

Risk assessment

Eric Ford, IRIS 12th October, 2016

norway grants

5. Risk evaluation process (ongoing)

Causes

Causes

Causes

🕥 A4 Risk Assessment - SOW

eak

barriers -

remedies

Main objective: Assess the risk of carbon dioxide leakages from the storage system situated in the LBr-1 gas and oil reservoir (for the post-capture phase – transport-related risks assessed as separate sub-activity, but not presented here)

Main approach: Bow-tie analysis to map causes, preventive and mitigating barriers, and undesirable effects (to humans, operations and environment

 $\mathbf{\nabla}$

norway grants

barriers prevention

Prevention (proactive)

Area of interest and potential consequences

- **Main concern**: 51 abandoned oil & gas wells, 22 of which were re-abandoned in recent years.
- Potential location of CO2 injection site
- Town of Lanzhot
- Morava river (drinking water supply for the towns Hodonín and Břeclav
- Area was incorporated into the system of protected areas of European significance
 Natura 2000 and is included in the UNESCO Biosphere reserve
- Both motorway and railway crosses the area the motorway D2 (part of E65) from the North to the South and a railway transit corridor from the NW to the SE. Both the motorway and the railway are lines of international importance.

A4.1 Risk identification – Leakage causes

 \sim

Risk identification – barrier analysis

 \sim

REPP

Risk identification - FEP

Name 5.2.2 Seal failure Description Borehole linings and seals (metal and detrimental to seal performance, will overlying rocks. This evolution may be metal linings. Cement will react with 0 and appreciable concentrations of sull Borehole seals will be designed to mit mitigate any observed performance of and appreciable concentrations of sull Borehole seals will be designed to mit mitigate any observed performance of and appreciable concentrations of sull Borehole seals will be designed to mit mitigate any observed performance of and appreciable concentrations of sull Borehole seals will be designed to mit mitigate any observed performance of and appreciable concentrations of sull Borehole seals will be designed to mit mitigate any observed performance of and appreciable concentrations of sull Borehole seals will be designed to mit mitigate any observed performance of and appreciable concentrations of sull Borehole seals will be designed to mit mitigate any observed performance of and appreciable concentrations of sull Borehole seals will be designed to mit mitigate any observed performance of and appreciable concentrations of sull Borehole seals will be designed to mit mitigate any observed performance of and appreciable concentrations of sull Borehole seals will be designed to mit mitigate any observed performance of and appreciable concentrations of sull Borehole seals will be designed to mit mitigate any observed performance of and appreciable concentrations of sull Borehole seals will be designed to mit mitigate any observed performance of and appreciable concentrations of sull Borehole seals will be designed to mit mitigate any observed performance of and appreciable concentrations of sull Borehole seals will be designed to mit mitigate any observed performance of and appreciable concentrations of sull Borehole seals will be designed to mit mitigate any observed performance of and appreciable concentrations of s

4.1.16 Petrophysical properties 4.2 Fluids 4.2.1 Fluid properties 4.2.2 Hydrogeology 4.2.3 Hydrocarbons 5 Boreholes 5.1 Drilling and completion 5.1.1 Formation damage 5.1.2 Well lining and completion 5.1.3 Workover 5.1.4 Monitoring wells 5.1.5 Well records 5.2 Borehole seals and abandonment 5.2.1 Closure and sealing of boreholes 5.2.2 Seal failure 5.2.3 Blowouts 5.2.4 Orphan wells 5.2.5 Soil creep around boreholes 6 Near-Surface Environment 6.1 Terrestrial environment 6.1.1 Topography and morphology

6.1.2 Soils and sediments

Borehole linings and seals (metal and cement) will evolve with time and may degrade. The nature of the evolution, and whether it will be detrimental to seal performance, will depend on the temperature and stress conditions and natural fluid compositions in the deep reservoir and overlying rocks. This evolution may be influenced by the input of high concentrations of CO2. Any H2S present may accelerate corrosion of metal linings. Cement will react with CO2 at high partial pressures and may undergo a range of reactions in the presence of fluid with low pH and appreciable concentrations of sulphate, chloride, and magnesium ions. Seal failure will occur if liners have degraded and corroded.

Borehole seals will be designed to minimise the likelihood of failure. Monitoring will typically be undertaken to ensure performance and to mitigate any observed performance defects. The main risk therefore will typically be associated with the longer-term post-monitoring period.

	5.2	Borehole seals			FEPs relevant to the closure of boreholes drilled	
		and abandonment			within the system domain.	
			5.2.1	Closure and sealing for boreholes	Features related to the cessation of CO2 injection operations at a site and the sealing of injection and monitoring wells. When a borehole is drilled to the potential storage reservoir, it creates communication with possible overlying reservoirs and with the surface. Cementing and abandonment procedures are designed to permanently plug such communication channel. At the time of well abandonment, cement plugs tens to hundreds of metres thick are placed at intervals inside the well casing. The cement plugs are commonly located across potential problem spots (e.g. perforations, casing shoes, top of liner, etc.), to minimise leaking risks. Particular attention should be paid to the quality of the original cement job behind the casing string The schedule and procedure for sealing and closure may need to be considered in the assessment.	VES (State of sealing after abandonment will be assess – leakage risk during abandonment may not be)
1	y		5.2.2	Seal failure	Degradation of borehole linings (metal and cement) will occur with time, depending on the natural fluid composition of the deep reservoir and the input of high concentrations of CO2. Any H2S present may accelerate corrosion of	VES
					Any H25 present may accelerate corrosion of	

Risk identification – Mitigating barriers

 $\mathbf{\nabla}$

Risk identification - consequences

 \sim

A4.1 Risk identification - Summary

 $\mathbf{\nabla}$

norway grants

Main approach: Bow-tie analysis to map causes, preventive and mitigating barriers, and undesirable effects (to humans, operations and environment

Main objective:

- Determine most important CO2 leakage risk factors,
- Quantify probabilities of leakage scenarios and
- Quantify effects,
- Assess uncertainties

(Primary focus on leakage from abandoned wells)

Probability classification table

Class	Frequency of occurrence range (per year)	Description
1 - Improbablo	< 10.6	Virtually improbable and
1 Improbable	< 10	in trainy improbable and
		unrealistic
2 - Remote	10-6 - 10-4	Not expected nor anticipated
		to occur
3 - Rare	10 ⁻⁴ - 10 ⁻³	Occurrence considered rare
4 - Probable	10-3 - 10-1	Expected to occur at least
		once in 10 years
5 - Frequent	> 10 ⁻¹	Likely to occur several times a
		year
	500 Production	Br73 - well design after abandonment Serfice Cement cap 14 - 200.5 Minute Alexandrow A
	1000	403.7 - 422.56 m Mice Production casing 1155 - 286 m

Jet perforation 091.5 - 1094.5 m Jet perforations 1100 - 1105 m

Coarse probability assessments

Leakage scenario	Classification
Leakage from an	Not expected nor anticipated to occur
injection well to	
atmosphere	
Blowout from an injection	Not expected nor anticipated to occur
well during drilling	
Leakage from an	Occurrence considered rare / Expected
abandoned well to the	to occur at least once in 10 years
atmosphere	
eakage through the	Virtually improbable and unrealistic
caprock due to gradual	
failure	
Leakage through the	Virtually improbable and unrealistic
caprock due to rapid,	
catastrophic failure	
Leakage through existing	Virtually improbable and unrealistic
faults due to increased	
pressure	
Leakage through induced	Virtually improbable and unrealistic
faults due to increase	
pressure	
Leakage through spill	Virtually improbable and unrealistic
points	

Abandoned wells – Leakage simulation framework

Objective: Quantify uncertainty on leakage-related parameters based on available information, and quantify CO2 leakage rate and duration through the cement plug

• Aqueous CO2 well potential (CO_{2aq})

Leakage simulation framework - parameter

Input parameters to the model:

- Overpressure (ΔP) of the reservoir due to CO2 injection. Not meant to exceed 20-30% of initial pressure.
- Buckley-Leverett front propagation saturation (S_{af})
- Relative permeability at propagation saturation κ_r (S_{af})

0.006

0,004

0.002

- Cement plug thickness (ε)
- Cement porosity (Φ)
- Cement permeability (κ)
- CO2 density (ρ_{cO2})
- CO2 viscosity (μ_{CO2})
- CO2 solubility (S_{CO2})
- Aqueous CO2 well potential (CO_{2aq})

- Use specified plug thickness where these data are known, i.e. for reabandoned wells.
- Otherwise, create statistical distribution on the basis of the known plugs, to represent the unknown wells

Well name	Plug thickness [m]	Total plug thickness [m]
BR-7	T(5, 178, 300)	T(20, 430, 1100
BR-20	T(5, 178, 300)	T(20, 430, 1100
BR-22	T(5, 178, 300)	T(20, 430, 1100
BR-27	47,2	168
BR-34	T(5, 178, 300)	T(20, 430, 1100
BR-35	T(5, 178, 300)	T(20, 430, 1100
BR-38	T(5, 178, 300)	T(20, 430, 1100
BR-43	T(5, 178, 300)	T(20, 430, 1100
BR-44	T(5, 178, 300)	T(20, 430, 1100
BR-45	48,5	341,
BR-47	T(5, 178, 300)	T(20, 430, 1100
BR-48	T(5, 178, 300)	T(20, 430, 1100
BR-49	T(5, 178, 300)	T(20, 430, 1100
BR-50	T(5, 178, 300)	T(20, 430, 1100
BR-51	T(5, 178, 300)	T(20, 430, 1100
BR-52	T(5, 178, 300)	T(20, 430, 1100
BR-54	238.5	T(20, 430, 1100
BR-55	20	295.
BB-57	T(5. 178. 300)	T(20, 430, 1100
BR-58	T(5, 178, 300)	T(20, 430, 1100
BR-59	250	T(20, 430, 1100
BR-60	38	155.
BR-61	50	21
BR-62	140	605,
BR-63	T(5, 178, 300)	T(20, 430, 1100
BR-64	55	569
BR-65	53	263,
BR-66	365,2	1131,8
BR-67	T(5, 178, 300)	T(20, 430, 1100
BR-68	45	1112,1
BR-69	50	376,
BR-70	189	31
BR-71	25	1134,
BR-72	1173	117
BR-73	102	324,5
BR-74	1157,6	1157,
BR-75	T(5, 178, 300)	T(20, 430, 1100
BR-76	120	164,
BR-77	33	296
BR-78	60	31
BR-79	200	261,
BR-80	298,4	369
BR-81	54	184,
DH-02 BD-93	140,8	392,
DH-03 BD-84	183	3
BR-85	80	11
BB-86	74	249
BB-88	T(5 178 300)	T(20 430 1100
BD-89	10, 10, 3001	.955
BR-90	54	200,
51-30		101,

Leakage simulation framework - parameter grants

Vall

Plug

Input parameters to the model:

- Overpressure (ΔP) of the reservoir due to
- Buckley-Leverett front
- Relative permeability at propagation saturation κ_r (S_{af})
- Cement plug thickness (ε)
- Cement porosity (Φ)
- Cement permeability (κ)
- CO2 density (ρ_{CO2})
- CO2 viscosity (μ_{cO2})
- CO2 solubility (S_{CO2})
- Aqueous CO2 well potential (CO_{2ad})

- 10^{-16}m^2 Degraded cement = (Fabbri)
- Typical well cement = 10^{-18} m² (Fabbri)
- Well-formed cement = $10^{-20}m^2$ • (Celia & Bachu)
- Assumed that re-abandoned • wells in 2015 are «good» quality
- Assumed that BR-62 & BR-64 • (blowout wells) are «bad quality»
- Remaining wells could be anywhere within this region.

Good: U(1e-20, 1e-18) Unknown: T(1e-20, 1e-18, 1e-16) Bad: U(1e-18, 1e-16)

nama	permeability
	[m2]
BR-7	U(1E-18, 1E-20)
BR-20	U(1E-18, 1E-20)
BR-22	U(1E-18, 1E-20)
BR-27	T(1E-16, 1E-18, 1E-20
BR-34	T(1E-16, 1E-18, 1E-20
BR-35	T(1E-16, 1E-18, 1E-20
BR-38	T(1E-16, 1E-18, 1E-20
BR-43	T(1E-16, 1E-18, 1E-20
BR-44	U(1E-18, 1E-20)
BB-45	T(1E-16_1E-18_1E-20
BR-47	T(1E-16, 1E-18, 1E-20
BD-48	T(1E_16_1E_18_1E_20
PD_49	1(1E-10, 1E-10, 1E-20)
DR-43	U(1E=10, 1E=20)
DH-50	U(1E=10, 1E=20)
BR-51	U(1E-18, 1E-20)
BR-52	U(1E-18, 1E-20)
BR-54	U(1E-18, 1E-20)
BR-55	T(1E-16, 1E-18, 1E-20
BR-57	U(1E-18, 1E-20)
BR-58	U(1E-18, 1E-20)
BR-59	U(1E-18, 1E-20)
BR-60	T(1E-16, 1E-18, 1E-20
BR-61	T(1E-16, 1E-18, 1E-20
BR-62	U(1E-16, 1E-18)
BR-63	U(1E-18, 1E-20)
BR-64	U(1E-16, 1E-18)
BR-65	T(1E-16, 1E-18, 1E-20
BB-66	LI(1E-18, 1E-20)
BB-67	U(1E-18, 1E-20)
BD-68	U(1E-18, 1E-20)
BD-69	U(1E-18, 1E-20)
BR-70	T(1E-16, 1E-18, 1E-20)
BD-71	LI(1E=18, 1E=20)
BB-72	U(1E-18_1E-20)
BB-73	T(1E-16, 1E-18, 1E-20)
BD-74	LI(1E-18, 1E-20)
BD_75	U(1E-19, 1E-20)
DH-13	U(1E=10, 1E=20)
BR-76	T(1E+16, 1E+18, 1E+2U
BR-//	T(1E=16, 1E=18, 1E=20
BR-78	T(IE-I6, IE-I8, IE-20
BR-73	T(1E=16, 1E=18, 1E=2L
BR-80	T(1E+16, 1E+16, 1E+2L
BR-81	T(1E+16, 1E+18, 1E+20
DH-82	T(1E=16, 1E=16, 1E=20
DH-03	T(1E=10, 1E=10, 1E=20
DH-04	T(1E=10, 1E=10, 1E=20
DH-65	T(1E=10, 1E=10, 1E=20
BR-86	1 (IE-16, IE-18, IE-2L
BH-88	U(1E-18, 1E-20)
BR-89	T(1E-16, 1E-18, 1E-20
BR-90	T(1E-16, 1E-18, 1E-20

Well discretization

Model framework

Consequence assessments

 \mathbf{Q}

Consequences - humans

CO2	Effect of exposure on	Leakage type	Duration until 1														
exposure	human health		m ³ reaches														
level [%]			exposure level	Time to r	reach	n vari	ous										
	Maximum allowable	Mean leakage - 0.0005	6.6 days	€O2 con	cent	ratior	า										
	concentration at																
	workplaces			ieveis (a	ssun	ning (502										
		Max leakage - 0.0105	8 hours	is tranno	d)												
		tons/vear		is liappe	u)												
0.5		Mean blowout - 0.15/tons	0.5 hours														
		vear				D	ispers	ion of (CO2 - L	eakag	e from	n aban	doned	wells			
		,		1,00E+00													
		Max blowout - 5.7	1 minute														
		tons/year		1,00E-01													
	Breathing rate	Mean leakage - 0.0005	19.8 days	1.00E-02													
	increases to 40%	tons/vear	15.0 days	1,000 02													
	above the normal level	tons/year		1,00E-03									\/~!~			\mathbf{v}	
	above the normal level	Max leakage - 0.0105	aveb 0.0										varia	tion i	n CC	12	
		tons/year	0,9 days	1,00E-04		\mathbf{X}							conc	ontra	tion I	امريم	for
15		tons, year		60									CONC	cinita		CVCI	
1.5		Moon blowout - 0 15/tons	1.5 hours	1,00E-05	`								differ	ent w	/ind s	speed	ds
		Wear blowout - 0.15/tons	1.5 110015	5 1 005 0C												•	
		year		1,00E-06					-								
		Max blowout = 5.7	2.5 minutos		×												
		tons/voor	2.5 minutes	2 1,002 07													
	Breathing increases to	Mean leakage - 0.0005	66 days	9 1,00E-08		\sim											
	approximately four	tons/vear	00 00,5	vel													
	times the normal rate	consy year		<u>ຍ</u> 1,00E-09													
	symptoms of	Max leakage - 0.0105	3.1 days	— ŭ													
	intoxication become	tons/year	on days	ē 1,00E-10													<u> </u>
5	evident, vertigos, slight	condy year		1 005 11													
5	feeling of choking	Mean blowout - 0 15/tons	5 hours	1,002-11													
	looming of anothing	vear	5 110015	1.00E-12													
		year		_,													
		Max blowout - 5.7	8 minutes														
		tons/year	0 minutes														
	Unconsciousness	Mean leakage - 0.0005	132 days	1,00E-14													
	occurs more rapidly:	tons/voor	152 days		1	10	50	100	200	300	500	1000	1500	2000	2500	3000	5000
	prolonged exposure	tons/year								Downw	/ind dista	ance [m]					
	may result in death	Max leakage - 0.0105	6 3 days	Mornir	ig: windsp	peed=6to	9m/s, lig	htinsolati	on, clear c	loud	N	loon: wind	d speed = (5 to 9m/s,	strong ins	olation, c	lear cloud
	from apphyviation	tops/voor	0.5 days		wind spee	ed =3 m/s,	cloudy			1	N	light: wind	d speed= 0	,1 m/s, ck	oudy		
10	nom aspriyxiadon	tons/year															
10		Mean blowout = 0.15/tons	11 hours														
		woor	TTHOUS														
		year															
		Max blowout - 5.7	17 minutes														
		tone/vear	17 minutes														
	1	consy year	1														

Task 4.3 Risk evaluation

- Dominating risks in the CCS system related to CO2 leakage
- Findings vs. acceptance criteria set for the system
- Is the level of risk presented in a format that is suited to guide relevant decision making?
- What information has the most value? (Can be evaluated from the results of standard value of information (VOI) analysis).

Evaluations – cement plugs

Br73 - well design after abandonment

CBU Decree No. 239/1998 Coll., safety and occupational health and safety in mining and processing of oil and natural gas and drilling and geophysical work and amending certain regulations to ensure safety and occupational health and safety in mining activities and activities perform mining, as amended by Decree No. 360/2001 Coll CBU, Decree 298/2001 and Decree No. 52/2011 Coll.

Well barrier evaluations

	¥ell	Perforation interval [m]		Cement plugs		Length above top	Cement plug covers entire	Evaluation		
		From	То	From	То	perforation	perforation			
	BR-64	1066,5	1070	704,69	1072,8	361,81	YES	Length OK, perforations entirely plugged		
	DD CE	1099	1101	1097	1150	2	YES	Perforations plugged, but length < 30 m		
	DD-00	1083	1093	717,17	775,19	58,02	NO	Length OK, but perforations are not plugged		
	BR-66	1098,5	1108,5	774,8	1140	323,7	YES	Length OK, perforations entirely plugged		
	BR-67		No data ava	ilable				N/A		
		1079	1095	957,3	1104,5	121,7	YES	Length OK, perforations entirely plugged		
	BR-68	1004,5	1006,5	957,3	1104,5	47,2	YES	Length OK, perforations entirely plugged		
		744	746,5	672,8	957	71,2	YES	Length OK, perforations entirely plugged		
	BR-69	No perfora	tions listed					N/A		
	BR-70	1101	1108	1041	1230	60	YES	Length OK, perforations entirely plugged		
		1933,5	1937,5	1910	1935	23,5	NO	Length < 30 m, perforations only partially plugged		
	DD.71	1904	1906	1837	1877	40	NO	Length OK, but perforations are not plugged		
	DD-ri	1771	1776	927,5	1726	798,5	NO	Length OK, but perforations are not plugged		
		1067	1706	927,5	1726	139,5	YES	Length OK, perforations entirely plugged		
	BR-72	1102	1116	2	1175	1100	YES	Length OK, perforations entirely plugged		
	DD 72	1100	1105	1098	1130	2	YES	Perforations plugged, but length < 30 m		
		1091,5	1094,5	1028,33	1094,5	63,17	YES	Length OK, perforations entirely plugged		
	BR-74	1095,5	1103	2	1118,6	1093,5	YES	Length OK, perforations entirely plugged		
/		295,5	296,5	2	1118,6	293,5	YES	Length OK, perforations entirely plugged		
	BR-75	No perfora	tions listed					N/A		
	BR-76	1096	1097,5	1060	1180	36	YES	Length OK, perforations entirely plugged		
	BR-77	1102	1104	1043,95	1104,3	58,05	YES	Length OK, perforations entirely plugged		
	BR-78	1096	1102	982	1057	75	NO	Length OK, but perforations are not plugged		
		1102,5	1105	980	1180	122,5	YES	Length OK, perforations entirely plugged		
	BR-79	1090,5	1094	980	1180	110,5	YES	Length OK, perforations entirely plugged		
		1013	1015	980	1180	33	YES	Length OK, perforations entirely plugged		
		1096	1106	915,65	1180	180,35	YES	Length OK, perforations entirely plugged		
	DH-00	1021	1022,5	915,65	1180	105,35	YES	Length OK, perforations entirely plugged		
	BR-81	1089	1125	1024	1084,9	60,87	NO	Length OK, but perforations are not plugged		
	BR-82	1093,5	1106	1039,2	1180	54,3	YES	Length OK, perforations entirely plugged		
	BR-83	1097	1106	1037	1220	60	YES	Length OK, perforations entirely plugged		
	BR-84	1150	1152,5	???	???			Unknown plug interval		
	BR-85	1098	1107	1085	1115	13	YES	Perforations plugged, but length < 30 m (partially unl		
	BR-86	1103,5	1104,5	998	1070,7	72,7	NO	Length OK, but perforations are not plugged		
	BR-88	No perfora	tions listed					N/A		
	BR-89	1084	1102	1057,92	1180	26,08	YES	Perforations plugged, but length < 30 m		
	BR-90	1147	1151	1097	1155	50	YES	Length OK, perforations entirely plugged		

Risk matrix

			1 - Insignificant	2 - Minor	3 - Moderate	4 - Major	5 - Catastrophic
Consequence		Safety	Medical treatment,	Medical treatment	One or more lost	Permanent	Fatality, Public
			minor health effects,	with restricted duty	time workday cases	disability, multiple	hospitalization, or
			first aid case, or less	or medium health	or significant	hospitalizations, or	severe health effects
Probabi	lity			effects	medical treatment	major health effects	
		Operational	0-10M USD	10-100M USD	100M-1MM USD	1-10MM USD	> 10MM USD
		Environmental	Small scale and short	Large scale and short	Short scale and	Large scale and long	Large scale and long-
			recovery time	recovery time	long recovery time	recovery time	lasting effect or
							permanent damage
1	Improbable	< 10 ⁻⁶	Leakage through				
			faults, fractures				
			Leakage into aquifer				
2	Remote	10 ⁻⁶ - 10 ⁻⁴	Leakage from an injecti	on well to atmosphere	Blowout from	an injection well during	drilling
			- l eakage from an abandoned well to atmosphere		Diowode from	an injection wen dannig	unning
3	Rare	10 ⁻⁴ - 10 ⁻³	Leakage from an abando	ned wen to autosphere			
4	Probable	10-3 - 10-1					
5	Frequent	> 10 ⁻¹					

Dissemination

Available online at www.sciencedirect.com

ScienceDirect

Energy Procedia 00 (2017) 000-000

To be presented at the GHGT-13, 14-18 November 2016, in Lausanne, Switzlerand

13th International Conference on Greenhouse Gas Control Technologies, GHGT-13, 14-18 November 2016, Lausanne, Switzerland

A comparison of FEP-analysis and barrier analysis for CO₂ leakage risk assessment on an abandoned Czech oilfield

Øystein Arild^{a,*}, Eric P. Ford^a, Hans Petter Lohne^a, Mohammad Mansouri Majoumerd^a, Vaclava Havlova^b

> "International Research Institute of Stavanger (IRIS), P.O. Box 8046, N-4068 Stavanger, Norway ^bUJV Řež, Hlavní 130, 250 68 Husinec – Řež, Czech Republic

Abstract

The storage of CO₂ in depleted oilfields is one of the possible measures for reducing CO₂ emissions to the atmosphere. In parallel with the technical feasibility study, a risk assessment focusing on storage risk and reliability need to be undertaken prior to CO₂ storage. This is to demonstrate that the quality of the storage site, often formulated as the risk of CO₂ containment failure, is acceptable. Legislations in various European countries state such risk assessments shall be provided as part of making a decision with respect to accepting a storage site solution. However, the details and the choices on the risk assessment approach itself are often arbitrary. In the REPP-CO2 project, a research cooperation initiative between Czech Republic and Norway, the main goal is to evaluate the feasibility of a storage site in the Vienna Basin, in the southeastern part of the Czech Republic. As part of the REPP-CO2 project, two different approaches have been selected for performing the risk analysis part, namely the features, events and processes (FEP) approach and the barrier analysis approach, to quantify storage risk. This paper elaborates both approaches and presents strengths and weaknesses for each of them, with respect to work process scalability, available analytical modeling tools, their role in a classical risk assessment context, uncertainty treatment, system suitability and their effectiveness with respect to communication of results. To highlight different aspects of comparison, examples from the Czech storage site candidate are also described in the paper.

Thank you for your attention!

Eric Ford, IRIS 12th October 2016