Unique fossil preservation in ferruginous Silurian
deposits from the Carnic Alps, Italy
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Conodont residues from Silurian calcareous levels exposed in the Rio Tamer area of the Carnic Alps, Italy, have
produced three-dimensional fossil skeletal remains that are typically not preserved in organisms with calcareous shells,
as such structures dissolve during standard acid laboratory processing. This unique preservation has been facilitated
by early precipitation of iron oxides and hydroxides, which replicated the original skeletons. The fossil assemblage is
dominated by benthic fauna and includes echinoderms, trilobites, bivalves, ostracods and gastropods, preserved in the
form of ferruginous external coatings or internal moulds. These often retain fine details of the original shell structure.
The material was characterised by using optical and scanning electron microscopy (SEM), environmental scanning
electron microscopy coupled with microanalyses (SEM/ESEM-EDX), X-ray powder diffraction (XRPD) and confocal
laser Raman microscopy. The combined results indicate that the skeletal replicas are primarily composed of goethite,
chamosite and hematite, with subordinate amount of siderite, birnessite, quartz and amorphous material. Additionally,
the presence of carbonaceous material within the coatings suggests a biologically mediated process in crust formation.
Overall, the findings from this study highlight the role of microbial activity in triggering unusual and unique fossil
preservational pathways. « Key words: taphonomy, Kok Formation, Mt. Cocco, biomineralization, skeletal replicas,
hematite, goethite.
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In palaecontology, the term ‘exceptional preservation’ is
commonly used when fossilization captures easily de-
composable parts, such as soft tissues or non-biomin-
eralised fossils, which typically decay rapidly after death
and are lost during fossilization. Such extraordinary
preservation requires specific burial and/or diagenetic
conditions that enable the preservation of carbonaceous
materials or their secondarily mineral replication (e.g.
Briggs 2003). Additionally, the absence of disturbance in
bottom sediments — whether from wave action, currents,
or benthic fauna — also plays a crucial role (e.g. Schwark
et al. 2009). However, unique fossilizations can also
occur when remineralization enables some fossil remains
to be documented under contexts that are generally
unfavourable for preservation. This is particularly relevant
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in microfossil extraction techniques that rely on acid
digestion (e.g. Jarochowska et al. 2013) and therefore
would normally destroy calcareous hard parts. Depending
on the chemical conditions, not only the hosting carbonate
rock but also any skeletal shell embedded within — if of the
same composition — will be dissolved. For example, when
extracting conodonts or other phosphatic/phosphatised
skeletal remains from calcareous rocks using acid solution
(e.g. formic or acetic acid), any calcareous skeletal elem-
ents are also removed.

Conodont residues from processed limestone blocks
sampled from Silurian deposits of the Rio Tamer area of
the eastern Carnic Alps, Italy (Fig. 1) revealed unique
three-dimensional fossil bodies preserved as ferruginous
external coatings or positive casts of originally calcareous
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organisms, primarily echinoderms, trilobites, bivalves,
ostracods and gastropods. Similar ferruginous laminated
structures overgrowing specific skeletal fragments
in a distinct stromatolitic pattern, have been reported
in the Carnic Alps and described in thin sections from
the Silurian of the Wolayer area (Ferretti 2005, Brett
et al. 2012, Ferretti et al. 2012, Corriga et al. 2021) and
the Upper Ordovician of the Cellon section (Ferretti
et al. 2023a). In these previously reported examples, the
structures consist of alternating layers of iron-rich oxides
and hydroxides interspersed with calcite bands. The
association with carbonaceous matter and fossilised
microbial structures indicates that microbial activities
played a key role in their formation.

This study aims to analyse the preservation of these
three-dimensional ferruginous skeletal replicas from the
Tamer area, determine their composition and significance,
and propose a formation model. To achieve this, we
integrate analyses using optical and scanning electron
microscopy (SEM), environmental scanning electron
microscopy coupled with microanalyses (ESEM-EDX),
X-ray powder diffraction (XRPD), and confocal laser
Raman microscopy.

A
Hermagor
di M. Croce kqq
afhico oderhohe

K\é Iayerw_ (Plockenpass) "2228 AU S TRIA
...... ®_-W5780 T e

M. Coglians ""‘\‘.'ZI'”

(Hohe Warte) : Cuestaltar-.... i
Timau)  EEeSES ""‘“\Péf?ii’l“alzsrg‘rggou? Osternig

0 5km Srmula~ 28

SE—
1941

i %
AN\

Geological setting

The Palaeozoic of the Carnic Alps is represented by
almost completely exposed sequences, documenting
?Cambrian—Lower Ordovician to Upper Permian sedi-
mentary successions with an approximately east—west
alignment at the Italian—Austrian border (Ferretti et al.
2023b). Although the Palacozoic successions there have
been intensively investigated for over 150 years, the
lithostratigraphy of pre-Variscan units has only been
formalised recently (Corradini & Suttner 2015) as a result
of an international project involving mainly Austrian and
Italian scientists.

The Silurian is one of the best-studied intervals, due
to the precise biostratigraphic assignment of the Carnic
units based primarily on conodonts and graptolites (e.g.
Walliser 1964; Jaeger 1975; Jaeger & Schonlaub 1980,
1994; Corradini & Corriga 2012; Corradini et al. 2015,
2016). Our current knowledge of this area places the
Carnic Alps as a distinct geographic region based on their
unique features relative to other nearby Silurian peri-
Gondwana sector areas, such as Bohemia (e.g. Ferretti &
Kiiz 1995, Storch 2023 and references therein), Sardinia
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Figure 1. Location map of the area investigated in this study (A) and age assignment of the processed material (B). Silurian conodont zonation after

Corradini et al. (2024).
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(e.g. Barca et al. 1992; Corradini et al. 1998a, b, 2009;
Ferretti ef al. 1998; Ferretti & Serpagli 1999; Corradini &
Ferretti 2009; Corriga et al. 2025), Spain (e.g. Gutiérrez-
Marco et al. 1998, 2001), Montagne Noire (e.g. Feist &
Schonlaub 1974, Storch & Feist 2008) and Morocco (e.g.
Corriga et al. 2014a, b), that are characterised by distinct
common sequences and a less variable depositional setting.

The Silurian successions of the Carnic Alps, with
a few significant sedimentary gaps at the base of the
Silurian, at the Llandovery—Wenlock boundary and in the
uppermost Wenlock Series (Schonlaub 1998, Corradini
et al. 2015, Corriga et al. 2021), were formally subdivided
into five formations (Corradini & Suttner 2015). Three
calcareous units were deposited in the proximal parts
of the basin: the Kok Formation (Telychian—lower
Ludfordian), the Cardiola Formation (Ludfordian) and the
Alticola Formation (upper Ludfordian—basal Lochkovian).
Nautiloid cephalopods are abundant, associated with
frequent trilobites, bivalves and conodonts as well as less
common crinoids, gastropods, ostracods, brachiopods and
chitinozoans (e.g. Brett ez al. 2009, 2012; Corradini et al.
2010, 2015; Histon 2012). In the deeper part of the basin,
the graptolitic black shales of the Bischofalm Formation
were deposited in an anoxic environment. Transitional
facies between calcareous and shaly facies is represented
by the black graptolitic shales, marls and calcareous beds
of the Nolbling Formation (Schénlaub 1997).

The Silurian strata cropping out in the eastern Carnic
Alps (Fig. 1), north of Ugovizza, have been investigated
geologically and economically for a long time. An inten-
sive mining activity for iron and manganese is documented
by mines active from as early as the 16" century to the
first half of the 20t century (and possible cultivation since
Roman times). Monte Cocco is an area where Silurian
deposits are abundant and consist almost exclusively
of cephalopod-rich limestones (Corradini et al. 2003).
Outcrop conditions, however, are not optimal because of
the abundant vegetation and the massive Quaternary cover.
Only a few meters of limestones are discontinuously
exposed, making it difficult to reconstruct a complete
succession. The lower part of the Silurian, belonging to
the Kok Formation, ranges from the Telychian (upper
Llandovery) to the Gorstian (lower Ludlow), mostly
represented by isolated blocks collected in the detritus
near the mining galleries. These rocks are dark grey/black
mudstones with millimetric marly intercalations. The
upper part of the succession is represented by limestones
characterised by a red coloration resulting from alteration
and oxidation of abundant iron minerals, grading to light
grey at the Silurian-Devonian boundary (Corradini et al.
2003, Corriga & Corradini 2009). The fossil content is
rich and diversified, which has been reflected by intensive
collecting activities by scholars and amateurs (Corradini
et al. 2010). Nautiloid cephalopods (mostly Orthocerida)

are undoubtedly the dominant fossils (e.g. Heritsch 1929;
Gnoli & Histon 1998; Histon 1999; Gnoli et al. 2000;
Serventi & Gnoli 2000; Serventi et al. 2000, 2007, 2010;
Serventi 2001), associated with common bivalves (e.g.
K#iz 1999, 2006), gastropods and trilobites. Crinoids,
frequent as well, are documented only by disarticulated
elements. Less common are brachiopods, often represented
by small specimens, solitary rugose corals, machaeridians
and a few conulariids (Corradini ef al. 2010).

Material and methods

Study material. — This study is based upon a large set of
conodontsamples collected in the field as loose blocks along
the Rio Tamer creek (sample code TAM BK), and treated
in order to establish a precise biostratigraphic framework.
Thirteen samples in particular, belonging to the Kok
Formation, represent the bulk of the present work (Tab. 1).
Conodont processing with the standard laboratory tech-
niques (i.e. dissolution of carbonate rocks using dilute
organic acids — acetic and formic — at concentrations
ranging from 7 to 20% v/v, with the solution refreshed
every 24 hours) by the use of formic acid was undertaken
in the laboratories of the Department of Chemical and
Geological Sciences (DSCG) of the University of Modena
and Reggio Emilia (UNIMORE), Italy, and of the Depart-
ment of Mathematics, Informatics and Geosciences of the
University of Trieste, Italy. Eight uncovered polished thin
sections (45mm x 60mm x 30 pm) were prepared from
selected samples at the DSCG UNIMORE.

Table 1. List of samples investigated in the present study and their age
assignment according to conodonts.

Unit  Sample Conodont Zone Age

TAM BK-9 Kockelella ranuliformis

Homerian

TAM BK-17 Ozarkodina sagitta rhenana

TAM BK-19
Pt. pennatus procerus Homerian

TAM BK-23

TAM BK-2
TAM BK-5

TAM BK-7

FORMATION

TAM BK-8

Pt. amorphognathoides Telychian—

KOK

TAM BK-10

amorphognathoides Homerian

TAM BK-16
TAM BK-20
TAM BK-21

TAM BK-22
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Rock samples and prepared thin sections are housed
in the “Inventario Paleontologia Universita di Modena
e Reggio Emilia (IPUM)” at the DSCG UNIMORE. Micro-
fossils are stored in the collections of the Department
of Mathematic, Informatic and Geosciences of Trieste
University (DMGTYS).

Analytical techniques. — Prepared materials were ana-
lysed by using optical, scanning electron, and environ-
mental scanning electron microscopes (SEM, ESEM).
Both electron microscopes were equipped with an
Energy-Dispersive X-ray (EDX) detector for elemental
microanalyses. Additionally, confocal Raman microscopy
was used.

Individual ferruginous fossil replicas were picked from
conodont residues using a Zeiss Stemi SV 11 binocular
microscope (magnification 25-100x).

Thin sections were initially investigated by using
a Jenapol transmitted and reflected optical light micro-
scope, equipped with a Canon EOS 350D (at the DSCG
UNIMORE).

Subsequently, carbon-coated selected specimens and
thin-sections, mounted on aluminium stubs previously
covered with carbon-conductive adhesive tape, were
analysed (at the DSCG UNIMORE) using a JEOL
JSM—6010PLUS/LA InTouchScope SEM. Measurements
were performed in high vacuum with an accelerating
voltage between 5 and 20 keV.

For X-ray powder diffraction analysis, representative
batches of the extracted 3D coatings in samples TAM BK-8
and TAM BK-10 were hand-ground with an agate mortar
and blended with 10 wt% corundum (a-Al,O,) NIST 676a

as an internal standard. X-ray powder diffraction data were
collected at the DSCG UNIMORE using a 6—0 Bragg-
Brentano Panalytical X Pert Pro Diffractometer with a Cu
Ka radiation source (A = 1.5418 A) operating at 40 kV and
30 mA, equipped with a real-time multiple strip (RTMS)
detector. Measurements were conducted over the 5-90° 26
range with the following setup: 0.02 rad Soller slit, 10 mm
mask, ¥%° divergence slit, and %° anti-scatter slit on the
incident beam; 5.0 mm anti-scatter slit and 0.02 rad Soller
slit on the diffracted beam. The counting time was 160
seconds per 0.0167° 20 step. Quantitative mineralogical
analysis was conducted using the Rietveld method with
the General Structure Analysis System (GSAS) software,
employing EXPGUI as the graphical user interface. The
analytical schemes and protocols followed those proposed
by Gualtieri et al. (2019). Raw data were smoothed
using low-pass filtering (convolution range = 5) before
quantitative refinement, and the background was modelled
with function 1 in GSAS, a Chebyshev polynomial of the
first kind. Peak shapes were fitted using the Thompson—
Cox—Hastings pseudo-Voigt function (function 2), while
the March-Dollase function was applied as an intensity
correction factor for preferred orientations. The initial
structural models for refinement are provided in Table 2.
Raman spectroscopy was carried out at the University
of Bologna, Italy, using a WITec Confocal Raman Micro-
scope System alpha300R. Raman signals were acquired
with a 100x Nikon objective (numerical aperture of 0.90,
Nikon, Tokyo, Japan). The scans were performed using
a frequency-doubled Nd-YAG laser (Newport, Evry,
France) at an excitation wavelength of 532 nm, oriented
perpendicular to the sample surface. To minimise laser-

Table 2. Quantitative mineralogical composition of samples TAM BK-8 and TAM BK-10. The standard deviation 6Q (values in parenthesis) of the
weight percentage Q for each phase was determined using the values from GSAS software output file after quantitative refinement, applying the formula
6Q = {[(ca/a)? + (cb/b)?]"2} Q (Young, 1962), where a and b are the two variables most affecting Q values and refer, respectively, to the weight fraction
of the phase and the internal standard, whereas ca and ob are their standard deviations. Structural models for the refinement for birnessite, chamosite,
goethite, hematite, quartz and siderite, are respectively from Blake ef al. (1966), Effenberger et al. (1981), Kihara (1990), Hazemann et al. (1991),
Walker & Bish (1992) and Lanson et al. (2002). x2, Rp, and Rwp. are statistical tools primarily used to assess the goodness-of-fit or independence
between observed mineralogical data and expected distributions or relationships; see Gualtieri et al. (2019) and reference therein for further details.

Chemical formula

MC BK-8 (Wt%) MC BK-10 (Wt%)

Birnessite (Na,Ca,K)x(Mn*",Mn*"),0,-1.5(H,0)
Chamosite (Fe?*sMg, sAlFe’" sSi3Al0,,(OH),)
Goethite (0-Fe**O(OH)

Hematite (a-Fe,05)

Quartz SiO,

Siderite FeCO;

Amorphous

2

R, (%)

R, (%)

1.5(1) 1.44(9)
6.7(4) 8.2(4)

33.6(4) 28.8(4)
3.6(3) 13.93)
8.0(1) 4.90(9)
3.7(1) 47(2)

43.0(7) 38.1(7)
0.9803 0.9021
0.0170 0.0162
0.0217 0.0203
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induced thermal effects, the laser excitation intensity
was carefully adjusted at the sample surface, ensuring
an optimal signal-to-noise ratio. Two-dimensional (x-y)
Raman maps were acquired, and data processing was per-
formed using the WITec Project Management and Image
Project Plus software suite.

Results

Remarks on faunistic content. — Representatives of ben-
thos constitute the major part of the preserved faunal
assemblage documented by the Tamer residues. In order
of abundance, we were able to identify bivalves, trilobites,

500 pm

500 pm

500 pym

Figure 2. Photographic images of selected material recovered in the conodont residues of the Kok Formation, Tamer area, Italy. Note the reddish-
greenish colour of the specimens. « A—E — ferruginous coatings around trilobite skeletal elements. A, B — upper views of cephalons DMGTS 116 and
DMGTS 117, sample TAM BK-22, Pterospathodus amorphognathoides amorphognathoides Zone. C — upper view of pygidium DMGTS 118, sample
TAMER BK-22, Pterospathodus amorphognathoides amorphognathoides Zone. D, E — lateral views of thoracic segments DMGTS 119 and DMGTS
120, sample TAMER BK-22, Pterospathodus amorphognathoides amorphognathoides Zone. * F, G — echinoderm skeletal elements. Upper views
of DMGTS 121 and DMGTS 122, sample TAM BK-22, Pterospathodus amorphognathoides amorphognathoides Zone. * H, 1 — internal moulds of
bivalve skeletal elements. H — upper view of DMGTS 123, sample TAM BK-19, Pterospathodus pennatus procerus Zone. 1 — upper view of DMGTS
124, sample TAM BK-22, Pterospathodus amorphognathoides amorphognathoides Zone.
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ostracods, crinoids, gastropods, brachiopods, foraminifers
and sparse remains of other invertebrate groups (Fig. 2).
Very few nautiloids have been recovered. Bivalves (Fig.
2H, 1), gastropods and ostracods are almost exclusively
preserved as internal moulds, aside from a few external
coatings. Crinoids (Fig. 2F, G) are represented by rare
calices and holdfasts, and abundant and diverse stem
fragments mostly preserved by external coatings. Trilo-
bites (Fig. 2A—E) were recovered as fragmentary remains
with numerous cephalons and pygidia, as well as isolated
thoracic segments. The outer surface of the specimens
recovered from conodont residues appears granular and
patchy. The material exhibits a reddish-brown to orange
colour (Fig. 2A—C) with areas grading to green (Fig. 2F).
A rich conodont fauna enabled a precise age assignment.
The association documents a shallow and well-oxygenated
environment dominated by shelly faunas.

In thin sections, light-grey to reddish-pink wacke-
packstones with abundant cephalopod and trilobite
remains (Fig. 3) offer a more realistic picture of the fauna
that was present at that time (conodont residues illustrate
only what survived acid leaching). The skeletal elements
expose laminated ferruginous constructions developed
either on the outer and/or the inner surface of the shell
(Fig. 3A). Trilobites and cephalopods appear to be
the most frequently coated skeletal elements. These
laminated coatings can be partial, comprising multiple
layers that grow over specific areas of the shell, or they
may completely envelop the organism. Laminae reveal
arborescent to dendrolitic morphologies. Typically, the
coatings begin to form on prominent parts of the shell
or at its extremities, forming isolated or multiple domes.
The internal structure of these domes discloses alternating
layers: white sparry laminae, interspersed with darker
laminae ranging in colour from yellow to green to red. The
laminae vary in continuity, with some being more uniform
than others. Equidimensional biodebris is scattered within
a finer matrix of articulated and disarticulated bivalves,
ostracods, gastropods, and echinoderm ossicles, asso-
ciated with abundant trilobite and cephalopod fragments
(Fig. 3B, C).

Mineralogical analyses. — XRPD analyses were run on 3D
ferruginous coatings extracted from conodont residues.
From a strictly qualitative point of view, results show
the presence of six mineralogical phases, i.e. goethite,
chlorite, siderite, hematite, quartz, and birnessite (a natur-

ally occurring hydrous manganese dioxide possibly
containing other cations), along with a significant amount
of amorphous material. Table 2 illustrates the quantitative
phase analyses results. Mineralogical data are in good
agreement with SEM-EDS measurements performed
on the same 3D material (Fig. 5). Regarding the chlor-
ite-group minerals, the best fit in the mineralogical
analysis was obtained using the chamosite structure,
a greenish, iron-rich chlorite occasionally occurring in

Figure 4. Secondary electron (SE) images and energy dispersive X-ray
spectroscopic (EDS) elemental maps of a ferruginous overgrowth around
a conodont element. * A, B — SE image of the conodont Pterospathodus
pennatus procerus with a crust laterally overgrown on a process (the
inset in A is detailed in B); sample TAM BK-23, Pterospathodus
pennatus procerus Zone. * C-H — Fe, Si, Al, Mg, P and Ca maps of B.
Colour intensity corresponds to relative elemental abundance. Note
the joined increase of Fe, Si, Al and Mg in the crust overgrown on the
conodont element (dominated by P and Ca enrichments).

< Figure 3. Transmitted-light micrographs of petrographic thin-sections illustrating main microfacies of the Kok Formation exposed in the Tamer area. ¢
A — cephalopod packstone with abundant ferruginous coatings around skeletal elements. Note the frequent telescoping of cephalopod shells. Sample
TAM BK-2, Kok Formation, Pterospathodus amorphognathoides amorphognathoides Zone. * B, C — scattered fine ferruginous biodebris (mostly
trilobite elements) giving a reddish colour to the matrix. Note well-developed coating around a skeletal element on the left bottom in (A) and (B).
Samples TAM BK-8 and TAM BK-10, Kok Formation, Pt. amorphognathoides amorphognathoides Zone.
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Figure 5. A — transmitted light optical photomicrograph of a petrographic thin section (sample TAM BK-2) showing a ferruginous multi-columnar
laminated coating around both sides of a cephalopod shell. The boxed area is magnified in the following photo. * B — details of the microstromatolitic
structures. Following panels are Raman maps obtained within the area included in the red square (in B) and represent calcite as seen from the intensity
of the 1085 cm™! diagnostic peak, siderite as seen from the intensity of the 1091cm™! diagnostic peak, hematite as seen from the intensity of the
1313 cm™! diagnostic peak, carbonaceous material (CM) as seen from the intensity of the ~1345 D and ~1600 cm™' G diagnostic peaks, and quartz as

seen from the intensity of the 464 cm™! diagnostic peak (see also Fig. 6).

low- to medium-grade metamorphic rocks and iron-rich
sedimentary rocks, especially ironstones and marine
shales (Tang ef al. 2017, Luan ef al. 2024).

The global composition is consistent with the abundant
occurrence of the ferriferous minerals mentioned above
and with previous literature related to coeval or even older
material from nearby areas in the Carnic Alps. Ferretti
(2005), Ferretti et al. (2012) and Corriga et al. (2021), by
the application of the same analytical protocol, described
similar ferruginous laminated coatings around skeletal

fragments (mostly trilobites and some cephalopods and
echinoderms) with a distinct stromatolitic pattern in pink
to red limestones of Silurian age. The laminated structure
exhibited rhythmic alternations of goethite, hematite,
magnetite, and chamosite with intercalated calcite layers.
The co-occurring presence of carbonaceous matter and
fossilised microbial structures reinforced a microbial
role in explaining their genesis (Ferretti et al. 2012).
Ferruginous coatings surrounding skeletal fragments in
the Upper Ordovician strata of the Cellon section have
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Figure 6. Representative Raman spectra of the mineral phases observed
in the calcite (Raman bands: 156, 282, 1085 cm™), siderite (Raman bands:
190, 292, 738, 1091 cm™"), carbonaceous material, CM (Raman bands:
1338 em™!, D; 1603 ¢cm™!, G), hematite (Raman bands: 297, 409, 609,
1313 cm™!), quartz (Raman bands: 206, 356, 464, 807 cm™'), maps
shown in Figure 5 (Cavalazzi et al. 2012, Frezzotti et al. 2012).

recently revealed the earliest known laminated structures
in the Carnic Alps, characterised by red to greenish layers
composed of alternating chamosite and goethite, inter-
bedded with calcite bands (Ferretti et al. 2023a). As for
the Tamer material (see below), Raman analysis run
on the coatings did not reveal the presence of goethite,
clearly indicated by X-ray investigation. However, the
Raman analytical conditions applied in the study could
have possibly transformed goethite into hematite (Foucher
2021).

As will be later discussed, this assemblage reflects
a complex interplay of sedimentary, diagenetic, and mild
post-depositional processes that shaped the mineralogical
signature of the Rio Tamer samples.

Raman spectroscopy. — Raman mapping was run on thin
sections specifically prepared to expose the multi-layered
structure of the 3D coatings around skeletal elements. The
ferruginous laminae, surrounding cephalopod shells with
inner and outer coatings in Figure 5, reveal the ubiquitous
presence of hematite, with subordinate siderite, embedded
within a mineral matrix primarily composed of calcite and
quartz grains. Additionally, the detection of carbonaceous
matter (CM) within the laminae was confirmed by
the intensity of the diagnostic D (~ 1345 cm™) and G
(~ 1600 cm™) peaks in the Raman spectra (Fig. 6), indicat-
ing the presence of organic residues.

Discussion

Iron minerals and ironstones are anything but rare in fossil
preservation, as documented by a full range of reports
throughout the Phanerozoic or even before (e.g. Rudmin
et al. 2020, 2022; Matheson et al. 2022 and references
therein; Papazzoni et al. 2022), and still active today (e.g.
Di Bella et al. 2019, 2021). Despite thorough research,
a consensus has yet to emerge on the dynamics ruling the
genesis of these occurrences.

A special case is represented by ferruginous skeletal
replicas, which occur only infrequently. External moulds
and casts preserved in iron documented the soft-bodied
late Proterozoic Ediacaran benthic organisms referred to
as “Vendobionta”, populating substrates between fair-
weather and storm wave-base. Gehling (1999) proposed
that a sort of “death mask” resulting from bacterial pre-
cipitation of iron minerals was able to explain the retention
of an external mould of the soft-bodied organism in the
sediment and, at the same time, the replacement of the
decaying body with the formation of a cast.

A similar preservational pathway via biologically pre-
cipitated biofilms made of aluminosilicate phases on
fossil leaves was suggested by Locatelli ef al. (2017). The
authors introduced a specific “Biofilm-Clay Template”
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Figure 7. Secondary electron (SE) images and energy dispersive X-ray
spectroscopic (EDS) elemental maps of a peculiar echinoderm ossicle
with a crystal overgrown on it. * A, B — SE image of the echinoderm
skeletal element (the inset in A is detailed in B); sample TAM BK-23,
Pterospathodus pennatus procerus Zone. * C-H — S, As, Fe, Al, Ca
and O maps of B. Colour intensity corresponds to relative elemental
abundance. Note the joined increase of S and As in the crystal.

taphonomic model of microbially mediated clay authi-
genesis. Spicer (1977) had articulated an analogous micro-
bial mineralization process, experimentally reporting the
presence of a thin layer of iron oxides with small amounts
of aluminosilicates on modern leaves within weeks
of submersion in a freshwater stream and delta. That
layer was strictly comparable with the iron enrichment
observed on the surface of Cretaceous leaves. Locatelli
et al. (2017) successfully expanded the tests of Spicer
(1977) and Dunn et al. (1997) to fossil and recent leaves
spanning in age from the Cretaceous to the Oligocene and
documenting different settings. According to their results,
a biofilm forms after the leaf enters the depositional
environment, though the extent of this process largely
depends on the specific environmental conditions (i.e.
subaerially, oxygenated, dysoxic, or anoxic water or
sediments). Dissolved metals in the form of either free
ions or oxides/oxyhydroxides (predominantly aluminium
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and iron species) adsorb to the biofilm, providing bind-
ing sites for silica, and, ion availability permitting, trig-
gering the nucleation of nanocrystalline, poorly ordered
aluminosilicates and their precursors on the surface and
within the biofilm, thus forming a biofilm-clay template.
This template may later endorse different fossilization
pathways depending on the depositional setting (oxygen-
ation, efc.) and original composition of the biofilm-clay
template.

Retallack (2022) applied the “death-mask” model to the
Ediacaran biota, proposing that ferruginous biofilms are
triggered not by sulphate-reducing bacteria as suggested
by Gehling (1999) but by filamentous, iron-oxidizing
bacteria provided with adhesive bases able to form robust
biofilms. These biofilms commonly transform to hematite
during burial starting from iron oxyhydrates precipitated
by aerobic iron-oxidizing bacteria that consume organic
matter of the organism tissue shortly after death. Clayey
oxidised biofilms have been reported from lakes and soils;
however crystalline chlorite films have likewise been re-
ported on marine fossil compressions (e.g. Gamez Vinta-
ned et al. 2011, Wan et al. 2020, Becker-Kerber ef al. 2022).

All studies reported above indicate that ferruginous
biofilms are frequently involved in fossilization proces-
ses of soft-bodied organisms. The effectiveness of this
mechanism is further amplified when it targets skeletal
elements that are already predisposed to mineralization,
a process facilitated by the intrinsic presence of hard
anatomical structures. These pre-existing rigid components
not only provide a favourable microenvironment for
mineral deposition but also act as nucleation sites that
enhance the stability and growth of mineral phases,
thereby promoting more efficient biomineralization. An
environment rich in iron sources like the Carnic Alps
served as an ideal geochemical setting to support the action
of biomineralising microbial communities. A benthic
assemblage comprising trilobites, bivalves, brachiopods,
gastropods, and echinoderms, associated with redeposited
cephalopod conchs, contributed a substantial quantity of
calcareous skeletal material which likely provided optimal
substrates for the nucleation and development of iron-rich
biofilms (Fig. 8A). The formation of the laminated pattern
observed in the iron coatings appears to have resulted
from the repeated activation of the process. This iterative
mechanism likely reflects fluctuating environmental
conditions or biological activity that governed the episodic
accumulation of iron-rich layers over time. Depending
on the oxygenation levels, both Fe?* and Fe** may have
been available at diverse times and/or contemporaneously,
and rule out the different iron phases documented by the
coatings/moulds (Fig. 8B).

Overall, the mineralogical associations in the Rio
Tamer samples can be interpreted largely through the lens
of early diagenetic transformations under diverse redox
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Figure 8. Proposed taphonomic scenario of the Carnic material investigated in this study following the Biofilm-Clay Template model of Locatelli et al.
(2017) for Vendobionta. * A — depositional environment where benthic communities (here represented by brachiopods, bivalves, trilobite skeletal
elements and echinoderm ossicles) are locally colonised by microbial mats which form a biofilm. Metal and silicon ions in solution adhere to the
biofilm, leading to the formation of clay mineral precursors as microbial decomposition continues. Oxygen availability strongly varies depending
on whether the skeletal element is in contact with the water column or enclosed in sediments. * B — continued clay minerals precipitation within the
biofilm results in fossil coatings and moulds of various chemical compositions, indicated by the diverse reddish colours of the ferruginous bioclasts,
which, in turn, indicate the different iron oxides and hydroxides replicating the original organisms.
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regimes, coupled with the availability of Fe, Mn, and
minor carbonate alkalinity within a dynamic depositional
setting (Canfield 2005, Raiswell & Canfield 2012). The
abundance of iron oxides and hydroxides (hematite and
goethite) points to an intense oxidation, possibly related to
exposure to oxygenated fluids. Chamosite, on the opposite,
provides evidence for an anoxic/reducing depositional
environment. This layer silicate typically forms in marine
sedimentary settings under reducing conditions, fre-
quently in association with iron-rich deposits or as a dia-
genetic product of pre-existing clay minerals (Tang et al.
2017, Luan et al. 2024). A similar consideration applies
to siderite; however, its crystallisation requires less
reducing conditions and a weakly alkaline pore water,
where iron is available as Fe?" and carbonate alkalinity is
sufficient to drive precipitation (Mozley & Wersin 1992,
Miicke 2006). Although in some geological contexts these
minerals are linked to low-temperature hydrothermal
systems, their development can equally occur through
reaction of detrital clay precursors with Fe?* in pore fluids
under modest burial temperatures (Hillier 1994, Worden
et al. 2020). A hydrothermal activity may be suggested
as well by the occurrence, albeit modest, of birnessite.
Indeed, birnessite can form in Mn-rich rocks altered by
weathering or hydrothermal activity. This occurs under
conditions of fluctuating redox potentials, typically at (or
near) the sediment-water interface where minor oxidative
pulses promote Mn?* oxidation, especially in pore waters,
where these fluctuating conditions cause repeated cycles
of oxidation and precipitation (Post 1999, Tebo et al.
2004, Feng et al. 2008, Papadopoulos et al. 2019, Baudet
et al. 2024). Like birnessite, also the occurrence of Fe, As
and S possibly forming arsenopyrite crystals (Fig. 7C-E)
not detectable through XRPD as in reduced quantity, is not
sufficient to definitively confirm the hydrothermal imprint,
as diagenetic sulphides within carbonaceous sediments
can form during early diagenesis in anoxic environments
(Rddad 2017, Armstrong et al. 2019).

The diagenetic overprint is confirmed also by quartz,
which, in limestones, could result from crystallisation of
silica of detrital or hydrothermal origin. Similarly, the
amorphous material detected may include poorly ordered
clays, silica gels, or fine-grained Fe-Mn oxyhydroxides,
products typical of early diagenetic reactions under
variable pH and Eh conditions (Berner 1980).

Conclusion

Conodont residues from the Silurian Kok Formation in
the Tamer area (Carnic Alps, Italy) have yielded three-
dimensional ferruginous coatings and moulds of originally
calcareous organisms, primarily belonging to benthic
faunas. Bivalves, gastropods, nautiloids, brachiopods,
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trilobites, ostracods, crinoids, foraminifers, and other
minor components, all preserved in various iron phases
(e.g. goethite, hematite, chamosite and siderite), often
co-occurring within the same specimen. While a modest
hydrothermal influence cannot be entirely excluded,
particularly in enhancing local metal mobility, the mineral
suite aligns well with typical diagenetic sequences in iron-
rich sedimentary systems.

A microbial involvement in the growth of the skeletal
replicas is evidenced by the presence of carbonaceous
matter within the ferruginous coatings. We propose
that microbial activity facilitated a unique preservation
pathway, leveraging available iron sources in a shallow,
ferruginous marine system to enable fossilisation under
conditions typically unfavourable for preservation of cal-
careous organisms.
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