
The Frasnian–Famennian (F–F) boundary interval cor­
responds to the significant biotic crisis in the middle 
Palaeozoic (McGhee 2013, Stanley 2016). During the 
late Frasnian most marine organisms of the tropical realm 
were affected by the stepwise extinction or diversity 
reduction due to a decrease in speciation rates (see Stigall 
2010 for discussion). Among the terrestrial organisms, the 
extinction of land plants took place in the Late Pal. rhenana 
conodont Zone, and none of the known fossil tetrapod 
groups survived the end of the Frasnian (McGhee 2013). 
Modern overviews of the biotic and abiotic changes at the 
F–F transition were done by Ma et al. (2016), Qie et al.  
(2019) and Carmichael et al. (2019).

In contrast to the well-studied F–F transitions in the 
palaeotropical realm and southern hemisphere (North 
America, Western Europe, northern Africa, Australia, 
and China) this interval is less known in the northern 
hemisphere (Eastern Europe, Urals, northern Siberia). 
According to palaeoclimatic reconstructions (Boucot et al. 
2013) the East European Craton (eastern Laurussia) and 
shelves of the Uralian Strait were located in the equatorial 
(tropical) realm at the latest Frasnian–earliest Famennian. 
The Siberia palaeocontinent, excluding its southern part, 
was in a subtropical climatic zone, even if located at mid-
latitudes (Fig. 1B). 

The F–F transition beds of north-eastern Laurussia, 
known from the central and south-eastern parts of the 
East European Platform (EEP), Pechora Platform (PP), 
northern Urals, and Pai-Khoi, represent a wide spectrum 
of facies. Northern Siberia sections (north of Siberian 
Platform and Kolyma-Omolon Uplift) contain the F–F 
transition in shallow-water and deep-water facies (Yolkin 
et al. 2006, Gagiev 2009, Yazikov et al. 2013). Thus, 
the most representative of the F–F transition sequences 
that characterize north-eastern Laurussia (9 sections and 
boreholes) and northern Siberia (5 sections) were selected 
for testing palaeolatitudinal and facies gradients in the F–F 
transition in the northern hemisphere (Fig. 1). 

The aims of the article are the following: to analyze 
distribution of conodonts and brachiopods in the F–F 
transition in various facies of the tropical and northern 
subtropical realms of the northern hemisphere; and to 
evaluate facies and palaeolatitudinal gradients in the F–F 
fauna turnover in the northern hemisphere in respect of local 
and regional versus global causes of the biotic crisis. In this 
context, the regional impact of the highlighted Viluy Large 
Igneous Province (LIP) of Siberia was first mentioned. 

The F–F transition was characterized by the trans­
gressive-regressive sequences reported in different regions. 
Sandberg et al. (1988) considered biotic and lithological 
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records of the global event in the palaeotropical realm, 
and according to these authors, the changes of conodont 
associations were attributed to a eustatic rise followed by 
an abrupt eustatic fall preceding the F–F mass extinction. 
Sea level rise at the Pal. linguiformis Zone was detected in 
the Betic Cordillera, Spain (Rodríguez-Cañero & Martín-
Algarra 2014), and Appalachian Basin (Lash 2017). 
The presence of post-Frasnian regression is indicated in  
the eastern Laurussia basin by a regional unconformity in the 
shallow-water shelf facies. The unconformity corresponds 
to stratigraphical gap from (?) Pal. linguiformis Zone up to 
Pal. delicatula platys Zone in some regions, exemplified by 
East European Platform (Alekseev et al. 1996). In contrast, 
sea level fall at the terminal Frasnian (Pal. linguiformis 
Zone) is reported in Iran (Gholamalian 2007), Moravia 
(Hladil 2002), and some regions of South China (Ma et al. 
2016). Thus it is difficult to separate tectonic and eustatic sea 
level changes around the F–F transition. Hallam & Wignall 
(1999) suggested that tectonics plays a significant role in 
regional and local sea level changes in western Laurussia.

The term “Kellwasser (KW) Crisis”, based on 
classic outcrops of the Rhine Slate Mountains and Harz 
Mountains, is commonly accepted to describe both the 
upper Frasnian Kellwasser black shale horizons (lower – 
LKE, upper – UKE) and the corresponding global anoxic 
events (see summary in Gereke & Schindler, 2012). In 
particular, the transgression acme at the latest Frasnian 
(Pal. linguiformis Zone) was accompanied by shelf anoxia 
(Chen & Tucker 2003; Bond & Wignall 2008; Carmichael 
et al. 2014, 2019; Crasquin & Horne 2018). The signatures 
of anoxia are well developed mainly in the deep-water shelf 
environment, however absent or weak in the shallow-water 
carbonate platform and epicratonic basins, with some local 
exceptions reported by Bond et al. (2013) and Carmichael 
et al. (2014). There are three alternative models for the 
anoxia event. The first one postulates turnover of oceans 
bringing deep anoxic water onto the shelves (Joachimski 
et al. 2001, Chen & Tucker 2003). The second model 
supposes surface and shelf water eutrophication resulting 
in hypoxia/anoxia accompanied by climate cooling 
pulses (e.g. Carmichael et al. 2014, Huang et al. 2018). 
Cooling at the F–F transition was supposed by a number 
of researchers on the basis of diverse data (e.g. Copper 
1998, Hallam & Wignall 1999, Lash 2017). According 
to oxygen isotope ratios in conodont apatites (Huang  
et al. 2018), the extreme greenhouse climate, with surface 
seawater temperatures above 30 °C, was interrupted by 
two cooling episodes of ~7 °C during the KW events. The 
third model proposes development of mid water column 
oxygen minimum zone between oxygenated surface and 
deep waters, expanding onto the shelves in response to 
enhanced primary productivity (Crasquin & Horne 2018).

A  recent hypothesis of a primary trigger considers 
consequence of large-scale volcanism possibly coupled 

with the effects of Eovariscan tectonism (Racki 1998a, 
Pujol et al. 2006, Kravchińsky 2012, Ricci et al. 2013, 
Winter 2015, Ma et al. 2016, Racki et al. 2018). The Viluy 
LIP is considered as possible source of catastrophic volcanic 
eruptions that triggered the end-Frasnian mass extinction  
(Kravchińsky 2012, Ricci et al. 2013, Racki et al. 2018). 
The revised F–F boundary date (371.86 ± 0.08 Ma according 
to Percival et al. 2018) does fall within age uncertainty of 
a late Frasnian pulse in the Viluy LIP (Percival et al. 2018). 
Thus there is just indirect evidence of coincidence between 
flood basalt eruption and the F–F biotic crisis, contrary to 
arc magmatism suggested by Winter (2015). 

Material and methods

This study is based on new and published lithological and 
palaeontological data from the East European Platform, 
northern Urals, Pai-Khoi, the East Siberian Platform, and 
north-east Siberia (Pershina & Tsyganko 1980; Alekseeva 
et al. 1996; Yudina et al. 2002; Deulin 2006; Yolkin et al. 
2006; Ovnatanova & Kononova 2008; Zhuravlev 2008, 
2016; Gagiev 2009; Tsyganko 2011; Yazikov et al. 2013; 
Zatoń et al. 2014; Zhuravlev et al. 2015; Ovnatanova 
et al. 2017). The new data comprises lithological and 
palaeontological (brachiopods and conodonts) information 
from the sections of the East European Platform (two 
sections) and Pai-Khoi (two sections). 

Illustrated conodonts and brachiopods are reposited in 
the Geological Museum of the Institute of Geology Komi 
SC UrB RAS, Syktyvkar, Russia; collection number 713. 

Records of δ13Corg in conodont elements of three taxa 
(Icriodus, Jablonnodus, and Mitrellataxis) were studied 
from the East European Platform sections (Kamenka 
Quarry and Russkiy Brod Quarry). Separated conodont 
elements of good preservation were washed with ethanol 
and distilled water and then used for analysis of carbon 
isotope values with DELTA V Advantage mass spectrometer 
equipped with the Thermo Electron Continuous Flow 
Interface (ConFlo III) and Element Analyzer (Flash EA 
1112). The δ13Corg values are reported relative to the PDB 
standard. Isotope analyses were performed at the CKP 
“Geonauka” of Institute of Geology Komi SC UrB RAS 
(Syktyvkar, Russia). International standard USGS-40 
(L-Glutamic acid) was used. The precision of the δ 13Corg 
value is ±0.15‰. The δ13Corg values in conodont elements 
are considered as a proxy of position in the trophic web 
and feeding specialization (Zhuravlev & Smoleva 2018).

The maps by Scotese (2016) compose palaeogeo­
graphic framework of this study. The plate-tectonic 
reconstruction model of Scotese (2016) is based on 
palaeomagnetic reference frames for 410–250 Ma. 
The model used palaeomagnetic data to constrain the 
palaeolatitudinal positions and rotation of plates. These 
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plate-tectonic reconstructions form the basis of the model 
of palaeoclimate evolution developed by Boucot et al. 
(2013). The palaeoclimate reconstructions proposed by 
these authors are based on the distribution of lithologic 
indicators, such as distribution of bauxites, laterites, 
kaolinites, evaporites, calcretes, coals, and tillites.

The north-eastern Laurussia craton and shelves of 
Uralian Strait were located in the equatorial realm, but 
the north-eastern part of the Siberia palaeocontinent was 
located in the subtropical realm in the late Frasnian–
early Famennian (Boucot et al. 2013). The sites under 
consideration at the F–F transition were distributed within 
wide palaeolatitudinal interval ranging from 10° S up to 
40° N, and were located along the palaeoclimatic gradient 
from an equatorial climate to a subtropical climate (Fig. 1). 

Geochemical data are unavailable for most of the regions 
under consideration. Some geochemical information was 
obtained from the East European Platform (Kamenka 
Quarry) and North Urals (Syv’yu River) sections (Yudina 
et al. 2002, Krawczyński et al. 2004).

North-eastern Laurussia 

East European Platform

Epicratonic shallow-water environment. – Shallow-water  
sequences of the F–F transition are represented by succes­
sions of the central-western part of the EEP (Voronezh 

Uplift, Russkiy Brod Quarry and Kamenka Quarry; 
Zatoń et al. 2014) and Volga-Ural Uplift (Ovnatanova & 
Kononova 2008) (Fig. 1). The upper Frasnian interval, 
roughly correlated with Lower Pal. rhenana–Pal. lingui
formis conodont zones, is composed of a lateral transition 
from a restricted marine carbonate facies through carbo­
nate shorefaсe to offshore facies in the central-western 
part of the EEP (Voronezh Uplift sections) (Fig. 2). Latest  
Frasnian conodont associations are dominated by poly­
gnathids (see Appendix 1). The uppermost part of the 
Pal. linguiformis Zone and lower part of the Famennian 
(through Pal. delicatula platys Zone) were eroded due to 
the early Famennian regression. Overlying deposits are 
represented by sandstones of the nearshore facies (Russkiy 
Brod Quarry section) and by clayey limestone and clay 
alternation in the shoreface facies (Kamenka Quarry 
section) (Fig. 2). 

The lowermost Famennian conodont associations, 
comprising polygnathids, spathognathids (Mehlina), 
icriodids, Jablonnodus, Mitrellataxis, and rare palmato­
lepids characteristic of the Pal. minuta minuta–Pal. glabra 
pectinata conodont zones (see Appendix 1). The abrupt 
changes in the fauna composition may be consequence of 
absence of the data corresponding to the gap comprising 
the interval from the upper Pal. linguiformis Zone to Pal. 
minuta minuta conodont Zone.

In the uppermost Frasnian of the Voronezh Uplift 
(Livny Horizon, Russkiy Brod and Kamenka quarries) 
the brachiopods are rare (Ljaschenko 1959). The lower 
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Figure 1. Locations of the Frasnian–Famennian boundary sites (A – recent geography; B – Late Devonian geography based on Scotese 2016, climatic 
belts after Boucot et al. 2013). Viluy LIP is marked by star. Sites: 1 – Voronezh Uplift, East European Platform; 2 – north-western part of the Pechora 
Platform; 3 – eastern part of the Pechora Platform; 4 – Syvyu River section, Subpolar Urals; 5 – Lemva River basin, Polar Urals; 6 – northern Pai-Khoi; 
7 – Kara River section, Southern Pai-Khoi; 8 – Volga-Ural Uplift; 9 – Domba River section, Taimyr Peninsula, northern Siberia; 10 – Stolb section, Lena 
River, northern Siberia; 11 – Khandyga River section, Sette-Daban Ridge, north-eastern Siberia; 12 – Kolyma Uplift, north-eastern Siberia.

A B
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Figure 2. Lithology and conodont distribution in the F–F epicratonic shallow-water sequences of the Voronezh Uplift, East European Platform. 
Abbreviations: P. – Polygnathus, Pal. – Palmatolepis, M. – Mehlina, I. – Icriodus.
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Figure 3. Distribution of rhynchonellid brachiopods in the F–F interval of the East European Platform. Grey belt corresponds to the KW Crisis:  
LKE – Lower Kellwasser Event; UKE – Upper Kellwasser Event.

Figure 4. Distribution of atrypid brachiopods in the F–F interval of the East European Platform. For explanations see Fig. 3.

Famennian (Zadonsk Horizon, Russkiy Brod and Ka­
menka quarries) brachiopods are more abundant and 
diverse (Ljaschenko 1959) (see Appendix 2). The shallow-
water sequences of the Volga-Ural Uplift and Voronezh 
Uplift are similar and characterized by almost the same 
brachiopods (Figs 3–5).

Epicratonic deep-water environment. – The deep-water 
facies of the Volga-Ural Uplift (southeastern part of east of 

EEP) are distributed within the Kama–Kinel palaeotrough 
system. The latest Frasnian interval is represented by 
micritic bituminous limestones with layers of cherty 
shales and cherts. The deposits contain conodonts of the 
Pal. linguiformis Zone (Ovnatanova & Kononova 2008) 
(Appendix 1). The lowermost Famennian is similar in 
lithology (alternation of dark bituminous clayey limestones 
and siliceous shales) and contains conodont fauna of Pal. 
subperlobata–Pal. delicatula platys zones (Ovnatanova & 
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Figure 5. Distribution of spiriferid brachiopods in the F–F interval of the East European Platform. For explanations see Fig. 3.

Figure 6. Brachiopod distribution in the F–F interval of the Pechora Platfrom (Tchernyshev Swell) and Urals. For explanations see Fig. 3.



Kononova 2008) (Appendix 1). It is notable that oxygen-
deficient deep-water deposits span the wide stratigraphic 
interval that contains the upper Frasnian and the lower 
Famennian in this region.

Pechora Platform

Shallow-water shelf environment. – Boreholes of the 
north-western part of the Pechora Platform demonstrate 
similar successions in the F–F boundary interval. Accord­
ing to the data of Deulin (2006) the uppermost Frasnian, 
corresponding to Upper Pal. rhenana conodont Zone, 
is represented by bioclastic limestones containing glau­
conite and thin clay layers. Conodonts within these lime- 
stones consist of diverse polygnathids. The upper Frasnian 
limestones are overlain by dark-grey clays and clayey lime­
stones containing early Famennian conodonts (Appendix 1). 

Upper Devonian shallow-water deposits are exposed 
in the Tchernyshev Swell (eastern part of the Pechora 
Platform) as well (Tsyganko 2011). Late Devonian 
brachiopod faunas are known from Sher-Nadeyta River 
and Bolshaya Synya River sections (Fig. 6). Latest Frasnian 
brachiopods compose diverse associations (Appendix 2). 
Early Famennian brachiopods demonstrate less diversity 
(Pershina 1962).

North of Urals

Deep-water shelf environment. – A  well-studied F–F 
transition section from the deep-water facies is represented 
by the Syvyu River section located in the Subpolar 
Urals (Yudina et al. 2002). The late Frasnian interval 
is composed of thin alternation of the dark-grey clayey 
limestones and limey siliceous shales, containing sponge 
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Figure 7. Lithology and conodont distribution in the F–F interval of the isolated carbonate platform (Lymbad’yakha River and Pyrkov Creek) and 
bathyal (Lemva River basin) sequences of the Pai-Khoi and Polar Urals (based on Zhuravlev et al. 2015 and Ovnatanova et al. 2017). Abbreviations: 
Anc. – Ancyrognathus, An. – Ancyrodella, Bel. – Belodella, Hi. – Hindeodus, Jab. – Jablonnodus, Pand. – Pandorinellina, Pel. – Pelekysgnathus, Y. – 
Youngquistognathus. For other explanations see Fig. 2.



spicules, radiolarians, and scarce thin-shelled brachiopods. 
This interval is rich in conodonts represented by various 
palmatolepids (Appendix 1). The lowermost Famennian is 
similar in lithology and is composed of alternation of grey 
clayey limestones and limey siliceous shales, containing 
sponge spicules, radiolarians, thin-shelled brachiopods, 
and conodonts (Appendix 1). A  black shale unit 
corresponds to the Upper Kellwasser Event (Yudina et al.  
2002). The event is represented by the disappearance of 
most palmatolepids and polygnathids with the appearance 
of numerous and diverse representatives of the genus 
Icriodus and some palmatolepids (Yudina et al. 2002, 
Soboleva et al. 2018).

Isolated platform environment. – The F–F transition in 
the isolated carbonate platform facies was studied in 
the Northern Pai-Khoy Lymbad’yakha River section 
(Zhuravlev et al. 2015, Zhuravlev 2016) (Fig. 7). The 
uppermost Frasnian in the section is represented by 
cherty micritic limestones overlying the microbial and 
algal bioherms of the Pyrkov Formation. The limestone 
contains rare conodonts belonging to Polygnathus alatus 
Huddle. The lower Famennian disconformably overlies the 
Frasnian limestone that probably corresponds to the earliest 
Famennian regression. The successive early Famennian 
transgression is marked by microbial-stromatoporoid 
bioherms of the lowermost part of the Lymbad’yakha 
Formation, containing only Hindeodus ancestralis (Dzik) 
in bioherms, and more diverse association (six taxa) in 
the overlying bioclastic limestones (Appendix 1). The 
F–F boundary interval is characterized by interruption in 
development of the microbial bioherms accompanied by 
partial erosion of the terminal Frasnian and the lowermost 
Famennian. 

Bathyal environment. – Deep-water bathyal sequences 
of the F–F transition are represented by successions of 
the Kharuta River basin, Polar Urals (Ovnatanova et al.  
2017) (Fig. 7). The terminal Frasnian is composed here 
by carbonaceous cherty black shales that are barren 
of conodonts. The overlying lowermost Famennian, 
containing conodonts of the Pal. subperlobata–Pal. 
minuta minuta zones, is composed of greenish-grey clayey 
cherts and cherty shales (Ovnatanova et al. 2017). Black 
shale (carbonaceous cherty shales) sedimentation probably 
corresponds to the Kellwasser Event.

Siberia

Northern Siberia

Deep-water shelf environment. – The F–F transition in the 
northern Siberia region is well studied in the basin facies 

only. The representative sections are located in the Taimyr 
Peninsula (Domba River section, Yolkin et al. 2006) and in 
the Lena River mouth (Stolb section, Yazikov et al. 2013) 
(Fig. 8).

The F–F interval in the Domba River section 
(73.435100° N, 82.455725° E) contains alternating grey  
shales and dark-grey micritic limestones with radio­
larians. Shales contain lime concretions that yielded 
entomozoids, bivalves, and small brachiopod shells. The 
limestones contain earliest Famennian conodonts of Pal. 
subperlobata–Pal. glabra pectinata zones (Yolkin et al. 
2006) (Appendix 1).

The Lena River section (71.953671° N, 127.159098° E)  
represents a basinal facies with clayey-carbonate sedi­
mentation and increased palaeoseismicity (Yazikov et al. 
2013). The F–F boundary beds contain mixed carbonate-
volcaniclastic deposits (Fig. 8). The terminal Frasnian 
and lowermost Famennian deposits yield numerous 
brachiopods (Krylova 1959, 1962; Yazikov et al. 2013) 
(Appendix 2). 

Latest Frasnian conodonts are unknown in this suc- 
cession, but the early Famennian conodonts are rep­
resented by palmatolepids and icriodontids (Yazikov  
et al. 2013) (Appendix 1). A layer of black carbonaceous 
shales 70-cm-thick is considered as mark of UKE  
(Fig. 8).

North-eastern Siberia

Shallow-water shelf environment. – The Frasnian–
Famennian transition in the shallow-water open shelf facies 
is known in the western part of Kolyma Uplift, Yasachnaya 
Rives basin section (64.507694° N, 151.230489° E) 
(Gagiev 2009) (Fig. 8). The upper Frasnian in this section 
is represented by clayey limestones with claystone and 
siltstone layers grading to clayey micritic laminated 
limestones. The deposits yield shallow-water conodonts 
marking Lower Pal. rhenana–Pal. linguiformis conodont 
zones (Appendix 1). Brachiopods were mentioned from 
the terminal Frasnian in the Yasachnaya and Eastern Khan­
dyga Rivers sections, as well (Alekseeva 1967, Alekseeva 
et al. 1996) (Appendix 2).

The unit of clayey micritic laminated limestones 
in the upper part of this interval probably corresponds 
to the latest Frasnian (UKE) transgression. Overlaying 
alternation of lime sandstones and claystones (5-m-thick), 
grading into alternating siliceous claystones and siltstones, 
corresponds to the earliest Famennian regression. These  
deposits contain numerous conodonts, which are character­
istic of Pal. subperlobata–Pal. termini conodont zones 
(Appendix 1). The early Famennian brachiopods were 
found in the Khandyga River section (Alekseeva et al. 
1996) (Appendix 2).
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Figure 8. Lithology and conodont distribution in the F–F transition in northern Siberian sequences (based on Yazikov et al. 2013, and Gagiev, 2009). 
For explanations see Fig. 7.



Deep-water shelf environment. – The deep-shelf suc­
cession of this region was reported by Gagiev (2009)  
in the Burgali-Kamenka section (64.271122° N, 
153.660630° E) (eastern part of the Kolyma Uplift). The 
terminal Frasnian in this section contains alternating 
sandstones and dark-grey shales with conodonts of the Pal. 
linguiformis conodont Zone (Appendix 1). The lowermost 
Famennian is represented by dark-grey limey and silty 
shales with lenses of fine-grained limestones containing 
the early Famennian conodont associations (Appendix 1).  
In addition, late Frasnian–middle Famennian (Pal. 
linguiformis–Pal. marginifera marginifera zones) tuffs 
and volcaniclastic deposits, as well as late Frasnian (Upper 
Pal. rhenana conodont Zone) local basalts in the Vorchun 
Fm., are known in the eastern part of the Prikolymian 
Uplift, NE Siberia. The Kedon Fm., composed of Middle–
Upper Devonian rhyolitic and subalkaline volcanic rocks 
and basalt sheets, is widespread in the Omolon Uplift of 
NE Siberia (Gagiev 2009).

Facies and biota changes 
at the F–F transition

Shallow-water sequences commonly demonstrate 
disconformities and hiatus at the F–F boundary (Alekseev 
et al. 1996). Subsequent transgression caused start of the 
shallow-water sedimentation at the Pal. minuta minuta–
Pal. crepida conodont zones. In case of continuous F–F 
sequences (e.g. Yasachnaya River section, Kolyma Uplift, 
Siberia) the terminal Frasnian UK transgression is marked 
by a unit of clayey, micritic, laminated limestones.

In the deep-water facies, including troughs on the 
shelf, the UKE is marked by black shale (carbonaceous 
cherty shales, cherts, or laminated limestones) sedi­
mentation followed by grey clayey cherts and cherty 
shales intercalating with calciturbidites. Some northern 
Siberia sequences (e.g. Lena River section) contain 
volcaniclastic deposits as well, but not in the narrowed F–F  
interval. 

Conodonts

The F–F transition demonstrates weak palaeolatitude 
gradient in changes of conodont associations. Slightly 
lower conodont diversity observed in the shelf basins of 
Siberia is due to poor sample coverage: there are very few 
papers dealing with conodonts from the North Siberian 
deposits of this age.

The deep-water and open shelf successions of all 
the regions under consideration demonstrate conodont 
associations composed mainly of cosmopolitan species 
of Palmatolepis. The shallow-water successions as a rule 

possess stratigraphic gaps (unconformity) comprising 
uppermost Frasnian (Pal. linguiformis Zone) and lower 
part of the Famennian (Palmatolepis subperlobata–Pal. 
triangularis zones). The conodont associations dominated 
by Polygnathus and Icriodus show a diversity decrease 
during the late Frasnian. The early Famennian conodonts 
are represented mainly by species of Icriodus, cosmopolitan 
species of Polygnathus (e.g. Polygnathus brevilaminus), 
and specific taxa characterized by their coniform elements 
(Mitrellataxis and Jablonnodus) (Fig. 9). 

Globally the gradual decrease in conodont diversity 
occurred during the Late Pal. rhenana–Pal. triangularis 
interval (Ziegler & Lane 1987, Schülke 1998). The Frasnian 
conodont taxa, including Ancyrodella, most species of 
Palmatolepis, Polygnathus, Icriodus, and Ancyrognathus, 
became extinct. The dramatic decrease in conodont 
diversity occurred in the Pal. linguiformis conodont Zone 
when about 50% of conodont species disappeared and at 
the start of the Pal. subperlobata conodont Zone when 
about 70% of conodont species became extinct (Ziegler & 
Lane 1987). The early Famennian recovery of conodont 
diversity began at the Pal. delicatula platys conodont Zone 
preceding the radiative phase in the Pal. minuta minuta 
conodont Zone (Ziegler & Lane 1987).

The recovering conodont communities in the Famennian 
shallow-water facies are very specific and partly endemic. 
Icriodontids of Icriodus iowaensis group, Mitrellataxis, 
and Jablonnodus dominate the unique associations. It is 
notable that the recovery faunas demonstrate extremely 
wide ranges of δ13Corg in conodont elements of Icriodus 
(from −27.9‰ to −23.1‰), Mitrellataxis (from −27.9‰ 
to −23.6‰), and Jablonnodus (from −28.1‰ to −23.1‰). 
The high variability of carbon isotope composition in 
conodont organic matter suggests unstable trophic relations 
in the post-crisis shallow-water ecosystems, probably due 
to rapid expansion of survivors into vacant ecospace (see 
also Sandberg et al. 1988, Racki et al. 2002, Zhuravlev 
& Smoleva 2018). Appearance of icriodontids in deep-
water associations seems to be the result of their post-
crisis ecological expansion into the niches of eliminated 
taxa (biofacies telescoping of Sandberg et al. 1988, 
compare Huang et al. 2018), or transport of the shallow-
water conodont elements to deep-water environment by 
intensive calciturbidite currents in the early Famennian 
eustatic lowstand.

Brachiopods

Late Devonian strata of northern Laurussia are character­
ized by taxonomically diverse and abundant brachiopods, 
in contrast to the mid-latitude sequences of Siberia, which 
contain few brachiopods (West Siberia, northern Siberia, 
north-eastern Siberia) or do not contain them at all (east 

428

 Bulletin of Geosciences • Vol. 95, 4, 2020



429

Andrey V. Zhuravlev & Elena V. Sokiran • Frasnian–Famennian transition in the northern hemisphere

Figure 9. Characteristic conodonts from the F–F transition interval of the Voronezh Uplift, East European Platform. • A – Icriodus iowaensis iowaensis 
Youngquist et Peterson 1947, specimen 713/1, Zadonsk Fm., lower Famennian, Kamenka Quarry. • B – Icrodus iowaensis ancylus Sandberg et 
Dreesen 1984, specimen 713/2, Zadonsk Fm., lower Famennian, Kamenka Quarry. • C, N – Polygnathus brevilaminus Branson et Mehl, Zadonsk Fm.,  
lower Famennian, Kamenka Quarry; C – specimen 713/3; N –specimen 713/23. • D – Jablonnodus erectus Dzik 2006, specimen 713/7, Zadonsk Fm., lower  
Famennian, Russkiy Brod Quarry. • E, F – Mitrellataxis conoidalis Dzik 2006, Zadonsk Fm., lower Famennian, Russkiy Brod Quarry; E – specimen 
713/8; F – specimen 713/10. • G, H – Polygnathus colliculosus Aristov 1985, Livny Fm., upper Frasnian, Kamenka Quarry; G – specimen 713/20; 
H – specimen 713/17. • I – Polygnathus reitlingerae Ovnatanova et Kononova 2008, specimen 713/19, Livny Fm., upper Frasnian, Kamenka Quarry. •  
J – Jablonnodus oistodiformis Dzik 2006, specimen 713/16, Livny Fm., upper Frasnian, Kamenka Quarry. • K, M – Mitrellataxis circularis (Wang et 
Wang 1978), Zadonsk Fm., lower Famennian; K – specimen 713/21, Kamenka Quarry; M – specimen 713/11, Russkiy Brod Quarry. • L – Mehlina 
kielcensis Dzik 2006, specimen 713/13, Zadonsk Fm., lower Famennian, Russkiy Brod Quarry. Scale bar is 0.2 mm.

of the Altai-Sayan region). Therefore, the Late Devonian 
deposits of western Siberia (Kuznetsk Basin), with the 
most complete of brachiopod successions (Fig. 10),  
are important for the analysis of the brachiopod turnover 

during the F–F crisis interval in the northern mid-
latitudes. These brachiopod faunas were studied in detail 
(Rzhonsnitskaya 1968, 1975; Rzhonsnitskaya et al. 1998; 
Modzalevskaya et al. 2013). 
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Most informative are the late Frasnian and early 
Famennian brachiopod sequences of north-eastern 
Laurussia located in the East European Platform (EEP), 
Pechora Platform, and Urals. In the central regions 
of the EEP and Volga-Ural area the late Frasnian (Pal. 
linguiformis conodont Zone) brachiopod fauna is ex- 
tremely depleted and represented by two taxa: Cyrto
spirifer tribulatus and Theodossia sp. (Figs 5, 11). This 
situation differs significantly from the contemporary 
brachiopod fauna of the western slope of South Urals and 
the north-eastern Pechora Platform (Tchernyshev Swell) 
(Fig. 6). The late Frasnian brachiopod association of SW 
Urals is more diverse and contains 15 species of Gypidula, 
“Hypothyridina”, “Pugnax”, Desquamatia, Radiatrypa, 
Costatrypa, Pseudoatrypa, Spinatrypa, Iowatrypa, 
Theodossia, Warrenella, Cyrtospirifer, Adolfia, and 
Cryptonella (Abramova 1999). This association is close 
to those of the Tchernyshev Swell (Fig.6) (Pershina 1962). 
The late Frasnian Iowatrypa, Costatrypa, Radiatrypa, 
and Desquamatia are common in SW Ural, north-western 

Pechora Platform, and West Siberia (Kuznetsk Basin) 
(Fig. 10), and they were reported from the shallow-water 
sequences of the southeastern Laurussia (South Poland, 
Holy Cross Mountains) (Racki & Baliński 1998, Baliński 
2002). Iowatrypa and Costatrypa are known from the 
Ardennes; Desquamatia, Radiatrypa, Iowatrypa, and 
Costatrypa were reported from China as well (Racki 
1998b). 

The late Frasnian brachiopod associations of northern 
Laurussia (EEP, Pechora Platform, Urals, and Novaya 
Zemlya) and Siberia contain cyrtospiriferids and theo­
dossiids. In the EEP and Novaya Zemlya species of 
Theodossia occur in almost the entire middle and late 
Frasnian interval (Pal. punctata–Pal. linguiformis conodont 
zones) (Nalivkin 1947, Rzhonsnitskaya 1988, Bezgodova 
2015). In Arctic Siberia the representatives of Theodossia 
are distributed in the late Frasnian deposits of the Lena, 
Kulymbe, Kotuy, and Maimecha river basins (Krylova 
1962). In contrast to the cosmopolitan Cyrtospirifer, the 
distinctive Theodossia was limited to northern Laurussia 
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Figure 10. Brachiopod distribution in the F–F interval of the Kuznetsk Basin (West Siberia). For explanations see Fig. 3.

Figure 11. Characteristic brachiopods from the F–F transition interval of the Voronezh Uplift, East European Platform (Russkiy Brod Quarry). •  
A, F – Cyrtospirifer zadonicus Ljaschenko 1959, Zadonsk Fm., lower Famennian; A – specimen 713/25; F – specimen 713/31. • B – Ripidiorhynchus 
huotinus (Verneuil 1845), specimen 713/26, Zadonsk Fm., lower Famennian. • C, I – Donalosia multispinosa (Sokolskaja 1948), Zadonsk Fm., 
lower Famennian; C – specimen 713/27; I – specimen 713/34. • D, G – Theodossia sp., Zadonsk Fm., lower Famennian; D – specimen 713/28,  
[a – Ripidiorhynchus huotinus (Verneuil 1845), specimen 713/29], [b – Cyrtospirifer zadonicus Ljaschenko 1959, specimen 713/30]; G – specimen 
713/32. • H – Cyrtospirifer tribulatus Ljaschenko1959, specimen 713/33, Livny Fm., upper Frasnian. Scale bar is 5 mm.
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and Siberia. The late Frasnian Theodossia from South 
Poland (Baliński 2002) and South China (Ma et al. 2006) 
needs revision, as well as “Theodossia” hungerfordi 
from the Lime Creek Formation (Iowa, North America). 
However, true Theodossia probably occur in the late 
Frasnian of western Canada (southwestern Laurussia) 
(McLaren et al. 1962).

The Frasnian brachiopod faunas of western Siberia 
(Kuznetsk Basin) contain diverse and abundant plicathy­
ridines; the endemic species of Anathyrella are typical 
for the late Frasnian sequences of this area only (Fig. 10). 
Nowhere else in the basins of the northern and southern 
hemispheres are plicathyridines recorded in the terminal 
Frasnian, but rather in the lower and middle Frasnian 
(Mottequin et al. 2016).

The late Frasnian sequences of the eastern Pechora 
Platform and South Urals contain Warrenella, which 
are also known from the South Poland, Belgium, and 
North America. The globally distributed (South Poland, 
France, Australia, New Mexico) epiplanktonic chonetid 
Retichonetes armata was found in the terminal Frasnian 
of the Stolb Island section (Lena River, Arctic Siberia) 
(Yazikov et al. 2013).

The early Famennian brachiopod faunas of the EEP 
are poorly developed. In the Central region of the EEP 
and Volga-Ural areas, the early Famennian deposits 
contain nine species of Schuchertella, Plicochonetes, 
Chonopectus, Donalosia, Productella, Paromoeopygma, 
Ripidiorhynchus, and Cyrtospirifer (see Ljaschenko 1959, 
Appendix 2). According to data of Abramova (1999), the 
coeval brachiopod faunas from SW Ural are represented 
only by four species (Appendix 2). The concurrent 
brachiopods from the Kuznetsk Basin (West Siberia) 
are represented by six species (Rzhonsnitskaya 1968) 
(Appendix 2).

The early Famennian sequences of northern Siberia are 
poorly characterized by brachiopods except at the Stolb 
section (Lena River). The brachiopods from this section 
have very poor preservation, and therefore they are difficult 
to be reliably identified (Appendix 2). Among them, 
Parapugnax markovskii is known from early Famennian 
strata of the SW Urals, Pai-Khoi, and northern Siberia. 
Cyrtospirifer tschernyschewi is widely distributed in the 
Arctic regions of Russia and in Kazakhstan. Thus, the late 
Frasnian and early Famennian brachiopod assemblages of 
low and middle latitudes of the northern hemisphere have 
numerous common elements that indicate similar habitats. 

The detailed study of the oxygen and carbon isotope 
ratios in the Kosoy Utyos section (Kuznetsk Basin, 
West Siberia) shows the presence of a carbon isotopic 
anomaly in the early Famennian mid-latitude deposits. 
The higher δ13Ccarb values in the Kosoy Utyos section, as 
compared with the equatorial sections, might be due to 
the lower temperatures of the depositional basin (Izokh 

et al. 2009). Cooling pulse may occur across the F–F 
boundary interval (Copper 1998, Averbuch et al. 2003, 
Riquier et al. 2016, Huang et al. 2018), which led to the 
final extinction of the late Frasnian tropical brachiopod 
faunas and the emergence of taxa more resistant to the 
low temperature regime during the earliest Famennian. 
Therefore, the climatic change should have affected 
tropical and mid-latitude faunas in different degree, finally 
producing clear palaeolatitudinal gradient in diversity 
and taxonomical composition. Copper (1998) supposed 
that the main causes of the disappearance of the tropical 
order Atrypida at the end of the Frasnian were a cooling 
event and a regressive episode. Decrease in size of some 
shells of adult brachiopods may be a consequence of the 
temperature drop. The “Liliput” phenomenon among early 
Famennian brachiopods in south Poland was reported by 
Baliński & Racki (1999). The late Frasnian small forms 
of Theodossia are known in the Voronezh Uplift (EEP) 
sequences. Modzalevskaya et al. (2013) reported small 
athyrididines from the early Famennian recovery interval 
of the Kuznetsk Basin, as well as Krylova (1959) from the 
F–F interval of the Stolb Island (northern Siberia). Small 
size of adult brachiopod forms can also be associated 
with poorly oxygenated environments. However, evident 
record of UKE anoxia is recognized in few of the above-
mentioned domains, such as the Stolb Island (Lena River) 
section (Yazikov et al. 2013). 

Discussion

The bathyal sequences of the tropical realm contain poor 
associations of the pelagic conodont fauna in both the 
upper Frasnian and lower Famennian (Rodríguez-Cañero 
& Martín-Algarra 2014, Ovnatanova et al. 2017). The 
associations comprise cosmopolitan species over the 
Laurussia and Siberia realms. Numerous conodonts in 
the deep-water deposits are known just from the calci­
turbidites and represent reworked, taphonomically 
enriched and mixed associations. Subautochtonous deep-
water conodont associations known from the siliceous 
and shale deposits are taxonomically poor and composed 
of cosmopolitan palmatolepid species. Palaeolatitudinal 
trend in composition of the deep-water conodont 
associations is not clear. Generally conodonts demonstrate 
higher diversity in the tropical realm in both crisis and 
post-crisis intervals, and in shallow-water and deep-water 
environments (Fig. 12). The decrease in diversity of the 
associations at mid- latitudes may be due to lack of data 
on the sections of Siberia and north-eastern Eurasia. 
Simple statistical analysis demonstrates contingency  
in the conodont diversity changes at the F–F boundary in 
the low and middle latitudes (Chi2 = 4.9014, p = 0.17916, 
degrees freedom = 3).
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Low and middle latitude brachiopods in the northern 
hemisphere demonstrated a generally similar evolutionary 
trend during the late Frasnian and early Famennian. 
Significant taxonomic reduction of the brachiopod asso- 
ciations occurred in the KW Crisis mainly due to 
a decrease in speciation rates, not elevated extinction 
rates (Stigall 2010). The earliest Famennian (recovery) 
associations were of low diversity and consisted of 
Productida, Rhynchonellida, and Spiriferida, similar 
to those of the southern hemisphere (Baliński & Racki 
1999). Approximately the same taxonomic framework is 
characteristic of the early Famennian of central Hunan 
(Ma et al. 2002). It seems that cyrtospiriferids and 
rhynchonellids, such as late Frasnian and early Famennian 
representatives of Ripidiorhynchus from the EEP (Sokiran 
2002), were invasive taxa characterized by broad environ­
mental tolerance (see also Stigall 2012, 2013). In South 
Polish carbonate shelf, persistent competition from 

expansive productid-cyrtospirifrid-athyrid associations 
is highlighted by Racki (1998b). It is notable that shelly 
benthos shows a low latitudinal selectivity in F–F extinction 
and recovery (Fig. 12) that suggests low influence of the 
climatic changes on the extinction pattern (Reddin et al. 
2019).

Thus both the brachiopods (benthos) and conodonts 
(nekton) demonstrate weak or absence of obvious 
palaeolatitudinal gradient in F–F extinction and recovery 
in the northern hemisphere. This suggests low influence 
of the fluctuations in climate and regional circulation 
pattern on the fauna diversity changes at the F–F boundary 
interval. This conclusion is supported by data on the Late 
Devonian marine phytoplankton. The phytoplankton 
demonstrates high similarity over the “Boreal Realm” 
comprising eastern Laurussia and Siberia (Shen et al. 
2018).

Eustatic fluctuations, which were regionally disturbed 
by tectonics (Hallam & Wignall 1999), cannot be 
considered as a global trigger of the biotic changes. In 
general perspective, it seems that the latest Frasnian 
decrease in fauna diversity in the Siberian and north-
eastern Laurussia realms was caused by environment 
changes triggered by volcanic eruptions in the Vilyui LIP, 
associated with palaeorift system (Kiselev et al. 2006). 
Other East European LIPs and diverse volcanism recorded 
in successions of the Omolon Uplift (Gagiev 2009, 
Kravchiński 2012) should also be noted. The paroxysmal 
effusive activity promoted climate destabilization, and 
ultimately led to turnover in global oceanic circulation 
towards stagnation and anoxia (Ernst & Youbi 2017, Racki 
et al. 2018). On the other hand, overall correspondence 
of carbonate facies setting and benthic/nektonic biota of 
the both studied continents is a noteworthy implication 
from this study. Thus, the assumed cataclysmic impact 
of large-scale flood basalt and kimberlite eruptions is 
difficult to recognize in litho- and biofacies specificity in 
the regional scale, even if supported by presence of the 
carbonate-volcaniclastic deposits in the most proximal 
Lena River section (Yazikov et al. 2013) as well as car­
bonate-siliciclastic and volcaniclastic deposits with 
gypsum evaporates of the Vilyuchan Formation in the 
Viluy Depression (Rusetskaya & Belenitskaya 1990). 

Conclusions

(1) Generally conodonts demonstrate higher diversity 
in the tropical realm in both KW Crisis and post-crisis 
intervals, both in shallow-water and deep-water habitats, 
paired with contingency in the diversity changes at the F–F 
boundary over the low to middle latitudes of the northern 
hemisphere. Palaeolatitudinal trend in composition of the 
conodont associations is also not very clear. 
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Figure 12. Conodont and brachiopod diversity in F–F boundary interval 
over the facies and palaeolatitudinal gradient in the northern hemisphere 
(NE Laurussia and Siberia). Numbers in parentheses refer to localities 
in Fig. 1.



(2) Coeval brachiopod faunas of low and middle latitudes 
have numerous common elements. They show low 
latitudinal selectivity in F–F extinction and recovery, 
that suggests surprisingly moderated ecological effect 
in the shelly benthos of the rapid climatic shifts during 
the KW Crisis, with probable exception of the Lilliput 
effect. Cyrtospiriferids and rhynchonellids, such as 
Ripidiorhynchus from the EEP, were likely invasive  
taxa.

(3) Summarizing, high similarity of the composition and 
stratigraphic succession of nektonic (conodonts) and 
benthic (brachiopods) biota, which dwelt the low- and 
mid-latitude realms during the F–F biotic crisis, suggests 
low environment gradients in the northern hemisphere 
(Fig. 12). Carbonate sedimentation dominantly developed 
in the shallow-water basins of different latitudes, which 
implies low temperature and precipitation variations 
between 10° S and 40° N. The biotic and facies patterns 
suggest that global causes of the biotic crisis were partly 
affected by local and regional environment changes, but 
surprisingly not when they were driven by so catastrophic 
trigger as flood basalt eruptions of the Viluy LIP. 
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(Zatoń et al. 2014; new data)
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P. makhlinae Kirilishina et Kononova, P. krutoensis Kirilishina 
et Kononova, P. unicornis Muller et Muller, P. azigomorphus 
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normalis Vorontsova et Kuz’min, P. ex gr. P. tigrinus Kuzmin 
et Melnikova, P. ovatus Helms, Mehlina fitzroyi (Druce), Meh. 
kielcensis Dzik, Icriodus iowaensis Youngquist et Peterson, 
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circularis (Wang et Wang).

East European Platform, Volga-Ural Uplift 
(Ovnatanova & Kononova 2008)

L a t e s t  F r a s n i a n : Palmatolepis foliacea Youngquist, 
Pal. subrecta Miller et Youngquist, Раl. nasuta Muller, Pal. 
juntionensis Han, Pal. praetriangularis Sandberg et Ziegler, 
Ancyrodella ioides Ziegler, Polygnathus brevis Miller et 
Youngquist.

Early Famennian: Palmatolepis subperlobata Branson et 
Mehl, Pal. linguiloba (Dzik), Pal. triangularis Sannemann, Pal. 
platys Ziegler et Sandberg, Pal. delicatula Branson et Mehl.

Pechora Platform (Deulin 2006, Tsyganko 2011)

L a t e s t  F r a s n i a n : Ctenopolygnathus brevilamiformis 
(Ovnatanova), Polygnathus aequalis Klapper et Lane, P. brevis 
Miller et Youngquist, P. churkini Savage et Funai, P. imparilis 
Klapper et Lane, P. krestovnikovi Ovnatanova, P. planarius 
Klapper et Lane, P. politus Ovnatanova, P. unicornis Muller et 
Muller.

Early Famennian: Icriodus alternatus Branson et Mehl, 
I. cornutus Sannemann, I.  iowaensis Youngquist et Peterson, 
Pelekysgnathus inclinatus Thomas, Mehlina sp., Polygnathus 
tigrinus Kuz’min et Melnikova.

North of Urals (Yudina et al. 2002, Tsyganko 2011, 
Ovnatanova et al. 2017, Soboleva et al. 2018)

Latest  Frasnian: Polygnathus decorosus Stauffer, Palmato

lepis subrecta Miller et Youngquist, Pal. hassi Muller et Muller, 
Pal. bogartensis (Stauffer), Pal. timanensis Klapper, Kuz’min, 
Ovnatanova, Pal. kireevae Ovnatanova, Pal. juntianensis Han, 
Pal. nasuta Muller, Pal. rhenana Bischoff, Pal. mucronata 
Klapper, Kuz’min et Ovnatanova, Pal. brevis Ziegler et Sand­
berg, Pal. ederi Ziegler et Sandberg, Pal. linguiformis Muller, 
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Foster, Ancyrodella sp. (originally diagnosed as Ancyrodella  
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Mehl, Ctenopolygnathus brevilamiformis (Ovnatanova) (origin­
ally diagnosed as Polygnathus angustidiscus).

Northern Pai-Khoi 
(Zhuravlev et al. 2015, Zhuravlev 2016)

Latest Frasnian: Polygnathus alatus Huddle.
Ear ly  Famennian: Hindeodus ancestralis (Dzik), Poly

gnathus delinitor Drygant, P. auriformis Drygant, P. flaccidus 
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Northern Siberia, Taimyr Peninsula 
(Yolkin et al. 2006)
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Sannemann.

Lena River (Yazikov et al. 2013)

Early Famennian: Palmatolepis triangularis Sannemann, Pal.  
praetriangularis Ziegler et Sandberg, Pal. regularis Cooper,  
Pal. sp., Icriodus alternathus alternathus Branson et Mehl, 
Mehlina sp., Pelekysgnathus cf. Pel. planus Sannemann.

Northeastern Siberia, western part of the Kolyma Uplift 
(Gagiev 2009)
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Latest Frasnian: Polygnathus webbi Stauffer, P. aff. P. incom
pletus Uyeno, and Uyenognathus sinuosus (Szulczewski)

Early Famennian: Polygnathus brevilaminus Branson et 
Mehl, P. aspelundi Savage et Funai, P. procerus Sannemann, 
P. lauriformis Dreesen et Dusar, Palmatolepis triangularis 
Sannemann, Pal. subperlobata subperlobata Branson et Mehl, 
Pal. subperlobata helmsi Ovnatanova, Pal. delicatula Branson 
et Mehl, Pal. clarki Ziegler.

Northeastern Siberia, eastern part of the Kolyma Uplift 
(Gagiev 2009)

Latest Frasnian: Palmatolepis cf. Pal. hassi Muller et Muller, 
Pal. “gigas” Miller et Youngquist, Pal. cf. Pal. linguiformis  
Muller, Pal. sp., Pal. praetriangularis Ziegler et Sandberg, 
Ancyrodella sp. (reported by Gagiev 2009 as Ancyrodella  
nodosa)

Early Famennian:Mehlina lindstroemi Matveeva, Zhurav­
lev, Eremenko (reported by Gagiev 2009 as Polygnathus norrisi), 
Pal. triangularis Sannemann, Pal. subperlobata Branson et 
Mehl, Pal. delicatula Branson et Mehl, Pal. clarki Ziegler, Pal. 
tenuipunctata Sannemann, Pal. minuta minuta Branson et Mehl, 
and Pelekysgnathus serratus Jentzsch.

East European Platform, Voronezh Uplift 
(Ljaschenko 1959; new data)

Latest Frasnian: Cyrtospirifer tribulatus Ljaschenko and 
Theodossia sp.

Early Famennian: Schuchertella koscharica (Nalivkin), 
?Plicochonetes nanus (Verneuil), Chonopectus elсicus (Naliv­
kin), Donalosia multispinosa (Sokolskaja), D. koscharica (Sokol- 
skaja), Productella herminae Frech, Paromoeopygma koscharica 
(Nalivkin), Ripidiorhynchus huotinus (Verneuil), Cyrtospirifer 
zadonicus Ljaschenko.

Pechora Platform (Pershina 1962, Tsyganko 2011)

Latest Frasnian: Gypidula askynica Nalivkin, Chonetes sp., 
Hypothyridina sp., Radiatrypa magnitica (Nalivkin), Desqua
matia (D.) alticoliformis Rzonsnitskaya, ?Costatrypa post- 
uralica (Markovskii in Mikryukov), Adolfia sp., Warrenella (W.) 
koltubanica (Nalivkin), Cyrtospirifer markovskii (Nalivkin), 
Theodossia katavensis (Nalivkin).

Early Famennian: Ripidiorhynchus sp., Plectorhynchella 
sp., Dzieduszyckia baschkirica (Tschernyschew) ?Leiorhynchus 
ursus (Nalivkin), Pugnax biloba (Rozman), Dmitria subrotunda 
(Tcherkesova), Cyrtospirifer sp.

South Urals (Abramova 1999)

Early Famennian: Athyris spiriferoides Eaton, A. globosa 
(Roemer), Cyrtospirifer sp., Parapugnax markovskii (Yudina).

West Siberia, Kuznetsk Basin (Rzhonsnitskaya 1968)

Early Famennian: Mesoplica cf. M. praelonga (Sowerby),  
M. meisteri (Peetz), Athyris angelica Hall, A. globularis Phillips, 
Cyrtospirifer tschernyschewi Khalfin.

Norhtern Siberia, Lena River (Stolb Island) 
(Krylova 1959, 1962; Yazikov et al. 2013)

Latest Frasnian: Retichonetes cf. R. armatus (Bouchard-
Chantereaux in de Verneuil), Athyris sp., Mucrospirifer ex gr. 
mucronatiformis (Khalfin), Cyrtospirifer sp., Adolfispirifer jere- 
mejewi (Tschernyschew), Theodossia ex gr. Th. anossofi (Ver­
neuil).

Early Famennian: Mesoplica cf. M. meisteri (Peetz), Pro
ductella sp., ?Evanescirostrum lenense Baranov, Parapugnax cf. 
P. markovskii (Yudina), Athyris sp., Cyrtospirifer cf. C. tscher
nyschewi Khalfin, Mucrospirifer sp.

Northeastern Siberia (Alekseeva 1967, Alekseeva et al. 1996)

Latest Frasnian: Productella sp., Spinatrypina (Exatrypa) 
orientalis Alekseeva et Komarov, Theodossia yakutica Sidja­
chenko.

Early Famennian: Schuchertella sp., Plicatifera sp., 
Momarhynchus indigiricus Baranov et Sartenaer, Trifidorostellum 
aldanicum Alekseeva, Cyrtospirifer tschernyschewi Khalfin, 
Сyrtospirifer settedabanicus Sidjachenko, Cyrtospirifer com
munis Sidjachenko, ? C. zadonicus Ljaschenko.

Appendix 2. List of brachiopod taxa in the late Frasnian and early Famennian.


