
Eurypterids are a group of ca. 250 species of Palaeozoic 
aquatic chelicerate arthropods known from the Middle 
Ordovician (Darriwilian, 467 Ma; Lamsdell et al. 2015) 
to the late Permian (Changhsingian, 253 Ma; Poschmann 
& Rozefelds 2021). The Superfamily Pterygotioidea is 
the most diverse (ca. 50 species in 10 genera) and cosmo­
politan clade, comprising hughmilleriids (Tetlie et al. 
2007), slimonids and the giant pterygotids. It is unclear 
whether this diversity is due to their presumed increased 
dispersal ability (Tetlie 2007), shift in prey capture to 
using their chelicerae (Lamsdell 2022) or taxonomic 
oversplitting (Ciurca & Tetlie 2007, Braddy 2022).

Eurypterids have chelate (pincer-like) anterior pro­
somal appendages (chelicerae), composed of a  fixed 
and free (movable) ramus. Most Eurypterina (generally 
paddled forms, with a podomere 7a on appendage VI; 
Tetlie & Cuggy 2007) and Stylonurina (forms with 
walking-legs) possess small chelicerae but pterygotoids 
have large, anteriorly orientated chelicerae. Pterygotid 
chelicerae are particularly large and equipped with den- 

ticles of various sizes. Jaekelopterus, Pterygotus and 
Erettopterus have a  curved terminal denticle on their 
free ramus, Erettopterus with less differentiated denticles  
(Fig. 1). Acutiramus has an acute terminal denticle on 
both rami and a large obliquely orientated denticle with 
a  serrate posterior margin on its fixed ramus. Many 
pterygotid species are known only from their chelicerae 
because they were more robust than their thinner body 
cuticle, so preserved more frequently. Pterygotid taxa 
also vary in their body (Fig. 2), metastoma, genitalia and 
telson shape (Tollerton 1989; most taxa paddle-shaped but 
Erettopterus bilobed).

Pterygotid body fossils reliably range for ca. 37 million 
years from the early Silurian (late Llandovery, 428 Ma; 
Tetlie 2007) to the Middle Devonian (391 Ma; Lamsdell 
2017, Plotnick 2022), only 17% of the entire duration of 
the Order Eurypterida, with their acme during the late Si­
lurian. Putative Ordovician (Tremadoc) pterygotids from  
Morocco are based on an anomalocaridid (Braddy 2022). 
A  late Devonian putative chelicera (Olive et al. 2019,  
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fig. 10) is tiny (preserved length 7 mm), its denticles 
too short and broad to be a pterygotid; it is possibly an 
arthropod (Plotnick 2022), vertebrate tooth plate or large 
conodont (Braddy 2022). Pterygotus bolivianus, the next 
youngest putative pterygotid (preserved length 24 mm) is 
similar and probably the chondrichthyan Pucapambella 
(Plotnick 2022). A putative new genus (McCoy et al. 
2015), based on an assumed angular distal denticle on the 
fixed ramus (Wang & Gai 2014) is actually not preserved, 
so is a Pterygotus (Braddy 2022; P. wanggaii Ma et al., 
2022).

Pterygotid species are probably taxonomically over­
split due to taphonomic or ontogenetic variation. Potential 
synonyms particularly may co-occur at the same locality 
(Braddy 2022). The following locality numbers refer to 
Plotnick (1999): Erettopterus brodiei and E. spatulatus 
(locality 60, Downton Castle Sandstone, Herefordshire); 
E. spatulatus and E. gigas (locality 61, Temeside Shale, 
Herefordshire); E. carinatus (dorsal) and E. serricaudatus 
(ventral) (locality 65, Hogklint Group of Visby, Gotland); 
Pterygotus minor (juvenile) and P. anglicus (locality 54, 
Dundee Formation, Strathmore, Scotland; Braddy 2000); 
P.  juvenis (juvenile) and Acutiramus macrophthalmus 
(locality 30, Fiddlers Green Member of the Bertie 
Waterlime, New York; Poschmann & Tetlie 2006). Some 
non co-occurring species are also considered synonyms 
(e.g. P. atlanticus is a  synonym of P. anglicus; Miller 
2007). Ontogenetic trends in pterygotids may indicate 
further potential synonyms. Juvenile E. bilobus have 
curved terminal denticles, whereas in adults they are 
more angular (Ciurca & Tetlie 2007). Positive allometry 
occurs in the lateral eyes, telson and terminal denticle 
of the free ramus of J. rhenaniae (Braddy et al. 2008b). 
Jaekelopterus howelli also shows positive allometry 
in its denticles, although the extremely long stilleto 
(i2ʼ) denticle (Lamsdell & Selden 2013, fig. 24b) was 
interpreted as a piece of cuticle or plant overlying the 
base of the free ramus (Ibid, fig. 17a) by Braddy (2022). 
Jaekelopterus and Pterygotus are particularly similar and 
potentially synonymous (Braddy et al. 2008b, Lamsdell  
& Legg 2010, Lamsdell & Selden 2013, see below).

Most pterygotids were up to 72 cm long (Plotnick & 
Baumiller 1988, Chlupáč 1994) but some grew up to 2.5 m 
long (Braddy et al. 2008a, Briggs & Roach 2020), the 
largest ever arthropod (but see Evolutionary Implications 
for a revised size estimate). The Howick Bay Arthropleura 
(Davies et al. 2022), in comparison, has an estimated 
average body length of 2.3 m. If 12 to 14 tergites are 76 cm 
long, a complete individual with 32 tergites would have 
been just over 2 m long (excluding the head), i.e. the L/W 
body ratio decreased during growth. It is also more likely 
that an aquatic arthropod would be larger than a terrestrial 
one, due to biomechanical limitations. With their giant 
size, streamlined body, large chelicerae and lateral eyes, 

and powerful gnathobases, pterygotid eurypterids were all 
interpreted as fierce active visual predators (Woodward 
1872, Romer 1933), occupying high trophic levels, as 
primary aquatic carnivores (Selden 1984). However, the 
predatory abilities of some pterygotid taxa have been 
questioned, with their morphology regarded “as consistent 
with a scavenging or even a browsing mode of life, as 
a predatory one” (Plotnick & Baumiller 1988, p. 14).

The enlarged chelicerae of pterygotids were adapted to 
rapidly capture prey, as evident by their low mechanical 
advantage (Selden 1984). They also would have moved 
prey into the mouth. The terminal denticles are more 
pointed, for puncturing and gripping prey. Backwardly 
directed denticles on the rami would have effectively 
snared, grasped and sliced slippery or struggling prey. 
The oblique denticle on the fixed ramus of Acutiramus, 
with a serrate posterior margin (Fig. 1) may have speared 
prey when the rami were held open or could have sawn 
up prey by repeated movements (Romer 1933, Chlupáč 
1994, Bicknell et al. 2022b). Pterygotid chelicerae are 
remarkably similar to those of a solifuge (camel or sun 
spiders), an arachnid that uses its chelicerae to capture 
and kill prey (Van der Meijden et al. 2012). They are also 
similar to some cutter crustacean claws, particularly the 
harpoon-like appendages of mantis shrimps (Selden 1984). 
Cutter chela are long and slender with many denticles, 
like Acutiramus, and evolved for faster closing speeds. 
Crusher claws are more robust, with larger denticles to 
break harder shelled prey (Yamada & Boulding 1998), 
more like Jaekelopterus and Pterygotus. The green crab 
Carcinus maenas has both kinds of pincers. The blue crab 
Callinectes sapidus has a cutter pincer with an average 
closing force of 24.6 N and a crusher with a force of 42.8 N  
(Govind & Blundon 1985). Pterygotids, however, do not 
show both kinds of chelicerae in the same individual.

The gracile chelicerae of Acutiramus cummingsi 
were suggested by Laub et al. (2010) to merely trap, 
grasp and slice soft-bodied and relatively weak prey. 
Biomechanical analysis, based on the cuticle strength of 
Limulus, suggested that structural failure would occur on 
the oblique denticle and thinnest part of the free ramus. 
The failure force estimated for a mid-sized free ramus  
(8.9 N) and (largest) denticle (8.3 N) suggests that they 
would snap if used upon hard prey. The apparent lack of 
an elbow joint, it was argued, also limited their movement, 
such that they could only grasp prey on the sea floor, 
rather than capture active prey, suggesting that they were 
not actually predators (Laub et al. 2010).

Finite element analysis (FEA) of the chelicerae of 
A. bohemicus indicates that stress was concentrated in 
the proximal free ramus and denticles, also suggesting 
it targeted softer prey (Bicknell et al. 2022b). FEA  
indicates Erettopterus bilobus and P.  anglicus had 
a more generalised diet that probably included armoured  
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fishes. Jaekelopterus rhenaniae has lower stress across  
its chelicerae, suggesting that it fed on larger and harder 
prey, including heavily armoured fishes, such as placo­
derms.

The eurypterid mouth is situated on the ventral mid-
line between the prosomal appendage coxae, which were 
capable of adduction and abduction to masticate food. The 
mouth is surrounded by coxal gnathobases, spinose or 
saw-like projections on the mesial margin of the coxae of 
appendages II–VI. In Eurypterus, one of the anatomically 
best known eurypterids, appendages IV–VI were used 
for walking and appendages I–III gathered food (Selden 
1981), each equipped with different types of teeth on their 
gnathobases (Haug 2020); anterior gnathobases are less 
robust. These structurally weaker gnathobasic spines were 
likely used to shred soft prey (Selden 1981, Bicknell et al.  
2022a). The gnathobases of appendage VI crushed harder 
food items; stronger anterior teeth reached under the meta­
stoma and were elongated to achieve a  larger bite force  
(Haug 2020), effectively functioning as antagonistic jaws.  
On each gnathobase some teeth were larger and mov­
able (Selden 1981). Follicles at the base of the teeth were 
sensory setae. The epicoxa is a  small setose sac with 
a mesial bristled surface, forming a movable endite on 
the gnathobase of appendages II–V (Selden 1981). The 
metastoma (a post-oral ventral plate) may result from the 

fused epicoxa of appendage VI (Tetlie & Braddy 2004, 
Plotnick & Bicknell 2022).

In pterygotids, once a prey was captured it was pulled  
into the oral aperture. Small prey or dismembered parts 
of larger prey were masticated by the gnathobases (Kjel­
lesvig-Waering 1964). The coxal gnathobases were more 
powerfully developed in pterygotids (Clarke & Ruede­
mann 1912, Miller 2007, Poschmann et al. 2017, Haug 
2020) than in Eurypterus, indicating that they were 
able to feed on larger prey, including those with solid 
exoskeletons or tough dermal armour (Størmer 1944). The 
very powerfully developed coxae of appendage VI would 
have had a major role in killing, cracking and crushing 
hard-shelled prey, which were masticated further by the 
more anterior gnathobases of limbs II–V. The metastoma 
probably functioned to retain food in the oral cavity, similar 
in function to the chilaria of xiphosurans, by closing 
the oral region posteriorly (Selden 1981) and acting as 
a guide rail for the coxae of appendages V and VI (Haug 
2020). The metastoma of Eurypterus also probably had 
a sensory function, as indicated by follicles on its ventral 
surface, which held setae in life (Selden 1981). Many 
eurypterids had a notch at the anterior of their metastoma 
(Tollerton 1989, fig. 5) with teeth similar to those of the 
posterior gnathobases, indicating that they contributed 
to the mastication of prey. The size and morphology of 
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Figure 1. Pterygotid eurypterid chelicerae morphology. Pterygotus and Jaekelopterus have more robust chelicerae with smaller denticles, adapted for 
catching harder prey like armoured fishes while Acutiramus has more delicate chelicerae with longer denticles, adapted for more lightly armoured prey 
like phyllocarids. Image credit: Jun (Junnn11/CC BY-SA 4.0).



the metastoma varies among eurypterids (Tollerton 1989, 
fig. 5), reflecting their predatory capabilities, functional 
requirements and feeding mechanisms. Pterygotids (and 
carcinosomatids) had a broader metastoma than the other 
eurypterids, indicating that they could deal with larger 
prey. Eurypterus, and likely all other eurypterids, also had 
an endostoma situated slightly supero-anteriorly to the 
metastoma (Selden 1981, Plotnick & Bicknell 2022) that 
functioned to push food forward across the mouth.

All pterygotoids had large, anteriorly placed eyes, 
with overlapping visual fields, as expected in a predator. 
Anderson et al. (2014) compared the visual acuity of the 
lateral eyes of A. cummingsi with Eurypterus and other 
arthropods; its large lenses are undifferentiated, it lacks 
an area of increased visual acuity and its interommatidial 
angle (IOA) is outside the range of modern arthropod 
predators, suggesting that it hunted thin-shelled or soft-
bodied prey, perhaps at night (Anderson et al. 2014). 
McCoy et al. (2015) analysed the average number of eye 
lenses (ommatidia), the angle between them (IOA) and the 
Eye Parameter (EP; the diameter of a single ommatidium 
(D) multiplied by the IOA; Poschmann et al. 2016) of 
Jaekelopterus (>2979 lenses, IOA 0.87°, EP 1.41) and 
Pterygotus (4303 lenses, IOA 0.77°, EP 4.36), which had 
a better visual acuity (lower IOA and more lenses) than 
Acutiramus (1407 lenses, IOA 2.01°, EP 11.96). Slimonia 
(4075 lenses, IOA 1.52°, EP 5.55) and Erettopterus (4079 
lenses, IOA 1.23°, EP 4.98) had higher IOA values, so were 
not regarded as specialised or active predators (McCoy  
et al. 2015).

McCoy et al. (2015) recognised three pterygotid groups:  
1) Large Jaekelopterus and Pterygotus species with high 
visual acuity (low IOA with many lenses, correlating with 
living active high-level predators), enlarged and robust 
chelicerae with prominent, differentiated denticles and 
a curved free ramus correlating with a strong grasping 
and puncturing ability; 2) Mid-sized Slimonia (small 
chelicerae with no denticles) and Erettopterus (enlarged 
chelicerae with less differentiated denticles) species, with 
high visual acuity with many lenses (higher IOA values 
than Jaekelopterus and Pterygotus), but not regarded as 
highly specialised or active predators; 3) Large Acuti­
ramus species with enlarged gracile chelicerae with 
differentiated denticles, but with a relatively low visual 
acuity (high IOA with fewer lenses), indicating a distinct 
ecology that involved less active predation.

Eurypterid eyes are more like those of xiphosurans (i.e. 
apposition type, constrained within cones; Poschmann  
et al. 2016) with cuticular lens cylinders and an eccentric 
cell in their sensory apparatus (Schoenemann et al. 
2019). Edge enhancement (lateral inhibition), organised 
by the eccentric cell is useful in aquatic scattered light-
conditions, while the single-lens system of arachnids is 
a terrestrial adaptation (Schoenemann et al. 2019).

Dunlop et al. (2002) noted the frequent co-occurrence 
of eurypterids and fishes; one-third of all Silurian and 
Early Devonian eurypterid localities (Plotnick 1999) are 
associated with fishes. Analysing this data further may 
reveal more interesting patterns. Trace fossils represent 
the remains of an organismʼs life activities, and provide 
important, but often overlooked, evidence for the ecology 
of extinct animals. They include trackways, fossil faeces 
(coprolites) and bite marks (praedichnia) (Bertling et al.  
2006). Evidence for the predatory abilities of pterygotids 
comes from such trace fossils, so is reviewed here, along­
side a more detailed analysis of their faunal associations.

Methods

Ecological occurrence data (locality numbers listed 
below) was compiled from Plotnickʼs (1999) published 
database, additional literature on associations at those 
localities (i.e. locality 15, Miller 2007; locality 26, 
Flower & Wayland-Smith 1952; locality c, Sudkamp & 
Burrow 2007) and the Paleobiology Database (PBDB). 
Taxonomic revisions follow Ciurca & Tetlie (2007) 
and Tetlie & Briggs (2009): Pterygotus monroensis and 
P.  impacatus are assigned to E. osiliensis; Pterygotus 
impacatus to Erettopterus; Pterygotus ventricosus and 
P. sarlei to Ciurcopterus. Pterygotus siemiradzkii (local-
ity 79) is interpreted as a  fish scale (Dunlop & Tetlie 
2006), so is excluded. Stratigraphic and geological details 
of each locality can be found in Plotnick (1999), so are 
not repeated here. Subsequently published localities 
(e.g. Burrow et al. 2001, Naugolnykh & Shpinev 2018, 
Bicknell et al. 2020, Plotnick 2022) do not always specify 
associations, so are excluded. Jaekelopterus is limited in 
terms of data provided in Plotnick (1999), therefore is 
compiled from the primary literature and the PBDB, and 
given additional locality letter codes (a–d): (a) Beartooth 
Butte and Cottonwood Canyon (J. howelli; Bryant 1932, 
1933, 1934, 1935; Ruedemann 1934, 1935; Lamsdell & 
Legg 2010; Lamsdell & Selden 2013); (b) Alken, Overath 
and Waxweiler (J. rhenaniae; Størmer 1973; Poschmann 
2008); (c) Hunsrück (J. rhenaniae; Poschmann et al. 
2017); (d) Willwerath (J. rhenaniae; Anderson et al. 
1998). Associations are divided into nine categories, two 
arthropod (trilobite and phyllocarid) and seven vertebrate 
(thelodont, osteostracan, pteraspid – i.e. Pteraspidomorphi, 
anaspid, osteicthyan – i.e. Osteichthyes, e.g. dipnoans), 
placoderm and chondrichthyan (i.e. Chondrichthyes, e.g. 
sharks), based on assignments in Elliott et al. (2021). 
These nine categories were chosen based on previous 
interpretations of typical pterygotid associations and 
ichnological evidence (see below).

An association is considered one in which taxa occur 
in the same assemblage (i.e. same stratigraphic unit at 
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the same locality), not necessarily on exactly the same 
bedding plane, information that is rarely recorded. Of 
course, this means that some elements of the fauna may 
have been transported. Associations in the same unit 
at nearby localities, e.g. Nerepisacanthus in the Bertie 
Waterlime at Ridgemount Quarry in Ontario (Burrow 
& Rudkin 2014) do  not form part of this data. Some 
localities (17 (with fishes) 29 and 73 (both with trilobites 
and phyllocarids), 74 (with trilobites), 82 and 83) list only 
indeterminate pterygotid fragments, so are also excluded.

Faunal association data was also compared with 
evidence from a critical review of the literature on the 
functional morphology of the chelicerae, lateral eyes and 
swimming biomechanics, in order to develop a coherent 
scenario of the likely predatory relationships and preda- 
tory techniques employed by the different genera of 
pterygotid eurypterids.

Results

Trilobites occur at localities 6, 10, 11, 12, 15, 16, 29, 46, 
49, 56, 73, 80, 81 and 88. Phyllocarids occur at localities 
26, 27, 29, 33, 42, 46, 48, 49, 50, 51, 53, 56, 60, 71, 80, 81 
and 87. Slimonia occur at localities 48, 49, 50, 60, 81 and 
85 in association with: Thelodonts Loganellia (49, 50, 60) 
and Thelodus (60); anaspids Jamoytius (49) and Birkenia 
(50); pteraspid Cyathaspis (60); trilobites (49, 81) and 
phyllocarids (48, 49, 50, 60 and 81). Salteropterus occur 
at localities 56 and 61 in association with: Thelodonts 

Loganellia (61) and Thelodus (61); osteostracan Hemi­
cyclaspis (61); trilobites (56) and phyllocarids (56). 
Ciurcopterus occur at localities 24 (no fishes) and 26 
in association with: Pteraspids Vernonaspis (26) and 
Archegonaspis (26) and phyllocarids (26).

Acutiramus occur at localities 28, 30, 32, 33, 37, 42, 
80, 81 and 91 in association with: Pteraspids Vernonaspis 
(28) and Steinaspis (91); acanthodians Onchus (80); 
trilobites (80, 81) and phyllocarids (32, 33, 42, 80 and 
81). Erettopterus occur at localities 1, 2, 3, 4, 9, 18, 
22, 23, 25, 26, 28, 32, 49, 50, 56, 57, 58, 60, 61, 63, 
65, 66, 71, 72 and 80 in association with: Pteraspids 
Vernonaspis (1, 23, 28), Americaspis (23), Cyathaspis 
(60), Traquairaspis (72), Corvaspis (72), Poraspis (72), 
Homalaspidella (72), Dinaspidella (72), Anglaspis (72), 
Ctenaspis (72) and Protopteraspis (72); thelodonts 
Loganellia (50, 57, 60, 61, 71), Thelodus (57, 60, 61) and 
unspecified thelodonts (63, 66); acanthodians Onchus (80) 
and unspecified acanthodians (63); anaspids Jamoytius 
(49), Birkenia (50), Pterygolepis (71) and unspecified 
anaspids (63); osteostracans Thyestes (63), Hemicyclaspis 
(63), Ateleaspis (71) and unspecified osteostracans (66); 
trilobites (49, 56, 80, 81) and phyllocarids (26, 32, 49, 50, 
56, 60, 71 and 80).

Pterygotus occur at localities 11, 15, 32, 34, 35, 41, 43, 
50, 53, 54, 55, 56, 57, 60, 63, 68, 76 and 80 in association 
with: Pteraspids Allocryptaspis (41), Zachinaspis (41),  
Traquairaspis (53), Cyathaspis (60); thelodonts Loga­
nellia (50, 57, 60), Turinia (54), Thelodus (57, 60) and 
unspecified thelodonts (63, 68); acanthodians Climatius 
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Figure 2. Pterygotid eurypterid reconstructions (not to scale): top left Jaekelopterus rhenaniae, top right Erettopterus bilobus, center Pterygotus 
anglicus, bottom left Acutiramus macrophthalmus, bottom right Ciurcopterus ventricosus. Image credit: Jun (Junnn11/CC BY-SA 4.0).



(15, 54), Ischnacanthus (54), Mesacanthus (15, 54), 
Cheiracanthus (15), Gyracanthus (15), Onchus (41, 80) 
and unspecified acanthodians (63); anaspids Birkenia (50) 
and unspecified anaspids (63); osteostracans Yvonaspis 
(15), Hemicyclaspis (53, 63), Cephalaspis (54), Thyestes 
(63) and unspecified osteostracans (68); placoderms 
Phlyctaenius (15) and Aethaspis (41); Chondrichthyes 
Doliodus (15), Protodus (15) and Ctenacanthus (15); 
trilobites (80) and phyllocarids (32, 43, 50, 53, 56, 60 
and 80). Jaekelopterus occur at locality 9 (no fishes),  
a, b, c and d in association with: Pteraspids Allocrypta­
spis (a), Cardipeltis (a), Cosmaspis (a), Lampraspis (a), 
Protaspis (a), Drepanaspis (b), Rhinopteraspis (b) and 
unspecified pteraspids (d); acanthodians Bulbocanthus 
(a), Machaeracanthus, Onchus (a) and unspecified 
acanthodians (d); osteostracan Cephalaspis (a) and un­
specified osteostracan (d); placoderms Anarthraspis (a),  
Bryantolepis (a), Aethaspis (a), Simblaspis (c), Stuertzaspis 
(c), Paraplesiobatis (c), Lunaspis (c) and Tiaraspis (d); 
osteicthyan (dipnoans) Uranolophus (a), Porolepsis (b),  
Dipnorhynchus (c) and an unspecified crossopterygian  
(d); trilobites (c); phyllocarids (a).

Trilobites are associated with 15% of all eurypterid 
localities. At 9% of localities, trilobites are associated 
with pterygotids. Phyllocarids are associated with 18% of 
all eurypterid localities. At 13% of localities, phyllocarids 
are associated with pterygotids. Fishes are associated with 
31% of all eurypterid localities. More detailed results of 
the associations of pterygotoids are shown in Table 1. 
In summary, Slimonia and Acutiramus tend to associate 
with phyllocarids more than fishes. Erettopterus and 
Pterygotus tend to associate with fishes, mainly thelodonts 
and osteostracans respectively, and Jaekelopterus tend 
to associate with osteicthyans, placoderms, pteraspids 
and acanthodians. Trilobites generally comprise minor 
associations at pterygotid localities.

Discussion

The analysis of associations herein suggests that there was 
some degree of prey specialisation amongst pterygotids, 
supporting previous studies based on their biomechanics. 
A  general criticism of palaeoecology is that faunal 
associations do not prove that animals were in a close 
ecological relationship with each other. There is always 
the possibility that these eurypterids simply shared their 
environment with their associations and had relatively 
little interaction. In other words, eurypterids could have 
lived alongside armoured fishes but preferred softer 
prey. However, this evidence supports the evidence from 
trace fossils and their biomechanics suggesting that such 
patterns infer an ecological interaction. A eurypterid –  
phyllocarid association was noted by Kluessendorf (1994),  

based on a cluster analysis of Silurian North American La- 
gerstätten surrounding the Michigan Basin. The results 
herein suggest that Slimonia and Acutiramus were 
associated with phyllocarids more than trilobites or 
fishes, which were mainly lightly-armoured forms such 
as pteraspids (with head shields). Bicknell et al. (2022b, 
p. 13) noted that “Acutiramus does not occur with a di- 
verse fish fauna”; the results herein indicate that they only 
associate with pteraspids and acanthodians. Erettopterus 
mainly associate with lightly-armoured thelodonts (with 
scales instead of large plates or armour). Pterygotus 
associate with fishes more than phyllocarids or trilobites, 
generally heavily armoured osteostracans (with head 
shields). Jaekelopterus is the only pterygotid to associate 
with osteicthyans and (with Pterygotus) the heavily 
armoured placoderms.

The ecology and size of pterygotid prey also had 
implications for pterygotid predation. IOA values of 
pterygotid eyes change during ontogeny (McCoy et al. 
2015); vision became less acute in adult A. cummingsi 
and more acute in J. rhenaniae (McCoy et al. 2015). 
Prey probably varied throughout ontogeny, with juveniles 
preferring smaller and less armoured prey. Juveniles 
occupied a broader ecological niche, ensuring less com- 
petition within a species. A juvenile Jaekelopterus could 
not tackle a  large osteicthyan or placoderm. Prey pref­
erence also varied between taxa throughout their lives. 
Pterygotid taxa had more similar visual acuity as juveniles 
but this became more differentiated during growth.

Pterygotids (and carcinosomatids) are generally 
regarded as the most marine eurypterids, in the C/P bio­
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Table 1. Results of the analysis of biotic association of ptery­
gotoid eurypterids. Percentage of localities that show association 
between taxa. Shaded cells indicate the most common associ- 
ation.
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Phyllocarids 83% 50% 50% 56% 32% 38% 20%

Trilobites 33% 50% 22% 16% 6% 20%

Fishes 50% 50% 50% 33% 52% 56% 80%

Thelodont 50% 50% 28% 22%

Osteostracan 50% 27% 40%

Pteraspid 17% 50% 22% 18% 17% 60%

Anaspid 33% 16% 11%

Osteicthyan 12% 80%

Acanthodian 11% 8% 17% 60%

Placoderm 11% 60%

Chondrichthyan 6%



facies (Braddy 2001). Most pterygotids are associated 
with Benthic Assemblage (B.A.) 1–3, but Pterygotus and 
Jaekelopterus extend into B.A. 0, representing non-marine 
settings (Plotnick 1999, tab. 1). The Benthic Assemblage 
scheme (Boucot 1975), based mainly on brachiopod 
assemblages, assesses palaeobathymetry (higher numbers 
indicating deeper water). Some Pterygotus anglicus were 
interpreted as living entirely in fresh water, since a wide 
size range of individuals are found in the Early Devonian 
lacustrine fish beds of Scotland (Trewin & Davidson 1996) 
and Emsian fluvial or alluvial-lacustrine sequences of New 
Brunswick (Miller 1996, 2007). Eurypterids generally are 
found in a wide range of palaeoenvironments, including 
deep marine, marginal marine, reef, hypersaline, brackish 
and freshwater settings (Braddy 2001, Vrazo & Braddy 
2011). Because P. anglicus is found in both marine and 
freshwater, it may have been euryhaline (Braddy 2001), 
and able to seasonally migrate from coastal areas up 
rivers, following potential prey.

Ichnology

Trace fossils attributed to pterygotid eurypterids are very 
rare. A fossil trackway attributed to a pterygotid (Sharpe 
1932), from the Middle Ordovician of New York State, 
was reinterpreted as being produced by a  stylonurid 
eurypterid (Braddy & Gass 2023). Pterygotids likely used 
an in-phase octopodous (appendages III–VI) lobster-
like ‘trippling’ gait (Selden 1984), buoyed by the water, 
but could not have achieved stable locomotion as their 
opisthosoma was too long (Braddy & Gass 2023).

Praedichnia

Evidence for predator-prey interactions are rare in the 
fossil record. Two examples of pterygotid predation 
traces (praedichnia) on armoured vertebrates have been 
reported. A single, healed (i.e. non-fatal) puncture to the 
left posterolateral dorsal head shield of the pteraspid 
Larnovaspis kneri, from the Emsian of Gorodok, Po­
doli, Ukraine, is attributed to the terminal denticle of 
a chelicera of a pterygotid (Lebedev et al. 2009). Three 
holes puncture the dorsal head shield of the cyathaspid 
(pteraspid) Lechriaspis patula, from the Emsian Water 
Canyon Formation of northern Utah (Elliott & Petriello 
2011). This attack was presumably fatal as there is no 
evidence of repair. The size and spacing of these holes 
exactly match the denticles of J. howelli.

Two reliable reports of pterygotid praedichnia on  
arthropods also exist. Injuries to Eurypterus and Acutira­
mus, from the Bertie Waterlime (McKenzie & Nypaver 
2016) comprising torn and punctured remains, including 

healed wounds from unsuccessful attacks. Puncture 
patterns correlate with the denticles of Acutiramus macro­
phthalmus. Malformed trilobites (Spinisscutellum um­
belliferum), from the Early Devonian of Czechia were 
probably the result of failed predation attempts, grabbed 
and torn during the soft-shelled moult phase (Bicknell  
et al. 2021). Acutiramus perneri, from the Lochkov 
Formation, was the likely producer of these injuries. These  
healed injuries do not mean that pterygotids were in- 
effective predators, rather successful predation tends 
to leave no trace, because prey were eaten (McKenzie 
& Nypaver 2016), so the fossil record of praedichnia is 
inherently biased.

Healed injuries in the trilobite Dalmanitina socialis 
from the Upper Ordovician Letná Formation of Czechia 
(Fatka et al. 2021), comprising repaired eyes and mal­
formed librigena, were attributed to a  large arthropod 
interpreted as a  pterygotid (Van Roy in Fatka et al. 
2021). However, this arthropod is represented by several 
undiagnostic body segments that lack the scaly ornament of  
a pterygotid, and are too early (Ordovician) to be a ptery­
gotid.

A cluster of 18 Arctinurus boltoni trilobites from the 
Silurian Rochester Shale of Orleans County, New York 
(Bicknell et al. 2019) shows 44% of specimens with W, 
U and V-shaped injuries, mostly (87.5%) on the right side, 
primarily the pygidium, but none on the cephalon. Various 
mollusc and arthropod predators, including eurypterids, 
may have caused these injuries. The trilobites either 
adopted a lateral defense or the predators attacked from 
behind or the side. Trilobites may also have gathered in 
a group to provide protection from predators, making it 
harder for one individual to be picked off.

Digestion

Evidence for the digestive system of eurypterids comes 
from a comparative approach and occasional well-pre- 
served fossils (Selden 1984). In xiphosurans most of 
the prosoma is taken up by organs associated with food 
gathering, feeding and digestion. Limulus passes food 
down the oesophagus and into the gizzard for further 
internal grinding (Selden 1984). Indigestible particles are 
regurgitated through the oesophagus whereas digestible 
particles are passed posteriorly through a valve into the 
stomach. Two pairs of lateral diverticula forming glandular 
caeca secrete digestive enzymes into the stomach through 
two pairs of ducts. The intestine of Limulus extends 
posteriorly into the opisthosoma and waste is expelled 
via a short sclerotised rectum and out the anus, located 
ventrally just in front of the telson. Eurypterids probably 
had a  similar digestive system (Selden 1984). Their 
prosoma probably contained some organs associated with 
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digestion (gut diverticula), but digestion also took place in 
their much larger opisthosoma.

Coprolites

Coprolites (fossil faeces) associated with the mixopterid 
Lanarkopterus dolichoschelus, from the Silurian of 
the Hagshaw Hills in Scotland, contain disarticulated 
bony fragments of an agnathan (Selden 1984, Schmidt 
et al. 2022). Other coprolites attributed to eurypterids 
contain thelodont (Loganellia) scales (Rolfe 1973, 
Selden 1984). Coprolites of Megalograptus ohioensis, 
from the Ordovician of Ohio contain trilobites and other  
M. ohioensis, indicating cannibalism (Caster & Kjellesvig-
Waering 1964). The coprolites of related predatory eur­
ypterid taxa therefore suggest that pterygotids fed on 
trilobites, agnathans and even their own kind, supporting 
the evidence from praedichnia. A  putative pterygotid 
coprolite from the Silurian (Přídolí) of New South Wales 
in Australia, contain abundant, partially articulated, 
fragments of the trilobite Denckmannites rutherfordi 
(Bicknell et al. 2023).

Predatory strategies

The mode of life of pterygotids can be interpreted by 
a consideration of their functional morphology and com­
parisons with extant taxa. A lurking model (Selden 1984) 
considers pterygotids as ambush predators, hiding on or in 
the substrate, relying on their eyes to detect prey and their 
chelicerae to rapidly capture it, as depicted in the Walking 
with Monsters TV series. This model is comparable 
to dragonfly larvae, the praying mantis and mantis 
shrimps (Selden 1984). The stomatopod Harpiosquilla 
harpax hunts from a burrow as a  lie-in-wait predator 
or it can actively stalk fish (Dingle & Caldwell 1978). 
However, comparisons with pterygotids are tentative, 
given differences in their size and ecology. Pterygotids 
were large, especially as adults, making it difficult 
for them to hide. Their gills needed to be ventilated 
(Selden 1984) so prolonged burial in the substrate was 
unlikely. Alternatively, pterygotids may have hunted at 
night (Anderson et al. 2014) or are here interpreted as 
lurking in deep, dark or murky estuarine water, with prey 
encountered essentially by chance. In well-lit waters it is 
unlikely that they used this strategy. Osteostracans may 
have been captured with the lurking model.

A nektonic model (Clarke & Ruedemann 1912, Trewin 
& Davidson 1996) regards pterygotids as primarily 
nektonic predators able to swim down prey in open water. 
Poschmann et al. (2016) regarded J. rhenaniae as an agile 
swimmer that likely chased active prey. However, it is 

unlikely that pterygotids were very fast or manoeuvrable 
swimmers, especially as adults, given their large size 
(Braddy & Gass 2023). The pterygotid telson is flat, with 
a raised median keel, that was initially interpreted as an 
adaptation for propulsion (Størmer 1934), with the paddles 
acting as balancing organs (Kjellesvig-Waering 1964). 
Plotnick & Baumiller (1988) then interpreted the telson 
as acting more like a rudder, with propulsion primarily 
achieved by appendage VI (paddles); pterygotids were 
interpreted as agile swimmers capable of quick turns and 
even hovering.

Analysis of eurypterid swimming (Knight 1997), pre­
dicting their behaviour from models in flume tank ex­
periments to determine the body resistance and a computer 
model to determine paddle thrust (varying stroke angle 
and angle of attack), agreed with observed portunid crab 
swimming techniques. A 22 cm long Eurypterus would 
swim using a  lift-based stroke, with the paddle swept 
forwards and down on the forestroke and backwards and 
up on the backstroke at an angle of about 45 degrees, 
as in sea lions, at a  speed of 3–4 m/sec, as in turtles. 
Swimming was not to hunt fast prey but instead to find 
and feed on worms and small arthropods. Smaller species 
(and juveniles) had higher drag coefficients than larger 
animals, so swam relatively faster (although actual speeds 
were lower) but juveniles were likely more agile than 
adults and used more drag-based (rowing) techniques.

Computer modelling of pterygotid swimming tech­
niques (Knight 1997) indicates that they were actually 
rather poor swimmers due to their large size. Drag and lift 
coefficients of pterygotid paddles are higher than those of 
Eurypterus (Plotnick 1985), due to their greater area, and 
they were good lift-producing hydrofoils. The paddles 
would need to beat at 3 Hz to provide sufficient thrust, 
even at low speeds, but scaling of portunid crab paddles 
indicates that they could only beat at 0.4 Hz. Pterygotids 
were too big for their paddles to provide sufficient 
thrust. Objection to carangiform swimming (Plotnick & 
Baumiller 1988) highlighted whales, sharks and ichthyo­
saurs, with a narrow caudal peduncle and a broad tail 
fin, which maximise speed. Although the telson was an 
optimal shape to function as a rudder, this does not pre­
clude it from propulsion; it probably did both (Braddy 
& Gass 2023). This swimming technique has recently 
been tested experimentally with an 80 cm long modular 
(i.e. long chelicerae, paddle and telson morphology) 
robotic swimming eurypterid called ʻRobopterusʼ  
(Toshiyasu Kondo, pers. comm.). Pterygotoid telsons were  
also unlikely to be used as a weapon (Lamsdell et al. 
2018). Juveniles would have been more agile, not so 
biomechanically constrained. If pterygotid prey were 
relatively slow swimming (e.g. pteraspids and osteostra­
cans with armour; Morrissey et al. 2004, 2006) speed 
may not have been the primary concern. A predator need 
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only be slightly faster than its prey. The chelicerae were 
adapted as the rapid capture structures, not the swimming 
ability. If some pterygotids hunted in low light levels, 
speed and agility would also have been less of a concern. 
Acanthodians may have been captured with the nektonic 
model (e.g. in low-light conditions).

A  mud grubbing model (King et al. 2017), based 
largely on assessments of Acutiramus chelicerae by 
Laub et al. (2010) and raking marks, from the Emsian 
of New Brunswick, suggests that pterygotids used their 
chelicerae to rake around in the mud. These raking traces, 
referred to Monomorphichnus, consist of sub-parallel 
straight to sigmoidal hyporelief ridges (elliptical in shape,  
15–42 mm long and 13–22 mm wide, spaced 2 mm apart), 
the central scratches deeper than the outer ones. King 
et al. (2017) attributed them to Pterygotus anglicus, 
known from the same formation, as it was the only known 
arthropod large enough (65 to 170 cm; Miller 2007) to 
have produced them. The denticles on the chelicerae 
were suggested to have raked or sieved the sediment like 
some modern crabs (Bauchau & Passelecq-Gerin 1988). 
A raking-and-sieving feeding method was also proposed 
for some fossil decapods (Tshudy & Sorhannus 2000) 
but their chelae were able to open much wider, up to 
180°. Pterygotids would not have been able to open their 
chelicerae wide enough to create such scratch marks, 
and their low mechanical advantage indicates that they 
were rapid-capture structures (Selden 1984). It is more 
likely that these Monomorphichnus traces were produced 
by a stylonurid eurypterid, crustacean or euthycarcinoid 
(Braddy & Gass 2023).

A newly proposed vagrant model regards pterygotids 
as essentially nekto-benthonic animals, swimming just 
above the substrate, feeling for prey with their appendages, 
which were then caught by their chelicerae. This model is 
supported by the more palpal nature of limb II (Selden 
1986). Infaunal and epifaunal worms and arthropods may 
have been captured with the vagrant model. Pterygotids 
may have fed on worms if other prey were not available, 
but this does not preclude them from primarily being 
a predator of arthropods and/or vertebrates.

Functional morphology

An unresolved question concerning pterygotid chelicerae 
concerns their functional morphology. Whilst many 
specimens of E. bilobus, for example, show their long 
chelicerae preserved in a reversed position in front of the 
moulted exoskeleton, we still do not know exactly how 
they attached to the prosoma and sprung out to catch prey. 
They presumably had sufficient basal articulation to extend 
forward and retract back to move food into the mouth 
and sufficient musculature and tendons to extend rapidly. 

The articulation at the base of the fixed ramus could 
presumably rotate 90° enabling the chelicerae to close 
both vertically and horizontally, to catch and manipulate 
prey. The denticles may have been strengthened with 
Mn, Fe or Zn metal ions for durability, as in scorpions 
(Schofield 2001). The reversed orientation of preserved 
chelicerae, in front of exuvia, can be explained as the 
animal pulled out its freshly moulted chelicerae and the 
shed chelicerae flipped forward as the animal emerged 
anteriorly. Crustaceans bury their appendages in the 
substrate to provide sufficient resistance to help pull out 
the freshly moulted cuticle. Perhaps eurypterids used 
a similar behaviour.

The chelicerae (Laub et al. 2010) and lateral eyes 
(Anderson et al. 2014) of Acutiramus cummingsi have 
been interpreted as being inconsistent with a predatory 
lifestyle. Here, Acutiramus is interpreted as a predator 
specialised on lightly armoured prey (e.g. phyllocarids). 
The cuticle thickness (1 mm) used by Laub et al. (2010) 
in their equations was just an assumption. The free ramus 
was actually composed of solid cuticle. The muscle 
cavity in a chelicera was located in the proximal part 
of the fixed ramus, as in Limulus (Bicknell et al. 2018, 
fig. 2e, f). Pterygotid chelicerae were much more robust 
than Laub et al. (2010) assumed, which explains why 
they are preserved more frequently than the rest of the 
animal. A table lamp-like action of the chelicerae was also 
considered unlikely by Laub et al. (2010), as pterygotids 
apparently lack an elbow joint. “The supposed first joint 
had to be divided into at least two joints” (Kjellesvig-
Waering 1964, p. 335). However, the articulation at the 
base of the fixed ramus was effectively the elbow joint. 
The chelicerae were probably held open, ready to strike, 
then moved in a rotational movement. The chelicerae did 
not push forwards, rather swept in from the sides or from 
underneath. Even though the chelicerae of Acutiramus 
were more gracile than the other pterygotid taxa, they 
were primarily used to just capture prey. Killing and 
dismemberment would also have taken place in the oral 
cavity by the much more powerful saw-like gnathobases 
and metastoma, which were better suited to kill and cut up 
prey. These structures have generally been overlooked in 
previous studies that interpret Acutiramus as an ineffective 
predator.

Modern analogs for eurypterid vision should ideally 
be based on aquatic arthropods. The only modern, aquatic, 
high-level, arthropod predator used by Anderson et al. 
(2014) and McCoy et al. (2015), was the mantis shrimp 
Squilla (IOA 0.2–1.5°; Wehner 1981), a  carnivorous 
crustacean with stalked compound eyes. Anderson et al.  
(2014) and McCoy et al. (2015) defined a predator based 
on an IOA of 0.9° or less. However, some insects with 
a low IOA include non-predators such as bees (Apis 0.8°) 
and butterflies (Papilio 0.9°), to locate mates or prey 
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in fast aerial manoeuvres (Land 1997). This shows the 
problem of using IOA to arbitrarily identify an arthropod 
as a predator; interpreting Slimonia and Erettopterus as 
not being a specialised or active predator, based on IOA 
(McCoy et al. 2015) is therefore questionable. Although 
the vision of some pterygotid taxa was apparently worse 
than other taxa, this does not preclude them from being 
a predator. They probably did not require exceptional 
visual acuity to locate prey that was relatively large and 
relatively close or probably just reacted to prey movement 
or used other senses (e.g. chemosensory or tactile 
perception) to locate prey, especially in dark conditions.

Evolutionary implications

The chelicerae of hughmilleriids, slimonids, pterygotids 
(and carcinosomatids) are anteriorly facing and larger 
than those of other eurypterids, indicating that they were 
capable of dealing with larger prey. The Hughmilleria-
type of (spiniferous) appendage (Tollerton 1989) was 
more primitive than that of the pterygotids (Lamsdell  
et al. 2015, Lamsdell 2022), capable of both locomotion 
and prey capture, so the lack of spines on limbs II–V in 
pterygotids reflects a shift away from their role in prey 
capture to walking, with the chelicerae specialised for 
prey capture (Selden 1984). The chelicerae of Slimonia, 
the sister taxon to Pterygotidae, were short and robust 
(Lamsdell 2022), but not as powerfully developed as in 
the pterygotids.

Hypotheses of the phylogenetic relationships of ptery­
gotoids have varied (e.g. Plotnick & Baumiller 1988,  
fig. 2; Dunlop et al. 2002, fig. 6) but more recently 
settled on (excluding Grossopterus, a waeringopterid and  
Truncatiramus, an Erettopterus) the topology: Slimonia 
(Salteropterus (Ciurcopterus (Erettopterus (Pterygotus 
(Jaekelopterus + Acutiramus))))) (e.g. Braddy et al. 
2008a, fig. 2; McCoy et al. 2015, fig. 1a; Lamsdell et al.  
2015, fig. 21). The position of Acutiramus is some­
what surprising, given the obvious similarities between 
Jaekelopterus and Pterygotus (Figs 1, 2); they are 
probably even cogeneric (cf. Waterston 1964). Given 
Acutiramus has gracile chelicerae with a large obliquely-
orientated denticle on its fixed ramus, unlike the more 
robust chelicerae of Jaekelopterus and Pterygotus  
(Fig. 1), this prompts a  reevaluation of the characters 
used in previous analyses (e.g. Braddy et al. 2008a, 
characters 3 and 15; McCoy et al. 2015, characters 6, 8, 
17, 18, 22, 28 and 31); Character 3/6 (large denticle on 
the fixed ramus) is incorrectly coded for Jaekelopterus, 
and 8 (based on similar trends in E. bilobus; Ciurca & 
Tetlie 2007), 17, 18 (both metastoma), 28 and 31 (both 
telson) likely ontogenetic. Variation in the visual acuity 
(itself based on morphology) and associations, based 

on the analysis presented herein, support the hypothesis 
that Acutiramus is actually more basal to Jaekelopterus 
and Pterygotus. The stratigraphic ranges and ecology 
(extending into freshwater) of these taxa also supports this 
revised phylogenetic hypothesis; Acutiramus is older than 
both Jaekelopterus and Pterygotus, which ranges almost 
exactly overlap (e.g. Braddy et al. 2008a, fig. 2). This also 
has implications for the maximum size that Jaekelopterus 
(and therefore all Arthropoda) could attain; if the giant 
chelicerae described by Braddy et al. (2008a) were scaled 
by Pterygotus (its closest relative, if not even the same 
genus) alone, it would have been 2.59 m long.

Changes in pterygotid ecology were interpreted in 
a phylogenetic context by McCoy et al. (2015). Evolving 
from a slimonid ancestor, Erettopterus was interpreted 
by McCoy et al. (2015) as a generalist, evolving larger 
chelicerae, but not a  giant body size or an advanced 
visual system. In this model the ancestor of Pterygotus, 
Jaekelopterus and Acutiramus evolved giant body size, 
specialised chelicerae and an advanced visual system as 
a high-level active predator but these adaptations, except 
large body size, were apparently lost in Acutiramus 
(McCoy et al. 2015) with its inferred weak chelicerae 
and eyes, as a specialised ambush predator or scavenger. 
Herein, pterygotid evolution is interpreted much more 
simply. All taxa are regarded as predators, each specialised 
on certain types of prey. If Acutiramus was more basal to 
Jaekelopterus and Pterygotus, no reversals are needed 
and the overall trend in pterygotid evolution is towards 
increased predatory abilities.

Romer (1933) proposed that eurypterids influenced 
early vertebrate (jawless fish) evolution and were ultim­
ately outcompeted by jawed vertebrates. An increase in 
size in pterygotids throughout the mid-Palaeozoic may 
represent an arms race between eurypterids and armoured 
fishes (Lamsdell & Braddy 2010, Bicknell et al. 2022b). 
Such competitive replacement is sometimes dismissed as 
playing only a minor role in taxon survivorship. Previous 
assessments of Acutiramus chelicerae limitations (Laub 
et al. 2010) were suggested to have effectively falsified 
Romerʼs (1933) hypotheses but the pterygotid praedichnia 
reviewed herein provide strong evidence that pterygotids 
had some influence on some early vertebrates. The ana­
lysis of pterygotid associations herein also supports the 
interpretation that they were much more capable predators 
than some workers have assumed and were able to prey on 
early vertebrates. Competition with cephalopods as either 
prey and/or predators on eurypterids, or as competitors 
could also be considered (Klug et al. 2015).

Indeed, some megalograptids, mixopterids and car­
cinosomatids, with long spinose raptorial appendages 
forming a catching basket (Schmidt et al. 2022), are also 
associated with fishes and should to be included in an 
analysis to test Romerʼs (1933) hypothesis. The methods 
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presented here could be extended to the entire Eurypterina, 
and the timing of predatory adaptations in eurypterids 
correlated with defensive adaptations in fishes. The 
sweep-feeding Stylonurina (Hughes & Lamsdell 2021, 
Braddy et al. 2023) are much less likely to have had any 
influence on early vertebrate evolution. 

Summary

In conclusion, pterygotid eurypterids are most consistent 
with having been slow swimming vagrant and ambush 
predators, each genus probably specialised on certain 
types of prey; previous analyses of the chelicerae (Laub 
et al. 2010) and lateral eyes (Anderson et al. 2014) of 
Acutiramus cummingsi were based on assumptions and 
do not preclude a predatory lifestyle. Trace fossils (prae- 
dichnia and coprolites) provide strong evidence that 
pteraspids, other eurypterids and trilobites, were amongst 
the prey of pterygotids, as were phyllocarid crustaceans 
and other early fishes, based on an analysis of their faunal 
associations. Acutiramus is interpreted as being more 
basal to Jaekelopterus and Pterygotus and Romerʼs (1933) 
hypothesis that eurypterids influenced early vertebrate 
evolution could be tested by extending this analysis, in 
a phylogenetic context, to the entire Eurypterina.
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