TABLE OF CONTENTS

TABLE OF CONTENTS

RISK ASSESSMENT HANDBOOK FOR SHUT DOWN AND ABANDONED MINE SITES IN NAMIBIA

FOREWORD

LIST OF ACRONYMS

GLOSSARY

1. INTRODUCTION

1.1 Background
1.2 Objectives of this Handbook
1.3 Scope of this Handbook

1.3.1 Type of Mining and Associated Process

1.3.2 Mining Site Status

1.3.3 Components of a Shut Down or Abandoned Mine Site

1.4 Basic Risk Concepts

1.4.1 Risk of contamination

1.4.2 Risk to safety

2. RISK ASSESSMENT METHODOLOGY FOR SD/AMS

2.1 Stages of Risk Assessment and Prioritization of SD/AMS

2.1.1 Identification of Hazard Scenarios

2.1.2 Identification of Receptors

2.1.3 Assessing the Likelihood of Occurrence

2.1.4 Assessing the Severity of Consequences

2.1.5 Applying the Risk Matrix

2.1.6 Indications for Conducting a Detailed Risk Assessment, DRA

2.1.7 Risk Assessment due to the Proximity of other Sites

2.1.8 Classification of MEL and Non-MEL Sites

2.2 SD/AMS Risk Assessment Approach

2.3 Suggestions for the Assessor

3. PREPARING THE ASSESSMENT AND FIELD VISIT

3.1 General Aspects

3.2 Stages in Preparing the Assessment
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.1 Information Gathering</td>
<td>3-2</td>
</tr>
<tr>
<td>3.2.2 Map Preparation</td>
<td>3-3</td>
</tr>
<tr>
<td>3.2.3 Definition of the Area Study</td>
<td>3-5</td>
</tr>
<tr>
<td>3.2.4 Descriptions of Receptors in the Area of Study</td>
<td></td>
</tr>
<tr>
<td>3.2.4.1 People</td>
<td>3-8</td>
</tr>
<tr>
<td>3.2.4.2 The Environment</td>
<td>3-10</td>
</tr>
<tr>
<td>3.2.4.3 Economic Activities</td>
<td>3-12</td>
</tr>
<tr>
<td>3.2.5 Preparing the Field Visit</td>
<td></td>
</tr>
<tr>
<td>3.2.6 Summary of Assessment Preparation Stage</td>
<td>3-16</td>
</tr>
<tr>
<td>3.3 Field Visit</td>
<td></td>
</tr>
<tr>
<td>3.3.1 Identification and Description</td>
<td>3-16</td>
</tr>
<tr>
<td>3.3.1.1 Identification of Installations, Deposits and Works</td>
<td>3-17</td>
</tr>
<tr>
<td>3.3.1.2 Description of Installations, Deposits and Works</td>
<td></td>
</tr>
<tr>
<td>3.3.2 Identification of Hazard Scenarios for each Installation, Deposit or Work</td>
<td>3-18</td>
</tr>
<tr>
<td>3.3.3 Drawing the Boundaries of the Area of Study</td>
<td>3-18</td>
</tr>
<tr>
<td>3.3.4 Characterization of Receptors for each Hazard Scenario</td>
<td>3-19</td>
</tr>
<tr>
<td>3.3.5 Field Information required to Determine the Likelihood of Occurrence of each Hazard Scenario</td>
<td>3-19</td>
</tr>
<tr>
<td>3.3.6 Field Information required to Determine the Severity of the Consequences for each Hazard Scenario</td>
<td>3-19</td>
</tr>
<tr>
<td>3.3.7 Final Review of Field Inspection</td>
<td>3-20</td>
</tr>
<tr>
<td>4. SIMPLIFIED RISK ASSESSMENT</td>
<td>4-1</td>
</tr>
<tr>
<td>4.1 Simplified Risk Assessment for Safety</td>
<td>4-1</td>
</tr>
<tr>
<td>4.1.1 General Aspects</td>
<td>4-1</td>
</tr>
<tr>
<td>4.1.2 SRA process for Safety Risks</td>
<td>4-2</td>
</tr>
<tr>
<td>4.1.2.1 STEP 1: Identification of Hazard Scenarios</td>
<td>4-3</td>
</tr>
<tr>
<td>4.1.2.2 STEP 2: Assessing the Likelihood of Occurrence (Probability)</td>
<td>4-17</td>
</tr>
<tr>
<td>4.1.2.3 STEP 3: Estimating the Severity of the Consequences</td>
<td>4-18</td>
</tr>
<tr>
<td>4.1.2.4 STEP 4: Assessing the Magnitude of Risk</td>
<td>4-22</td>
</tr>
<tr>
<td>4.1.3 Results of the Simplified Risk Assessment for Safety</td>
<td>4-22</td>
</tr>
<tr>
<td>4.2 Simplified Risk Assessment for Contamination</td>
<td>4-23</td>
</tr>
<tr>
<td>4.2.1 General Aspects</td>
<td>4-23</td>
</tr>
<tr>
<td>4.2.2 SRA Process for Contamination</td>
<td>4-24</td>
</tr>
<tr>
<td>4.2.2.1 STEP 1: Formulation of the Problem</td>
<td>4-25</td>
</tr>
<tr>
<td>4.2.2.2 STEP 2: Identification of Hazard Scenarios</td>
<td>4-26</td>
</tr>
</tbody>
</table>
4.2.2.3 STEP 3: Estimating the Probability Index (PI) 4-39
4.2.2.4 STEP 4: Estimating the Severity of Consequences 4-41
4.2.2.5 STEP 5: Assessing the Magnitude of Risk 4-45
4.2.3 Result of the Risk Assessment for Chemical Contamination 4-46
4.3 Summary of Risk Assessment for SD/AMS 4-47
4.4 Cumulative Risk Assessment 4-48
4.4.1 Need for a Cumulative Risk Assessment 4-48
4.5 Need to perform a Detailed Risk Assessment 4-49
4.5.1 General Aspects 4-49
4.5.2 Process to Determine the Need for a DRA 4-50

5. DETAILED RISK ASSESSMENT FOR SAFETY 5-1
5.1 Subsidence Study 5-3
5.1.1 Field Studies 5-4
5.1.2 Laboratory Analysis 5-4
5.1.3 Analysis and Modelling 5-5
5.1.4 Content of Subsidence Reports 5-6
5.1.5 Bibliographic References 5-6
5.2 Slope Stability assessment 5-6
5.2.1 Slope Stability Study 5-7
5.2.1.1 Laboratory Test Related to Stability 5-9
5.2.1.2 Data Analysis and Modelling 5-9
5.2.2 Considerations Related to the Water Table 5-11
5.2.3 Mitigation of Risk 5-11
5.2.4 References and Programmes Available for Slope Stability Analysis 5-12
5.3 Tailing Dams and Impoundments 5-12
5.3.1 Field Investigations of Tailings Storage Facilities 5-14
5.3.1.1 Sloughing and Slope Stability 5-14
5.3.1.2 Freeboard 5-14
5.3.1.3 Rates of Rise 5-14
5.3.1.4 Seepage and Drains 5-14
5.3.1.5 Phreatic Surface 5-15
5.3.1.6 Penstock Inlets 5-16
5.3.1.7 Groundwater 5-16
5.3.1.8 Tailings Dam Inspections and Safety Observations 5-16
5.3.2 Bibliographic References Related Tailings and Impoundments 5-17

6. DETAILED RISK ASSESSMENT FOR CONTAMINATION 6-1
6.1 Methodology Background 6-1
TABLE OF CONTENTS

6.2 DRA Process for Contamination
- 6-3

6.3 STEP 1 – Formulate the Problem
- 6-3
 - 6.3.1 Study Approach
- 6-3
 - 6.3.2 Assessment of Sources of Contamination
 - 6.3.3 Preliminary Identification of Chemicals of Potential Concern
 - 6.3.4 Preliminary Identification of Receptors and Exposure Pathways
 - 6.3.5 Designing a Conceptual Model
 - 6.3.6 Requirements for Additional Studies and Sampling

6.4 STEP 2 – Collect Supplementary Information
- 6-9
 - 6.4.1 Visit to the SD/AMS
 - 6.4.2 Collection and Analysis of Supplementary Samples
 - 6.4.2.1 Selection of Sampling Points and Sample Size
 - 6.4.2.2 Sampling Methodology
 - 6.4.2.3 Laboratory Analysis
 - 6.4.2.4 Statistical Analysis of the Results
 - 6.4.2.5 Quality Assurance and Quality Control of Sampling (QA/QC)

6.5 STEP 3 – Assessment of Chemicals of Potential Concern
- 6-27

6.6 STEP 4 – Risk Assessment
- 6-27
 - 6.6.1 Quantitative Human Health Risk Assessment
 - 6.6.1.1 Introduction
 - 6.6.1.2 Dose-Response Assessment (Toxicological Assessment for Humans)
 - 6.6.1.3 Exposure Assessment
 - 6.6.1.4 Characterization of Human Health Risks
 - 6.6.1.5 Analysis of Uncertainties
 - 6.6.2 Ecological Risk Assessment
 - 6.6.2.1 Introduction to Quantitative Ecological Risk Assessment
 - 6.6.2.2 Stressor-Response Assessment for Ecological Receptors
 - 6.6.2.3 Exposure Assessment
 - 6.6.2.4 Quantification of Ecological Risks
 - 6.6.2.5 Analysis of Uncertainties

6.7 STEP 5 - Risk Statement
- 6-51
 - 6.7.1 Human Health Risk Assessment
 - 6.7.2 Ecological Risk Assessment
 - 6.7.3 Assessment of Severity of Consequences
TABLE OF CONTENTS

6.8 Peer Review of Detailed Risk Assessment Reports 6-57
6.9 Calculating Site Specific Target Levels 6-58

7 CLASSIFICATION AND PRIORITIZATION OF SD/AMS ACCORDING TO RISKS 7-1
7.1 Classification of SD/AMS 7-1
7.2 Prioritization of SD/AMS 7-1
 7.2.1 Prioritization of Class I SD/AMS (MEL) 7-1
 7.2.2 Prioritization of Class II SD/AMS (non-MEL) 7-3
7.3 Periodic Review of Class II SD/AMS Risk Assessment 7-4

TABLES

Table 1-1: Components of a SD/AMS .. 1-7
Table 2-1: Criteria for Defining the Severity of Consequences .. 2-5
Table 2-2: Risk Matrix ... 2-5
Table 2-3: Significant and Non-significant Risk .. 2-6
Table 2-4: Classes of SD/AMS ... 2-8
Table 4-1: Characterization of Site Components .. 4-5
Table 4-2: Sample Information Identifying and Describing the Installations, Deposits and Works of a SD/AMS .. 4-6
Table 4-3: Safety-related Hazard Scenarios .. 4-7
Table 4-4: Sample Record of Safety Hazard Scenarios .. 4-16
Table 4-5: Sample record of SHS Probability Indices ... 4-18
Table 4-6: Severity of Consequences Scale – Safety Hazard Scenarios 4-19
Table 4-7: Severity of Consequences Rating for People ... 4-20
Table 4-8: Severity of Consequences Rating for Terrestrial Fauna and Flora 4-21
Table 4-9: Sample Record of Safety Risks .. 4-23
Table 4-10: Contamination Hazard Scenarios .. 4-28
Table 4-11: Sample Record of Contamination Hazard Scenarios for Site 'X' 4-39
Table 4-12: Sample Record of CHS Probability Indices .. 4-41
Table 4-13: Receptors for Risk Assessment .. 4-41
Table 4-14: Severity of the Consequences in the SRA due to Chemical Contamination .. 4-43
Table 4-15: Severity of Consequences for People ... 4-45
Table 4-16: Sample Risk Matrix for Contamination Risk 4-47
Table 4-17: Sample Risk Assessment for Safety and Contamination of a SD/AMS 4-47
Table 4-18: Identification Codes for Risk Matrix cells .. 4-50
Table 5-1: Safety Hazard Scenarios for which a DRA is indicated 5-1
Table 5-2: Recommended Borehole Positions ... 5-8
Table 6-1: Potential Sources of Contamination and Media Susceptible to Contamination 6-6
Table 6-2: Types of Minerals and Main Chemicals of Potential Concern 6-7
Table 6-3: Conceptual Sampling Plan for Media Susceptible to Contamination 6-14
TABLE OF CONTENTS

Table 6-4: Exposure Pathways to Consider in Assessing Exposure ... 6-31
Table 6-5: ERA – Possible Exposure Pathways by Media Susceptible to Contamination 6-44
Table 6-6: Example of a Probability Index Rating Scheme .. 6-51
Table 6-7: Classification Criteria for Hazardous Categories of Carcinogens 6-52
Table 6-8: Probability Index versus Ecological Risk Value or Hazard Quotient 6-53
Table 6-9: Example of a Severity of Consequences Index Rating .. 6-54
Table 7-1: Cell identification Codes in the Risk Matrix .. 7-2

FIGURES

Figure 1-1: Abandoned/Dormant Mines in Namibia .. 1-4
Figure 1-2: Abandoned/Dormant Mines in the Tsuseb-Otavi-Grootfontein Area 1-5
Figure 1-3: Abandoned/Dormant Mines in the Erongo Region ... 1-6
Figure 2-1: Schematic Diagram of Risk Assessment Process for SD/AMS 2-2
Figure 2-2: SD/AMS Risk Assessment Process ... 2-10
Figure 4-1: SRA Process for Safety Risks .. 4-3
Figure 4-2: SRA Process for Chemical Contamination .. 4-25
Figure 4-3: Contamination Model Scheme .. 4-27
Figure 4-4: Classifying a SD/AMS based on Risk .. 4-51
Figure 5-1: Defining the Area in Danger of Subsidence for Underground Mine Works with Slope less than 30° .. 5-5
Figure 6-1: Flowchart for Detailed Risk Assessment for Contamination 6-2
Figure 6-2: Steps in the Detailed Risk Assessment ... 6-4
Figure 6-3: Statistical Analysis of Laboratory Results .. 6-22
Figure 6-4: Example of Pathway-Receptor Integration Diagram .. 6-33
Figure 7-1: Example of MEL prioritization .. 7-3
ANNEXURES

ANNEX A: COMPLEMENTARY INFORMATION FOR THE SIMPLIFIED RISK ASSESSMENT FOR SAFETY

A1: Guide for Estimating each Hazard Scenario Safety Index
A2: Supporting Material for the Simplified Risk Assessment for Safety

ANNEX B: COMPLEMENTARY INFORMATION FOR THE SIMPLIFIED RISK ASSESSMENT FOR CONTAMINATION

B1: Guides to Estimate the Probability Index for each Contamination Hazard Scenario
B2: Supporting Material for the Simplified Contamination Risk Area

ANNEX C: COMPLEMENTARY INFORMATION FOR THE DETAILED RISK ASSESSMENT FOR CONTAMINATION

C1: Guideline Concentrations for Assessment of Chemicals of Potential Concern in Environmental Media
C2: Basic Considerations for Reviewing Studies in the Detailed Risk Assessment for Contamination

ANNEX D: COMPLEMENTARY INFORMATION FOR THE DETAILED RISK ASSESSMENT FOR SAFETY

D1: Basic Considerations for Reviewing Studies in a Detailed Risk Assessment for Safety

ANNEX E: RISK ASSESSMENT RECORD FORMS

ANNEX F: FIELD GUIDE

ANNEX G: SHUT DOWN AND ABANDONED MINE SITE INVENTORY DATA SHEET