
The processes of coalification in coal-bearing basins are 
mainly determined by the thermal evolution of the basin, 
which is usually directly related to its burial history. The 
thermal maturity pattern of the organic matter (degree of 
coalification, coal rank) is therefore directly related to the 
burial history of the stratigraphic section analyzed, and 
the heat transport through the rocks (e.g. Hantschel & 
Kauerauf 2009). 

The Intra-Sudetic Basin (ISB) is well-known for its 
bituminous and anthracite coal deposits occurring in 
deep, strongly faulted synclines (Kwiecińska 1967; Li- 
piarski 1976; Mastalerz & Jones 1988; Bossowski 1995; 
Kwiecińska & Nowak 1997; Nowak 1993, 1996, 1997, 
2000; Uglik & Nowak 2015; Pešek & Sivek 2016). Coal 
was mined in two districts in Poland, Wałbrzych and Nowa 
Ruda, and in one in the Czech Republic (Žacléř district). 
Mining operations began in the nineteenth century and the 
coal mines were all closed by 1999, although there is some 
potential for further coal and anthracite exploitation. The 
complicated geological setting (e.g. faults, the steep dips 
of the upper Carboniferous coal-bearing strata, magmatic 
events), the abundance of gases (mainly methane and 
carbon dioxide) and related hazards of methane explosions 
or gas and rock outbursts, however, make traditional 

underground coal production uneconomic (Kotarba & Rice 
2001; Sechman et al. 2013, 2017).

The ISB is a relatively rare case of basin in which a par- 
ticularly high thermal regime resulting from magmatic 
processes governed a coalification processes. The thermal  
history and coalification processes of the ISB have, how
ever, seldom been studied (Kułakowski 1979, Mastalerz & 
Jones 1988, Botor et al. 2020). One of the major products  
of coalification is methane, and although the coalbed 
methane reserves in the ISB have not yet been estimated 
precisely, it might be worthy of exploitation. The distri
bution and migration of these gases is related to the thermal 
history of the ISB, and therefore our new findings also 
contribute to a deeper understanding of this relationship, 
which might allow for a better prediction of natural gases 
within sedimentary sequence. The main aim of this study 
is therefore to improve understanding of the thermal 
conditions which caused coalification processes in the ISB. 
This paper is based solely on the kinetic maturity model
ling of vitrinite reflectance data which is adopted from 
previous papers (Chruściel et al. 1985; Bossowski 1997, 
2001; Nowak 2000; Ihnatowicz 2001; Botor et al. 2020).  
The maturity modelling takes into account recent low-
temperature thermochronology results (Sobczyk et al. 
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2015, 2020; Botor et al. 2019) and Raman spectroscopy 
data (Botor et al. 2020). Combining several lines of 
evidence in a more comprehensive interpretation enabled 
an improved maturity modelling. 

Geological setting

The ISB is one of the largest intramontane troughs of the 
Variscides in central Europe (Figs 1 and 2; e.g. Awdan
kiewicz 2004, Mazur et al. 2006, Opluštil & Cleal 2007, 
Ziegler & Dèzes 2007). The ISB includes a large depression 

that is bounded by faults (Fig. 2). The total thickness of 
the sedimentary sequences reaches c. 12 km. The ISB 
is surrounded by both crystalline basement units of the 
Variscan consolidation age and by Palaeozoic sedimentary 
basins (Figs 1, 2).

The ISB originated as an intramontane depression with 
fluvial sequences, mainly conglomerates and sedimentary 
breccias of the middle to upper Viséan (Teisseyre 1968, 
1975; Awdankiewicz et al. 2003; Turnau et al. 2005; Fig. 3).  
The upper Carboniferous continental succession, c. 2000 m 
thick, consists of predominantly coal-bearing sediments 
which are succeeded by red beds (Fig. 3; Nemec et al. 1982,  
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Figure 1. A – location of the Intra-Sudetic Basin within the Variscan belt of Europe. • B – geological sketch of the NE part of the Bohemian Massif 
(Sudetes Mts.). Abbreviations: ISB – Intra-Sudetic Basin; NSB – North-Sudetic Basin; GSM – Góry Sowie Massif; ISF – Intra-Sudetic Fault;  
KIM – Karkonosze-Izera Massif; KPB – Krkonoše Piedmont Basin; MS – Moravo-Silesian Zone; OSM – Orlica-Śnieżnik Massif; PHF – Poříčí-
Hronov Fault. Age assignments: Pt3 – late Proterozoic; Cm – Cambrian; Or – Ordovician; S – Silurian; Pz1 – Lower Palaeozoic; D – Devonian;  
C – Carboniferous; Cr – Cretaceous (modified after Mazur et al. 2006, 2012; Botor et al. 2019).

A

B
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Dziedzic & Teisseyre 1990, Bossowski & Ihnatowicz 
2006). In the Polish part of the ISB, the coal-bearing 
strata are divided into the following formations (Fig. 3): 
Wałbrzych, Biały Kamień and Žacléř (of which the lower 
part is called the Boguszów Member and the upper part 
the Gorce Member). These strata include c. 80 coal seams 
(Bossowski & Ihnatowicz 2006). The lower Permian 
(Autunian) sediments comprise continental clastic deposits 
(Dziedzic & Teisseyre 1990; Fig. 3). In the Saxonian (early 
Permian), tectonic inversion led to a significant exhum- 
ation of the ISB, particularly its elevated margins (Dziedzic 
& Teisseyre 1990, Awdankiewicz 2004).

In post-Variscan times, the Carboniferous to lower 
Permian strata were covered by the latest Permian–Early 
Triassic continental strata and Upper Cretaceous shallow 
marine deposits (Figs 2, 3) (Lorenz & Mroczkowski 1978, 
Skoček & Valečka 1983, Uličný et al. 2009). No sediments 
of the Middle Triassic to Early Cretaceous age are known 
because the Bohemian Massif existed as an emerged, 
tectonically inactive landmass, subject to slow erosion and 
intense weathering, as evidenced by planation surfaces 
below the Late Cretaceous sediments and occurrences 
of thick kaolinic weathering mantles on the Palaeozoic 
basement rocks (e.g. Migoń & Lidmar-Bergström 2001, 

Ziegler & Dèzes 2007, Danišík et al. 2012). The present-
day relict of the Late Cretaceous sedimentary record spans 
Cenomanian through Coniacian in the ISB, although in 
adjacent parts of the Bohemian Cretaceous Basin (e.g. 
the North-Sudetic Basin) the preservation extends to the 
Santonian (Skoček & Valečka 1983, Wojewoda 1997, Mile- 
wicz 1997, Uličný et al. 2009). In the ISB and adjacent 
areas, the present-day thickness of Cretaceous sediments 
ranges from 350 m in Batorów Syncline to 1200 m in Nysa 
Graben (Wojewoda 1997, McCann 2008). In the latest  
Cretaceous to Palaeocene, the Bohemian Massif was 
affected by transpressional deformation (Kley & Voigt 
2008), that caused a reactivation of Variscan faults (Scheck  
et al. 2002), exhumation of elevated blocks and inversion 
of the Cretaceous basins (Skoček & Valečka 1983; Aramo- 
wicz et al. 2006; Kley & Voigt, 2008; Ventura et al. 2009;  
Danišík et al. 2010, 2012; Sobczyk et al. 2015, 2020; 
Botor et al. 2019). Later, the Sudetes were intensively 
eroded, and a peneplain was developed (Migoń & Lidmar-
Bergström 2001). Cenozoic basaltic volcanism developed 
in the Sudetes in many localities, but outside the ISB 
area (e.g. Birkenmajer et al. 2004). Neogene uplift of the 
Bohemian Massif can be attributed to lithospheric buckling 
and transpressional reactivation of crustal discontinuities 

Figure 2. Geological sketch map 
of the Intra-Sudetic Basin with 
analyzed borehole locations (based 
on various sources including 
Sawicki 1995, Awdankiewicz et 
al. 2003, Bossowski & Ihnatowicz 
2006, Botor et al. 2019). Ab
breviations: PHF – Poříčí-Hronov 
Fault; SF – Struga Fault.



(Ziegler & Dèzes 2007). The Late Palaeozoic evolution of 
the ISB was associated with several stages of magmatic/
volcanic processes during the middle Viséan, late 
Carboniferous, and early Permian, the latter corresponding 
to a maximum of volcanic activity (Awdankiewicz 2004, 
Ulrych et al. 2004, Opluštil et al. 2016). This magmatism 
included widespread volcanic complexes and shallow-
level intrusions, interstratified in Carboniferous–Permian 
sedimentary successions (Awdankiewicz 2004, Mazur et al.  
2006).

The geothermal gradient reached up to 60 °C/km in the 
Variscides of Central Europe (Teichmüller & Teichmüller 
1986), however, the high heating caused by Variscan 
intrusions could increase this value to 80–100 °C/km in the 
ISB (Kułakowski 1979, Mastalerz & Jones 1988, Botor et 
al. 2020) or locally even to c. 200 °C/km in northern part 
of the Czech Republic (Suchý et al. 2019). Such high 
geothermal gradients would give heat flow values as high 
as c. 100–180mW/m2 (e.g. Allen & Allen 1990). Recent 

values of the geothermal gradient for the ISB vary between 
22 and 25 °C/km (Bruszewska 2000).

The upper Carboniferous coal-bearing sequence 
of the ISB includes coals ranging from high-volatile 
bituminous to anthracitic (Bossowski 1995; Kwiecińska 
1967; Lipiarski 1976; Mastalerz & Jones 1988; Nowak 
1993, 1996, 1997, 2000; Bossowski & Ihnatowicz 2006; 
Uglik & Nowak 2015). The lowest values of mean random 
vitrinite reflectance (VR) are recorded close to basin 
margins (c. 0.6% VR), while the highest ones are found 
in the central parts (over 4.5% Rmax). VR gradients are 
variable (usually in the range 0.2–0.3%VR per 100 m), 
but locally reaching 0.6%VR per 100 m in the centre of 
the basin (Chruściel et al. 1985, Mastalerz & Jones 1988, 
Nowak 2000). According to Mastalerz & Jones (1988) the 
most intense coalification presumably took place during 
the Westphalian A–B, due to sedimentary burial. 

Recent low-temperature thermochronology results 
suggest that the Bohemian Massif was affected by Meso
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Figure 3. Simplified litho
stratigraphy of the Intra-Sudetic 
Basin (modified after Dziedzic & 
Teisseyre 1990, Bossowski et al. 
1995, Bossowski & Ihnatowicz 
2006, Botor et al. 2019). Ab- 
breviations: Bund. – Bundsand-
stein; Muschel. – Muschelkalk; 
Pal. – Palaeocene; Eoc. – Eocene; 
Oli. – Oligocene; Mio. – Miocene; 
Pli. – Pliocene; Tour. – Tournai-
sian; St. – Stephanian; Sax. – Sax- 
onian; Cen. – Cenomanian; T. – 
Turonian; VOL. – volcanic rocks; 
PLU. – plutonic rocks. 



zoic re-heating caused by burial and/or increased heat 
flow, Late Cretaceous inversion-related exhumation and  
some Cenozoic rifting (Thomson & Zeh 2000; Glas
macher et al. 2002; Ventura & Lisker 2003; Filip & 
Suchý 2004; Aramowicz et al. 2006; Ventura et al. 2009; 
Danišík et al. 2012; Vamvaka et al. 2014; Wolff et al.  
2015; Sobczyk et al. 2015, 2020; Botor et al. 2017, 2019).  
Significant sedimentary burial may have caused a resetting 
of zircon helium ages in the central part of the Sudetes 
during the Late Cretaceous (Danišík et al. 2012, Sobczyk 
et al. 2015). In the ISB, Cenomanian to Turonian sedi
mentary burial has been recently documented using 
thermochronology data (Botor et al. 2019). 

Methods

Vitrinite is the organic maceral group most often used for 
reflectance measurements due to its relatively progressive 
change in optical properties with increasing maximum tem
perature. The vitrinite reflectance determination method 
is now widely applied in order to establish the thermal 
maturity of coal and dispersed organic matter (kerogen)  
in fine-grained rocks (e.g. Suarez-Ruiz et al. 2012, Ferreiro 
Mählmann & Le Bayon 2016). The increase in VR value 
is dependent on many parameters, including temperature, 
geologic time, pore fluid pressure, fluid chemistry, and 
the advancement of tectonic deformation (e.g. Barker & 
Pawlewicz 1994, Huang 1996, Dalla Torre et al. 1997, 
Suchý et al. 1997, Le Bayon et al. 2011), but the effect of  
maximum temperature and duration of heating are the 

most important (Teichmüller 1987, Mukhopadhyay 1992). 
The relationship between VR, temperature, and heating 
time can be used for thermal history reconstruction by 
applying chemical reaction kinetics using Arrhenius equa
tions (Lopatin 1971; Sweeney & Burnham 1990; Waples 
et al. 1992a, b; Hantschel & Kauerauf 2009). A number of 
kinetic models of vitrinite maturation have been proposed, 
as reviewed by Waples (1980), Sweeney & Burnham 
(1990), Morrow & Issler (1993), Burnham et al. (2017) 
and Nielsen et al. (2017). 

In this work, integrated numerical modelling in 
selected borehole sections was used to reconstruct the 
burial and thermal history of the ISB and thus to derive 
the history of coalification and natural gas generation. 
Computer maturity modelling was carried out using the 
1-D (one-dimensional) PetroMod ver.11 software (Schlum- 
berger). Vitrinite reflectance evolution was modelled 
applying the Sweeney & Burnham (1990) algorithm 
(EASY%Ro). The validity of the burial and thermal history 
models was verified through a comparison of measured 
(Chruściel et al. 1985; Bossowski 1996, 1997, 2001; 
Nowak 2000; Ihnatowicz 2001; Botor et al. 2020) and 
calculated VR values, as well as present-day corrected 
borehole temperature data (Bossowski 1996, 1997, 2001; 
Bruszewska 2000; Ihnatowicz 2001). The stratigraphic, 
lithologic and present-day temperature data were taken 
from Bossowski (1996, 1997, 2001), Ihnatowicz (2001) 
and Bossowski & Ihnatowicz (2006). 

Modelling procedure involves establishing a  con
ceptual model (Waples et al. 1992a, b) based on the 
lithostratigraphy of the analyzed well that is used as 
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Table 1. Conceptual model applied to the Miłków IG-1 well. Abbreviations: Fm. – Formation; Mb. – Member. In lithology types the following 
system was applied for abbreviations: SANDcongl (first lithology in upper case and second in lower case) – 70% sandstone and 30% of conglomerate; 
SAND&SHALE (both lithologies in upper case) – 50% sandstone and 50% shale.

Unit/event

(metres) (Ma)
lithology

top bottom thickness exhumed
deposition exhumation

from to from to  

Quaternary     0 1 1   2 0     SILTSTONE

exhumed Late Cretaceous 0 0 0 3000 98 82 82 2 SANDcalc.

exhumed Lower Triassic 0 0 0 100 252 250 250 98 Sandstone

exhumed Permian 0 0 0 1800 298 290 290 252 SANDcongl

Krajnów Fm. (Autunian) 1 118 117 299 298 SANDcongl

Ludwikowice Mb. (Stephanian C) 118 320 202 302 299 SANDcongl

Łomnica Mb. (Stephanian A–B) 320 474 154 311 302 Conglomerate

Petrovice-Grzmiaca Mb. (Westphalian D) 474 572 98 312 311 SANDcongl

Gorce Mb. (Westphalian B–C) 572 718 146 315 312 SILT&SAND

Boguszów Mb. (Westphalian A–B) 718 874 156 317 315 SILTsandy

Biały Kamien Mb. (Namurian C–Westphalian A) 874 896 22 318 317 Conglomerate

Wałbrzych Fm. (Namurian A–B) 896 1151 255   327 318     SILT&SAND
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Figure 4. Burial and thermal history model for Miłków IG-1 well. • A – model assuming Cretaceous burial of c. 3 km (preferred). • B – model assuming 
only Variscan burial. Both models show the same quality of calibration by present-day temperature and mean vitrinite reflectance. No further increase 
of coal rank is observed in the Late Cretaceous due to high heat flow in the Palaeozoic. See further explanations in the text.

A

B
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Figure 5. Burial and thermal history model for GW-21 well. • A – model assuming Cretaceous burial of c. 3 km (preferred); B – model assuming only 
Variscan burial. Both models show the same quality of calibration by present-day temperature and mean vitrinite reflectance. No further increase of coal 
rank is observed in the Late Cretaceous due to high heat flow in the Palaeozoic. See further explanations in the text.

A

B



temporal framework for modelling (Tab. 1). Geological 
events, scaled in time, create the structure of a model 
and govern the data input. The dataset for each event 
consists of duration, depositional or erosional thickness, 
lithology, bathymetry, sediment/water interface or surface 
temperature, and heat flow. Input data also includes the 
petrophysical parameters of the given lithology and 

present-day thermal regime (Hantschel & Kauerauf 2009).  
Petrophysical parameters were based on the PetroMod 
library, according to lithology types identified in the 
analyzed wells (Tab. 1). The backstripping method which  
includes a  decompaction correction was applied to 
establish the burial history. Thermal boundaries define the 
thermal regime of the sedimentary basin over time. The 
most important input parameters are the basal heat flow as 
the lower thermal boundary, and surface temperature as the 
upper boundary (Hantschel & Kauerauf 2009). Different 
subsidence-uplift scenarios are tested during modelling in 
order to find a plausible model. The calculated results were 
compared with the measured values in order to calibrate the 
model and check its geological reliability. Calibration was 
performed mainly by varying the heat flow in time or/and 
the thickness of the now exhumed sedimentary overburden 
(Waples et al. 1992a, b; Hantschel & Kauerauf 2009). 
Initially, heat flow estimates for the past stages of basin 
history are assigned on the basis of the tectonic setting 
(Hantschel & Kauerauf 2009). In the following iterations, 
the heat-flow values are adjusted through the modelling 
procedure, in order to achieve the best fit between the 
calculated model and the measured calibration parameters. 
Heat flow values are best constrained for times of 
maximum temperature, which correspond to the maximum 
burial in many cases (Waples et al. 1992a, Hantschel & 
Kauerauf 2009). 

A broader discussion of the applied maturity model- 
ling method is provided by, for example, Waples et al.  
(1992a, b), Hantschel & Kauerauf (2009), and Botor et al.  
(2013). 
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Figure 6. Heat flow (in mW/m2) assumed in Carboniferous (A) and in early Permian (B).

Figure 7. Exhumed Palaeozoic overburden (in metres).

A B
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Figure 8. Calculated maximum palaeotemperature (in °C) at the bottom of analyzed Carboniferous (A) and at the top of the Carboniferous sections (B).

Figure 9. Calculated mean vitrinite reflectance (in %VR) at the bottom of analyzed Carboniferous (A), and at the top of the Carboniferous (B).

Results

The results of maturity modelling for nine well sections 
are presented in the form of burial-thermal history plots 
for selected representative wells: GW-21 and Miłków 
IG-1 (Tab. 1; Figs 4A, B and 5A, B). The well locations 
are given in Fig. 2 and their conceptual applied model 
in Tab. 1. In this thermal modelling we applied the 

thermochronological results in the ISB and adjacent areas 
(Aramowicz et al. 2006, Danišík et al. 2012, Sobczyk et al.  
2015, Botor et al. 2019) suggesting significant Late 
Cretaceous sedimentary burial in the study area (Figs 4A, 
5A). Modelling was initially performed assuming that 
coalification only resulted from the Variscan processes, 
however (Figs 4B, 5B). These initial models (Variscan) 
were based on earlier works on coalification processes 

A

A

B

B



in the ISB (Kułakowski 1979, Mastalerz & Jones 1988), 
which suggested late Carboniferous development. These 
initial models were the best-fit scenarios, assuming high 
heat flow and significant burial in late Carboniferous to 
early Permian. Burial of the analyzed base of the upper 
Carboniferous, at the end of the Variscan cycle (c. 280 Ma) 
probably reached a depth of up to 3–4 km (Figs 4B, 5B). 
The lowest burial occurred in the area of the Borówno-1 
and Borówno-2 wells, close to the NE margin of the ISB, 
whilst towards the SE depocentre of the basin, the depth 
of burial was higher. There are no deep wells suitable for 
modelling in the southern part of the ISB (Fig. 2). The 

high heat flow regime was caused by significant magmatic 
development in the Carboniferous to early Permian, and 
later heat flow decreased to relatively low present-day 
values. In these models VR reached maximum values in 
the early Permian, but with a significant increase in the late 
Carboniferous (Figs 4B, 5B). 

Thermochronological data, however, shows that in 
the Upper Cretaceous, the ISB and adjacent areas were 
additionally buried under 3–4 km sedimentary cover 
(Danišík et al. 2012; Sobczyk et al. 2015, 2020; Botor et 
al. 2019), and therefore such new scenarios of burial were 
assumed in the final stage of modelling. The initial models 
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Figure 10. Kerogen transformation ratio (in %) applying the kinetic model by Pepper & Corvi (1995) for kerogen D-E III calculated in: A – Wałbrzych 
Formation; B – Biały Kamień Formation; C – Boguszów Member; and D – Gorce Member of Žacléř Formation.

A

C

B

D



were supplemented by c. 3 km of Late Cretaceous burial 
(Tab. 1; Figs 4A, 5A). The heat flow regime was left as in 
the initial models. Such scenarios did not affect VR change, 
due to high heat flow in the Late Palaeozoic, however, 
presumably at least 4.5–5.0 km or more Late Cretaceous 
burial would be necessary for increasing the VR of the  
Carboniferous strata in the Cretaceous time. However,  
the lack of reset of zircon helium ages in the ISB (Sobczyk 
et al. 2015, 2020) is definitely against such a hypothesis, 
because zircon helium age reset requires temperature 
ranging from c. 140–200 °C. The low thermal maturity 

of c. 0.4%VR, which suggests a palaeotemperature below 
70 °C in the Cretaceous sediments in adjacent areas of 
the Sudetes (e.g. Wagner 2013), also indicates that tem- 
perature in the Cretaceous was not sufficient to cause 
further coalification in the Carboniferous strata. 

Heat flow in the Carboniferous to early Permian was 
high, due to the development of magmatic processes  
(Figs 4, 5). In the models presented, heat flow successively 
declined with increasing burial (during late Carboniferous 
to early Permian), as the rate of heat flow decrease is pro
portional to the rate of subsidence (Carr & Uguna 2015).  
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Figure 11. Bulk hydrocarbon generation rate (in grams hydrocarbons per gram total organic carbon per million years) calculated applying the kinetic 
model by Pepper & Corvi (1995) for kerogen D-E III calculated in: A – Wałbrzych Formation; B – Biały Kamień Formation; C – Boguszów Member; 
and D – Gorce Member of Žacléř Formation.
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Heat flow then increased immediately during the inversion 
phase (here in the mid-Permian). The increasing upward 
force is associated with an increase of heat flow (Carr 
& Uguna 2015). Finally, heat flow decreased to present-
day values (Figs 4, 5). Heat flow in the Cretaceous was 
much lower than in the Palaeozoic because there was 
no magmatic or hydrothermal processes known to be 
develop in Cretaceous time. Tertiary volcanic processes 
were only active to the north of the ISB (e.g. Birkenmajer 
et al. 2004), but these did not affect thermal conditions 
in the ISB, as documented by AFT data (Botor et al.  
2019). 

A series of maps of heat flow, exhumed overburden, 
maximum palaeotemperature, vitrinite reflectance, kero
gen transformation ratio, and bulk hydrocarbons generation 
rate were calculated based on 1-D modelling results (Figs 
6–11). The heat flow is assumed as 130–150 mW/m2 in 
the Carboniferous, and 90–120 mW/m2 in the Permian 
(Fig. 6). Variscan exhumation is calculated as 1600 m to 
2400 m, increasing towards the margin of the ISB (Fig. 7). 
The Carboniferous rocks reached their peak temperature 
during the early Permian. The bottom of the analyzed 
upper Carboniferous strata was heated to a minimum of  
150–170 °C near the margin of the ISB (Miłków IG-1 
and Borówno areas) and above 250 °C in the deeper, 
central part of the ISB. At the top of the Carboniferous, the 
maximum temperature was between 90–110 °C close to the 
margin, and more than 150 °C in the more central parts of 
the ISB (Fig. 8). A similar estimation of temperature, using 
combined Raman spectroscopy and VR data, was given 
by Botor et al. (2020), and using VR data by Mastalerz & 
Jones (1988). This heating is reflected in the distribution 
of VR values. VR has been calculated over 4.0% for the 
bottom of the Carboniferous sections in the areas between 
the Grzędy IG-1 and Unisław Śląski IG-1 wells, whereas at 
the top of the Carboniferous VR values reached c. 1.2–1.4%  
in the same area (Fig. 9). 

Coal and dispersed sedimentary organic matter 
within the upper Carboniferous sediments of the ISB 
are predominantly of terrestrial origin (gas-prone type 
III kerogen) (Kotarba & Rice 2001). Pepper and Corvi’s 
(1995) III-DE kinetic model of hydrocarbon generation 
was therefore applied. The kerogen transformation and 
hydrocarbon generation mainly took place during the late 
Carboniferous and early Permian, reaching a maximum 
before tectonic inversion in the early Permian. The scope 
of advanced hydrocarbon generation processes is best 
represented by the transformation ratio (TR, transformation 
ratio, expressed in %) showing the degree of thermogenic 
transformation of kerogen, which undergoes processes 
of hydrocarbon generation (e.g. Hantschel & Kauerauf 
2009). In the upper Carboniferous strata, the lowest TR 
values occur along the NW margin of ISB (Borówno-1 
well, 19%), and increase towards the SE. The second local 

minimum is represented by the Miłków IG-1 well section, 
which has slightly higher values than Borówno-1. The 
maximum TR values were calculated for the area between 
the Grzędy IG-1 and Unisław Śląski IG-1 wells, where TR 
values are above 90%. This TR pattern is similar in all four 
sedimentary units analyzed (Gorce Mb., Boguszów Mb. 
Biały Kamień Fm. and Wałbrzych Fm.; Fig. 10A–D). The 
bulk hydrocarbon generation rate, calculated at the end 
of the early Permian, reached values from 0.004 to 0.098 
grams of hydrocarbons per gram of total organic carbon 
per million years (Fig. 11A–D). 

Discussion

In the North-Sudetic Basin, which is located north of the 
analyzed ISB (Fig. 1B), intercalations and thin metalignite 
and sub-bituminous coal seams, up to 0.5 m in thickness, 
occur in shales in the lowest and the highest horizons of 
the Santonian strata (Milewicz 1997, Wagner 2013). These 
coals have a VR value equal to 0.37 to 0.42% (Wagner 
2013), which indicates that the Cretaceous sediments were 
heated at maximum to c. 70 °C after deposition (using the 
Barker & Pawlewicz 1994 method). It therefore required 
at least 2 km burial assuming the present-day geothermal 
gradient of 24 °C/km (Bruszewska 2000) and the average 
Cretaceous surface temperature of 20 °C (e.g. Thomson 
& Zeh 2000). The results of apatite helium dating from 
Triassic sandstones of North-Sudetic Basin also revealed 
that all apatite grains experienced post-depositional 
thermal resetting, which took place during the Late Cret
aceous. This thermal event recorded by the apatite helium 
ages could be roughly related to the exhumation of at 
least 1.5–2 km of Late Cretaceous strata due to tectonic 
inversion (Sobczyk et al. 2018). 

Towards the S and SE of the Sudetes, the Cretaceous 
cover was probably thicker (Danišík et al. 2012, Sobczyk 
et al. 2015). In the ISB Late Cretaceous to Palaeogene, 
apatite fission track ages for the Carboniferous, Triassic 
and Cenomanian–Turonian samples indicate a post-depos
itional thermal event exceeding c. 110–120 °C, which was 
followed by cooling after Turonian (Botor et al. 2019). 
Considering that the zircon helium ages of Cretaceous 
samples are not reset (Sobczyk et al. 2015), it shows that 
the maximum temperature in the Cretaceous sediments 
was below c. 130–150 °C (below the sensitivity of the 
zircon helium thermochronometer). Collectively this data 
suggests that the maximum temperature experienced by 
Cretaceous strata was in the range c. 110–130 °C in the 
ISB (Danišík et al. 2012, Sobczyk et al. 2015, Botor et 
al. 2019). The temperature in the Carboniferous strata 
was thus not higher than this range during the Cretaceous 
burial. The estimated values (c. 110–130 °C) are much 
lower than maximum palaeotemperatures that occurred 
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in the latest Carboniferous and/or early Permian times 
(compare Figs 4, 5 and 8).

In the ISB, these maturity modelling results confirm 
earlier works (Kułakowski 1979, Mastalerz & Jones 1988, 
Botor et al. 2019) showing that a temperature maximum 
in the Carboniferous strata was likely achieved in the late 
Carboniferous to early Permian. This Variscan thermal 
peak was followed by slow cooling in the late Permian–
Mesozoic, re-heating during Late Cretaceous burial, and 
the final acceleration of cooling in the Late Cretaceous–
Palaeogene (Botor et al. 2019). Generally, the thermal 
models based on apatite fission tracks and zircon helium 
data postulate significant mid-Cretaceous burial in the 
entire Sudetes (Danišík et al. 2010, 2012; Sobczyk et al. 
2015, 2018, 2020; Botor et al. 2019). Neither the tested 
models, however, nor measured AFT data show any re-
heating in the Cenozoic in the ISB (Botor et al. 2019) in 
association with Neogene volcanism present in the Sudetes 
(e.g. Birkenmajer et al. 2004). 

The thermal maturity of organic matter occurring 
in the Carboniferous sediments of the ISB is generally 
high (usually c. 1–4%VR), which demonstrates max
imum temperatures much above c. 120 °C. The thermo
chronological data (Danišík et al. 2012; Sobczyk et al. 
2015, 2020; Botor et al. 2019) shows that the Cretaceous 
rocks presently exposed on the surface were at depths 
of c. 3–4 km during the mid–Late Cretaceous, assuming 
the present-day geothermal gradient of 24 °C/km  
(Bruszewska 2000) and an average Cretaceous surface 
temperature of 20 °C (e.g. Thomson & Zeh 2000). In this 
maturity modelling, the exhumed Cretaceous overburden 
is therefore assumed to be c. 3 km on average. In the 
absence of data confirming a high heat flow regime in the 
Late Cretaceous, a sedimentary burial hypothesis seems 
to be the most plausible. The deposition of sedimentary 
overburden responsible for Late Cretaceous re-heating 
was related to Cenomanian transgression over the northern 
part of the Bohemian Massif (Skoček & Valečka 1983, 
Milewicz 1997). Thereafter, the basin was inverted in the 
late Cretaceous. The late Turonian to early Campanian 
(c. 80–90 Ma) onset of the tectonic inversion of the ISB, 
suggested by thermochronological data (Botor et al. 
2019, Sobczyk et al. 2020), was coeval with cooling due 
to tectonic inversion in the Holy Cross Mountains and 
adjacent areas of the Mid-Polish Trough documented by 
thermochronological data (Botor et al. 2018: fig. 3b, c; 
Łuszczak et al. 2020). The seismic investigation results 
along the Mid-Polish Trough also suggest similar timing 
for the onset of tectonic inversion (Krzywiec et al. 2018). 
This timing of inversion is identical (within the limits of 
resolution) to inversion of Variscan massifs and Mesozoic 
basins (e.g. Ziegler & Dèzes 2007). The data above shows 
that in the late Cretaceous, but definitely long before the 
Maastrichtian, the crust in the central Europe was subject 

to a compressive to transpressional regime (e.g. Kley & 
Voigt 2008). It caused a reactivation of Variscan faults 
(Scheck et al. 2002), exhumation of tectonic blocks and 
finally inversion of the Cretaceous basins (Skoček & 
Valečka 1983; Aramowicz et al. 2006; Kley & Voigt 2008; 
Ventura et al. 2009; Danišík et al. 2010, 2012; Sobczyk et 
al. 2015, 2020; Botor et al. 2019).

The results of this work are similar to those reported 
by Suchý et al. (2019) who also imply elevated Late 
Palaeozoic thermal gradients (c. 200 °C/km) in the coal-
bearing basins of the northern Czechia that have a similar 
geotectonic position as the ISB. The very high Variscan 
heat flow could have been due to thinning of the lithosphere 
and abundant magmatic/volcanic activity (e.g. Dvořák 
& Paproth 1988, Henk et al. 2000, Awdankiewicz 2004, 
Ulrych et al. 2004, Suchý et al. 2019). In the ISB many 
intrusive bodies, which penetrated both Carboniferous 
and Permian strata, are widely known (e.g. Awdankiewicz 
2004). It can therefore be inferred that a high heat flow 
regime also operated in the Late Palaeozoic along the 
NE margin of the Bohemian Massif. Another factor 
potentially affecting the coal rank is fluid flow event(s). 
High palaeogeothermal gradients can be enhanced by hot 
fluids, particularly along faults or thrusts, resulting in rapid 
coalification (e.g. Hower & Gayer 2002). The modelling 
approach used in this study cannot detect such short-lived 
convection processes in the crust, but the results do not 
contradict their existence.

In Late Palaeozoic, the Carboniferous sediments 
were subject to intense subsidence and rapid burial up 
to the early Permian, and were then subjected to tectonic 
inversion. The Variscan coalification processes resulted in 
natural gas generation (dry gas, methane dominated). The 
upper Carboniferous strata are mainly characterized by an 
early to late phase of hydrocarbon generation. The kerogen 
transformation ratio (c. 19–100%) is variable across the 
ISB (Fig. 10). The bulk hydrocarbon generation rate 
reached c. 0.080 grams of hydrocarbons per gram of total 
organic carbon per million years (Fig. 11). The generation 
of hydrocarbons took place only during the Palaeozoic 
burial, prior to 280 Ma. During the Mesozoic, sedimentary 
burial did not result in any additional hydrocarbon gener- 
ation. As a result, there was a widespread dispersion of 
the generated hydrocarbons. Significant volumes of pre- 
viously generated thermogenic gases within the coal seams  
and in siltstones/claystones were released into the atmos- 
phere. 

Conclusions

The maturity modelling results indicate that the studied 
coal-bearing upper Carboniferous strata in the ISB 
were heated to temperatures c. 100–260 °C in the late 
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Carboniferous to early Permian, which is in accordance 
with the high level of thermal maturity of the organic matter 
within Carboniferous rocks. VR values range from c. 0.6% 
to over 4.5%. There was a second phase of significant  
(c. 3 km) sedimentary burial during the Late Cretaceous. 
This phase, however, occurred in a low heat flow regime. 
The late Carboniferous–early Permian magmatic activity 
(e.g. Awdankiewicz 2004) was the reason for the high heat 
flow (c. 90–150 mW/m2), and together with significant 
sedimentary burial in the late Carboniferous affected the 
coalification processes of upper Carboniferous organic 
matter. The coalification process had already started at 
a shallow burial depth due to highly elevated Variscan heat 
flow (Pešek & Sýkorová 2006). The major coalification 
phase of the Namurian–Westphalian coal seams could 
have occurred in the latest Carboniferous to early Permian. 
It was interrupted by the tectonic inversion of the basin. 
Later phases of temperature increase caused by late 
Cretaceous burial did not surpass the temperatures that 
occurred in the Carboniferous strata in the late Palaeozoic. 
The Mesozoic temperature increase does not therefore 
appear to have had any noticeable effect on the maturation 
of the Carboniferous organic matter, and hydrocarbon 
generation in the ISB. The Variscan coalification pro
cesses resulted in the formation of methane-dominated 
natural gas. The upper Carboniferous coal-bearing strata 
are characterized chiefly by the main to late phase of 
hydrocarbon generation. The kerogen transformation 
ratio values vary across the basin, ranging from 19 to 
100% TR. 
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