

A 5 - Monitoring Jiří Sedlák et al., Prague, November, 2016

MONITORING

- verify the amount, composition and p-T conditons of injected CO₂
- understand how the CO₂ is behaving once underground
- provide early warning if things are not going as planned
- to have assurance of long-term storage integrity
- to measure any leakage that might occur

Monitoring Phases:

- (1) Pre injection
 - (2) Operational
 - (3) Closure
 - (4) Post closure

Methods of CO₂ monitoring

- (1) Direct or indirect
- (2) Qualitative or quantitative
- (3) Local or areal
- (4) Deep-focussed or shallow-focussed

- Shallow monitoring systems are designed to detect and measure CO₂ that has migrated into shallow geological formations, to the soil or leaked to the atmosphere. Shallow focussed methods can be (1) <u>airborne</u>, (2) <u>deployed at the surface</u>, or can be run from (3) <u>shallow</u> <u>wellbores</u>.
- 2. Deep-focussed monitoring is run from the <u>surface</u> or from <u>wellbores</u>. It is aimed at identifying and characterising changes that occur within the storage reservoir as injection proceeds, including the movement of CO_2 within the storage reservoir and its immediate surroundings.

MONITORING tasks - Storage site LBr-1:

• **TASK 1**:

to do aplicability assessment of suitable monitoring methods

• TASK 2:

to realize initial base-line monitoring measurements on site whithin duration of pilot project

• **TASK 3**:

to work out final monitoring plan for Storage site LBr-1

Matice použitelnosti monitorovacích metod vytvořená pomocí programu BGS: Interactive Design of Monitoring Programmes for the Geological Storage of CO₂

		cíl monitorování					
metody	oblak CO2	integrita krycí horniny	únik CO2	migrace mimo úložiště	kvantifikace	seismicita	
4D (opakovaná 3D) seismika	xxx	xxx	x	xxx	xxx		
2D seismika	xx	хх	x	xx	xx		
seismika mezi vrty (tomografie)	xxx	x		x	xxx		
vrtná seismika (VSP)	xx	x		x	xx		
vícesložková seismika	xxx	ххх		xxx	xxx	xx	
stopovače (tracer)	x	xxx	xxx	xxx	x		
karotážní měření	x	хххх		ххх	xxx		
měření tlaku ve vrtu	x	xxx		x	xxx	xxx	
měření teploty ve vrtu	x	ххх		x	xxx	xxx	
chemismus fluid ve vrtu	x	xx	xxx	xx	xx		
měření pH ve vrtu	x		xx	хх	хх		
monitoring mikroseismů	x	x				xx	
povrchová gravimetrie				хх	xx		
měření koncentrace půdních plynů		x	xx		x	x	
inSAR (satelitní interferometr)		x				x	
infračervený laser			x				
Eddy kovariace (atmosf. CO2)		x	x				
infračervený analyzátor plynů		x	x				
povrchový tok plynů		x	x				
letecká spektrometrie (chlorofyl)		x	x				
geochemie fluid			x				
mikrobiologický monitoring			x				
sklonoměr (tiltmeters)						x	

norway orants

Methods:

- **seismological monitoring** by **UFZ** (Masaryk Univerzity Brno)
- gravimetric monitoring by Miligal (small geophysical company)
- **atmogeochemical monitoring** by **CGS** (Czech Geological Survey)

Regional seismic stations and seismicity in surrounding of LBr-1

norway grants

Location of baseline seismologic stations

norway grants

- A) Strong earthquakes are unlikely to occur in the vicinity of LBr-1
- B) Geology on site LBr-1 is non-favourable. High seismic noise and probably high attenuation of seismic signal makes local registration surface seismology registration relatively ineffective
- C) Final seismologic solution would have to be based on borehole arrays

Base-line seismologic registrations

norway

Local seismological station LANA was installed in a distance of several kilometres from LBr-1. The RefTec 130 device equipped with PE-6 geophone was used for registration of baseline seismicity.

Base-line gravimetric measurements

Repeated gravity measurements were done during april and during september 2016.

norway

There were 200 gravity points measured and the measurements are being presently numerically processed.

The results should indicate seasional local changes of gravity acceleration due to variation of undeground water level.

New quartz digital gravity meter Autograv CG-5 was bought from Scintrex Ltd (Canada)

Atmogeochemical monitoring

norway grants

BR62 (blow-out well), typical landscape and vegetation

Soil type map with atmogeochemical gas measurements

norway grants

 Blue dots show places with more detailed continuous measurements

Atmogeochemical monitoring

New Automatic stations **Idrogeosol** installed on BR 62, 64 and 27sites

Buried underground, water friendly

- Based on total 36 sites measured by portable Ecoprobe 5 analysis of soil air 5 new locations for Automatic atmogeochemical stations Idrogeosol were selected
- Continuous baseline monitoring measurements of natural background values (prior to CO₂ storage) has been carried out from March to November 2016 using new Automatic stations Idrogeosol (bought for REPP-CO2 from Italy)
- 3. CO₂ content: ~ 2.8-5.9% (seasonal variability) CH₄ content: ~ 0.8-1.2% (daily variability, seasonal stability

Activity 5 - Monitoring – SUMMARY:

(1) Monitoring methods applicability analysis was done

(2) Selected base-line monitoring measurements were realized

(3) Final monitoring plan for storage site LBr-1 is being completed

Thank you for your attention