Cost comparison of technologies for precombustion CO₂ capture from an lignite-fired IGCC

Simon Roussanaly^{1,*}, Monika Vitarova², Rahul Anantharaman¹, David Berstad¹, Brede Hagen¹, Jana Jakobsen¹, Vaclav Novotny² and Geir Skaugen¹

¹ SINTEF Energy Research, Sem Sælandsvei 11, NO-7465 Trondheim, Norway

² Czech Technical University in Prague, Faculty of Mechanical Engineering, Department of Energy Engineering, Czech Republic

* Corresponding author. E-mail address: simon.roussanaly@sintef.no

Motivation

- Lignite represents around 10% of the total world coal production and is especially used in the power generation sector in Germany, United States, Russia and Eastern Europe due to its low price.
- While its consumption have been decreasing over the last decades. A pause in this decrease have been observed in 2015 and might compromise European emission target CCS is not integrated to lignite-fired power plant.
- Although solvent-based CO₂ capture is the most mature and demonstrated technologies for CO₂ capture, other emerging technologies are foreseen to have the potential to lower the capture cost
- However no systemic cost-comparison of CO₂ capture technologies from an lignite-fired IGCC have been investigated.

I. Methodology

Concept presentation

- Lignite based IGCC
 - Located in Czech Republic
 - Lignite input 39 kg_{wet}/s leading to a NPO without CCS of 279 MW
 - CO_2 emissions without capture 1.57 MtCO₂/y
 - Syngas after WGS available at 28 bar and contain 29.2 %_{CO2,wet}
 - Base case: 85% CO₂ Capture Ratio (CCR)
- Comparison in term of energy and costs of three CO₂ capture technologies:
 - Rectisol based capture
 - Low-temperature based capture
 - Polymeric membrane based capture
- Impact of the CCRs on the capture technology comparison

IGCC plant with CO₂ capture

CT1: Rectisol based capture

- One of the most popular technologies for sour gas removal, especially in coal based on chemical processes
 - Used in the reference power plant for H₂S removal
 - Considered to suitable for high CO₂ partial pressure
- The Rectisol process is based on
 - Physical absorption by refrigerated methanol (-50°C)
 - Multi-stages flashing for the regeneration

CT1: Rectisol based capture

CT2: Low-temperature based capture

- Physical driven process
 - Process based on phase separation after partial liquefaction of the stream
 - Liquefaction achieved by compression and cooling

• The pressure after compression drives the CO₂ capture ratio

CT2: Low-temperature based capture

• Process flow diagram

CT3: Polymeric membrane based capture

- CO₂ selective and H₂ selective membranes are considered
 - Cost optimisation of the membrane process within the power plant

• H₂ selective membrane:

CT3: Polymeric membrane based capture

• CO₂ selective membrane

- \blacktriangleright H₂ selective membrane
 - $P = 0.18 \text{ m}^{3}_{(STP)} \text{m}^{-2} \text{bar}^{-1} \text{h}^{-1}$
 - α = 30

CO₂ selective membrane

•
$$P = 0.18 \text{ m}^{3}_{(STP)} \text{m}^{-2} \text{bar}^{-1} \text{h}^{-1}$$

• α = 37.2

Cost assessment

- Bottom up approach
 - Developed to be consistent between capture technologies
 - Taking into account maturity differences between technologies
- Cost of the power plant are based on the EBTF (European Benchmarking Task Force)
 - Adjusted to reflect cost representative of Czech Republic
- KPIs: Levelized Cost of Electricity and CO₂ avoided cost

II. Results

Energy performances

Cost performances (CCR ~85%)

- Best options: Rectisol, low-temperature
- The considered CO₂ and H₂ membranes do not appear as a good option for the membrane properties and process configuration considered

• LCOE increase of at least 43% with CCS

Impact of lower CCRs

- Rectisol
 - 39 €/t at 90% CCR
 - 49 €/t at 60% CCR
 - Non-linear evolution
- Low-temperature
 - 42 €/t at 90% CCR
 - 46 €/t at 50%CCR
 - Not very sensitive to CCR
- It appears that there is a CCR under which the low-temperature become the optimal technology
- Membrane not evaluated yet
 - From experience in post-combustion capture, CO₂ avoided cost can decrease with lower CCR
- Syngas pressure is another parameter intersting to investigate

What properties for membrane based capture?

• CO₂ selective membranes

■ 0-50 ■ 50-100 ■ 100-150 ■ 150-200

What properties for membrane based capture?

• H₂ selective membranes

■ 0-100 ■ 100-200 ■ 200-300 ■ 300-400

III. Conclusions and future work

Conclusions and future work

- Conclusions
 - Investigation three capture technologies for a lignite based IGCC
 - Rectisol and low-temperature appear to be the best options in term of energy and cost
 - Rectisol is better for higher CCRs while low-temperature is more efficient for lower ones
 - The selected CO₂ and H₂ membranes are not competitive in the base case with the process configurations and CCR considered
- Future work
 - Investigate the impact of lower CCRs and high syngas pressure on the bechmark of the capture technolgies
 - Perform full-chain evaluation to include the impact of impurities in CO₂ stream

Acknowledgements

This publication has been produced as part of the PilotCCS project with support from the Norway grants, as part of the project NF-CZ08-OV-1-003-2015

Cost comparison of technologies for precombustion CO₂ capture from an lignite-fired IGCC

Simon Roussanaly^{1,*}, Monika Vitarova², Rahul Anantharaman¹, David Berstad¹, Brede Hagen¹, Jana Jakobsen¹, Vaclav Novotny² and Geir Skaugen¹

¹ SINTEF Energy Research, Sem Sælandsvei 11, NO-7465 Trondheim, Norway

² Czech Technical University in Prague, Faculty of Mechanical Engineering, Department of Energy Engineering, Czech Republic

* Corresponding author. E-mail address: simon.roussanaly@sintef.no

