkryty jsou v dlouhém zářu podél panelové cesty na místě skladu TKO na v. konci obce Blatnička. Především studium prokázalo přítomnost hranice bicechronu NP9-NP10 vápnitých nanofosilii a aglutinované společenstva akmezóna Glomospira (Buiak – Švábnická, 1994). Souvislý vrstevník sled hranic nemocnosti přibližně 17 m je zachováváv na relativicky málo porušené tektonické úrovni s jediným přesmykem v 13 m profilu (obr. 1). Převažují vápnité jíly/flovice a silný nad zemnemocnými vápnitými plaskovci, prachovci a nevápnitými jíly (hemipelagity). Ze sedimentologického hlediska se vyznačuje vysokou převahu turbiditních sedimentů nad hemipelagity. Pro představu –

Obr. 1. Schematický tělesný profil hraničních sedimentů paleoecologická zonace a sedimentace v Blatničce s vyznačením výskytu v mělčích rubických aglutinovaných fora minifer a vápnitých nanofosilii. Legendu: 1 – výskytě stíněšlavých jílů, 2 – stíněšlavé vápnité plaskovce (obrazeny velkou 3 cm), 3 – prachovci z hemipelagických jílů, 4 – prachovci z turbiditních jílů a stíněšlavé vápnité plaskovce, 5 – geochemické vyznačky.
podíl hemipelagitu tvoří jen asi 3% na celkové mocnosti. Bází pískovcových lavic jsou relativně hustě pokryty ichnofosiliemi (hyporeliéfy). Zařazení bylo determinováno Thalassinoideas a další materiál čeká na zpracování (UCHMAN, přízemní sadění). Aby bylo možné optimalizovat vzorkování turbiditních jílovců, byl detailně prostudován vybraný 165 cm mocný turbiditní rytmus tvořený intervaly Te-e (obr. 2). Celkem bylo v Blatničce odebráno 17 palynologických vzorků, 13 vzorků na vápnitý nanoplankton, 19 vzorků na foraminifery a 5 geochemických vzorků.

TAFONOMICKÁ ANALÝZA TURBIDITNÍCH SEDIMENTŮ

Ve vybraném turbiditním rytmu mocném 160 cm bylo odebráno 5 vzorků z vápnitých jílovců intervalu Te (obr. 1, 2.). V rámci Te intervalu byly sledovány následující parametry:

- Obsah psamitické frakce. Psamitická frakce v celém intervalu nedosahuje 2% a směrem vzhůru postupně klesá.
- Vápnitost. Obsah Ca karbonátu byl analyzován ve vzorcích 64M2 a 64M5 a ukázal mírné rostoucí trend do nadloží (o 12%).
- Četnost mikrofosilí. V 1 g sedimentu. Velmi vysoká hodnota byla zjištěna na bázi Te intervalu (169 ex/g), zbytek nedosahuje hodnoty 10 ex/g. Ve vyšší části Te byl zaznamenán mírně rostoucí trend.
- Zastoupení velkostních form mikrofosilí. Ve studovaných vzorcích byl měněn průměr 20 náhodně vybraných mikrofosilí - foraminifer a radiolarií subglobulárního tvaru (protozají tvary nebyly měřeny). Sestavené histogramy (obr. 2) jsou zde demonstrují velikostní vytížení v intervalu Te, kromě nejvyšší části, kde vytížení není patrné. Předposlední vzorek 64M4 vykazuje přechodné znaky: vytížení jemnějších frakcí a podobně nevytíženou příměs.
- Distribuce a vzájemný poměr jednotlivých skupin mikrofosilí. Pro kvantitativní studium byla použita frakce nad 0,063 mm. Byly počítány všeké fosilní zbytky z celkového množství 300 v každém vzorku. Na bázi intervalu Te silně převažuje drobný foraminiferový plankton (až 80%). Tento plankton je nečetný bentos jsou redepozovány z křídly. Výše méně málok, je jehlicí hub, limonitových jader radiolarií, zvětralého fytodetritu a palynomorfů. V posledním vzorku 11 až 6 cm pod stropem turbiditního jílovec se nachází objevují ostny irregulárních ježek, koráli a zuby ryb a žraloků, a hojné aglutinované foraminifery (až 60%). Aglutinované foraminifery jsou jednoznačně paleogenní (Glyptostrobus stra- nika, Eratitellus sp.) a poprvé se objevují na paleogene plankton (Morozovella, Subbotina) a vápnitý bentos. Radiolarií jsou zastoupeny křemíkovými jádry spumellarií (Cenosphera lenticularis).

- Podíl křídových redepozic u vápnitých nanofosilí. Od

Podíl do nadložních malých klasí podíl redepozice ze svrchní křídly: z 20% ve vzorcích 64M1 a M2, přes 18% v M3, 17,5% v M4 na 15,7% v M5.
- Zachování a distribuce nanofosilí. Celý studovaný Te
interval byl bohatý na vápnité nanofosilie. Pro detailní kvantitativní rozbor bylo v každém vzorku počítáno 400–500 nanofosilie. Ve všech sledovaných vzorcích tvořily Coccolithus ex gr. pelagicus přibližně 50% v rámci paleogenální složky. C. pelagicus oproti jiným druhům vápnitých nanofosilii je relativně odolnější (mechanicky i chemicky) a jeho vysoký obsah je patrně druhotný. Za jímává je kvantitativní nářost druhu Discosower multiradiatus: ve vzorcích 64M1–M4 se jeho četnost pohybuje od 3,5 do 5,6%, ve vzorku 64M5 se náhle zvyšuje na 12,5%. Velké plakolity a diskoasteridy jsou většinou mechanicky poškozené a často pouze ve fragmentech. Na rostoucích typě diskoasterid byly pozorovány stopy nalezání v procházejícím světle patrné jako vyložené otvory na ploškách segmentů připomínají díry v emantu.

Z výše uvedených pozorování a naznačených trendů lze usuzovat na bioturbací horních asi 30 cm turbiditních sedimentů patrně činnosti irregulárných jeřábů. Jejich osmy se objevují ve nejvyšší části turbiditních jílů, současně se zbytky ryb a žraloků a hojnými aglutinovanými foramínferami. Aglutinované foramínifery jsou zastoupeny morfotypy žijícími jako pasivní epifaň, takže jejich převýšení v nejvyšší části turbiditních jílů dokládá bioturbation. Ojedinělé paleonanofankiontické foramínifery a hojně vápnitý bentos tamtéž jsou patrně rovněž zataženy z povrchu dne bioturbation vzhledem absenci velikostního vytřídění.

BIOSTRATIGRAFIE

Společenstvo aglutinovaných foramínifer získané z hemipelagických jílů mají nižší druhotnou četnost a stratigraficky vůdčí druhu jsou vzácné. Od vzorku 64M5 výše se očekává ojedinele objevují coccmí pravky jako Stations sp. sensu Buxx (1995), Glomospira stricka, Reophas elongatus a Pseudonodosella nodulosa (obr. 1). Zároveň obce existence typických paleocenických vůdčích druhů jako Annectina, grzybiski a zástupců rodů Rzezhakina a Caudaminina napovídá, že studovaný profil lze srovnávat s vyšší části hliničního intervalu Peč. Výjimkou je výskyt Rzezhakina minima ve vzorku 64K (obr. 1). Právě u tohoto druhu však není jisté, že podlehl vymírání spolu s ostatním rzezhakimid, protože v cocémne se podle poslední dobou stálo asociíremu druhu Psammonupella granditina. Největší násleky planktonických foramínifer v turbiditních jílích zatím nepostačují k výměně bioznak jejich biogeomorfem.

Palyononické vzorky byly většinou pozorovány. V nižší části studovaného profilu (metr 2,0–3,6 m, viz obr. 1) se nejčastěji vyskytují dinoocysty Apectodinium sp. (A. homomorph, A. quingualatum, a A. parvum) a Deflandera sp. Výše (4,7–6,2 m) zcela převládá Apectodinium sp. (akmezóna?). V tomto okamžiku je těžké činit jasně stratigrafické závěry. Výskytní dinoocyst dinoocystum svědčí o nižší části hliničního intervalu Peč před prvním výskytu A. augustus (datovaným na 53,6 mil. let).

Tafocentéry vápnitých nanofosilí z turbiditních jílů (vzorky 64M1–M3) se stává svrchněkřídlové redepozice (15–20%), redepozice z nižších částí paleoceánu (mizivé procento) a důlů paleoceánu–ecocénu, které lze považovat za synchronitními redepozice či dokonce větší za autochtonní nanofosilie (viz „Zázvěr“). Paleogenální složka má vysokou druhotnou četnost, avšak i relativně vysokou dominanci (kolem 50% Coccolithus ex gr pelagicus, hojně Towerida). Charakterická je přítomnost diskoasterid včetně Discosower multiradiatus (3 až 12%) a Discosower sp. (6–7 ramen), Chiasmolithus conoideus, Ch. eograndsis a Campylospora dela. Dále bylo možno pozorovat:

- výskyt druhu Zygrhabilithus bijugatus, Lophodolithus naissens a Pontosphaera cf. plana, nacházejícího se hliničním intervalu Peč (Aubry 1998)
- vzácně přítomnost Rhomboaster cuspis, jejíž rozšíření je korelováno s vyšší části zóny NP9 až NP10
- překvapivě přítomnost rodu Clausicoccus, jejichž první výskyt uvádí Aubry (1998) až od bývece (uvnitř NP10)
- špatně zachované exempláře Rhomboaster-Tribrichia (ve vzorku 64M5), zástupci rodu Tribrichia včetně T. branfilei však nebyly zjištěny.

Ve vyšší části studovaného profilu (vzorky 64M4 a 64L, viz obr. 1) byl v tafocentérech pozorován ubytý fasciculistr, diskoasterid a Rhomboaster cuspis. Pozoruhodný je výskyt Neococcolithes cf. dubisi (vz. 64L), jejichž typická forma je dosud uvedená až z nanofón NP12. Zajímavé pozorování bylo uvedeno u druhů Pontosphaera ducova a P. pulchra, které pravděpodobně představují vývojovou linii. První netypické formy P. pulchra se objevily ve vz. 64L, výše ve vz. 64M jich byly zaznamenány typické formy. Vápnité nanofosilie ze studovaných vzorků dokládají stáří odpovídající hliničnímu intervalu Peč (sensu Aubry et al., 1999), a to pravděpodobně jeho střední části.

GEOCHEMIE

Obsah organické hmoty v ústech vzorků byl vůbec (pod 1%). Tímtoály vedlý a silně obsahovalo převohupružně méně organických látek, než světléjedné vápnité prachovité jíly a silny. Z hlediska organické fascie je vzorec GCH1 nejbohatšíj vodní (HI = 23 mg/g). Ostatní vzorky jsou boh
ZÁVĚR

Výsledky tafonomické analýzy tého intervalu vybraného turbiditačního rytu přinesly nové poznatky důležité pro strategii vzorkování pro biostratigrafii a geochronologii. Kromě turbiditních jílů/silně uložených turbiditním proudem a hemipelagických jílů sedimentujících se zepsuněna byla odlišena poloha vzniklých horní vrstvy turbiditačního jílce s bezdělnými hemipelagickými jíly bioturbace. Je známo, že pozice CCD při kontinentálních okrajích je ne-stabilní a že rozsáhlejší karbonátový turbiditační proud může způsobit pád CCD na relativně dlouhou dobu. K tomu patří docházelé i během sedimentace nivického souvrství v hranici intervalu Peč. Při přítomnosti vápnitých foraminifér z intervalu svrchní paleocen–spodnílocen v bioturbované svrchotu pole turbiditačních jílců lze předpo-kládat hemipelagickou sedimentaci vápnitých jílů po určité dobu po ustavení turbiditačního. Návrh CCD po dovolání úrovní pokračoval podpůrné průzvítí pro forma s vápnitou schránkou (včetně jezívek) a dále sedimentovaly nevápnité jíly osaděné pouze aglutinovanými foraminiférami. Pokud je tento model správný, bude možné z bioturbovaných poloh získat autochtonní nerecedenovanou mikrofaunu pro biostratigrafii a izotopové studium. Předchozí výsledky biostratigrafie podle aglutinovaných foraminifér a vápnitého nanoplanktonu ukazují, že studovaný profil uvnitř vybrané tektonické ú加工厂 odpovídající patrně pouze vyšší části hranice intervalu Peč nad eventem vymírání bennozitních foraminifér. V další etapě výzkumu hude proto potřeba věnovat pozornost i obsahu nadeční a pododeční tektonické ú加工厂 v závěru v Blatnické.

Literatura

