

Preparation for a pilot project of a CO₂ geological storage in Czech Republic

Roman Berenblyum on behalf of Activity 3 team October 2016

Project and the team

100 researchers and technicians from 7 institutions

Lbr-1

- Scarce and often uncertain data...
 - Yet its still more than what we might know about "common" aquifer
- Small field, yet representative of Vienna basin
- Recent re-abandonement
- Recent re-view of restarting production
- Old abandoned fields are likely storage candidates

Starting point: G&G

Re-intrepretation of existing data – new 3D seismics – new geological model

scenarios

🚺 IRIS

Scenarios

Storage – injection through two new horizontal wells

Pressure relief - active aquifer and risk of reaching the spill points

EOR – carbon neutral oil production?

norway grants

Initialisation

Zone	Oil zones		Gas cap		Oil segment split (STOOIP)	
	HCPV	STOOIP	HCPV	GOIP*	North (All)	South (L1&L2)
L1	58.0	53	250.0	26.7	53.0	N/A
L2	309.0	284.0	372.0	39.8	84.0	200.0
L3	67.0	61.2	302.0	32.2	61.2	N/A
L4	70.0	64.2	172.0	18.3	64.2	N/A
Total	504.0	462.4	1096.0	117.0	262.4	200.0

* Gas-in-place is noted in M m³ – other volumes are in K m³

Wells suggestions

 $\mathbf{\nabla}$

norway grants

Pilot case

- norway grants
- 2020-2026, 70 000 tons: 17 600 sm³/day
- No injection issues expected, pressure increase is small and local

Storage case

norway grants

 Pilot in 2020-2026 followed by full scale storage through two horizontal wells

Combined case

- Pilot 2020-2026; EOR 2026-2029
- Storage 2030 2040

Total oil recovery : 180 kSm³

 \sim

norway grants

> If used entirely to fuel cars it would produce around 495 ktonns CO₂

Total stored volume 523 ktonns CO₂ (more storage volume available)

Leakage paths?

- Old wells, faults, cap rock integrity failures?
 - Reservoir simulation model to evaluate risks and rates
 - Chemical models to evaluate CO₂ reactivity and elements on its path (rock? Cement? Salts in water?)
 - Detailed surface model to analyze migration of pollutants.

Next stage: risk

IRIS

Prevention: pro-active

REPF

Mitigation: re-active

