Taxonomy, biostratigraphy and biofacies of an Upper Ordovician (Katian) conodont fauna from the Casaio Formation, Northwest Spain

Gustavo G. Voldman & José M. Toyos

Although Katian conodont faunas from high-latitude Gondwanan to peri-Gondwanan regions are widely referred to in the literature, their taxonomy is not yet stabilised, which is critical to biostratigraphically constrain the climate and tectonic events preceding the Hirnantian mass-extinction. In the present contribution, 595 conodont elements and abundant fragmentary conodont material recovered from meta-limestones of the Casaio Formation, northern Central Iberian Zone, is taxonomically and biostratigraphically analysed. The conodont assemblage is characterised by the genera *Amorphognathus*, *?Baltoniodus*, *?Drepanoistodus*, *"Drepanodus"*, *Eocarniodus*, *Hamarodus*, *Icriodella*, *Istorinus*, *Panderodus*, *Sagittodontina*, *Scabbardella*, and *Walliserodus*, and documents the lower *Amorphognathus ordovicicus* Zone (Ka3) in Northwest Spain. After the taxonomic analysis, *Icriodella iberiensis* sp. nov. is proposed, and the complexity of the balognathid genera *Sagittodontina* and *Amorphognathus* is further discussed. Based on the composition of the major components, a new *Icriodella-Sagittodontina-Amorphognathus* Biofacies is introduced. Conodont based correlations and cluster analysis verify the strong similarity of the conodont assemblage of the Casaio Formation with the Thuringian conodont faunas from the Upper Ordovician Mediterranean Province. • Key words: conodont, taxonomy, biostratigraphy, biofacies, Central Iberian Zone, Spain, Katian, Ordovician.

VOLDMAN, G.G. & TOYOS, J.M. 2019. Taxonomy, biostratigraphy and biofacies of an Upper Ordovician (Katian) conodont fauna from the Casaio Formation, Northwest Spain. *Bulletin of Geosciences 94(4)*, 455–478 (11 figures, 1 table). Czech Geological Survey, Prague. ISSN 1214-1119. Manuscript received May 23, 2019; accepted in revised form November 14, 2019; published online December 31, 2019; issued December 31, 2019.

Gustavo G. Voldman, CICTERRA (CONICET-UNC), CIGEA, Universidad Nacional de Córdoba, Córdoba, Argentina, gvoldman@unc.edu.ar • José M. Toyos, Instituto Geológico y Minero de España, Unidad de León, 24006 León, Spain

Ordovician high-latitude Gondwanan and peri-Gondwanan regions are characterised by siliciclastic deposition under mostly shallow, cold-water regimes. These vast regions, currently represented by central southern Europe and North Africa, experienced a major environmental change during the Late Ordovician with the abrupt appearance of calcareous deposits of highly variable thickness (e.g. Villas et al. 2002, Boucot et al. 2003). The limestone deposition was associated either with a sharp climatic global warming named as Boda Event after the Boda Limestone of Sweden (Fortey & Cocks 2005), or with a general cooling (Cherns & Wheeley 2007). Currently, the Late Ordovician (Katian-Hirnantian) through earliest Silurian (Rhuddanian) time interval is regarded as a period of variable climate and sea level conditions, with at least two separate pulses of glacial advance and one of retreat during a late Katian global warm interval (Melchin et al. 2013, Ghienne et al. 2014, Kröger et al. 2017). The latter cooling triggered widespread marine anoxia by reorganisation of the thermohaline circulation, which resulted in the second pulse of the Hirnantian mass extinction, the first of the 'Big Five' Phanerozoic mass extinctions (Bartlett *et al.* 2018).

The pioneer study by Fuganti & Serpagli (1968) on the Katian fauna of the Urbana Limestone of the Central Iberian Cordillera started the Ordovician conodont studies in the Iberian Peninsula (Fig. 1). Since then, several conodont studies have focused on the Upper Ordovician limestones present in the different tectonometamorphic domains of Spain (summarised by Sarmiento et al. 2011). Particularly, the common record of conodonts of the Amorphognathus ordovicicus Zone (Ka3-4 time slices of Bergström et al. 2009) has allowed correlation of the the Urbana Limestone with the Cystoid Limestone in the Eastern Iberian Cordillera, the 'Pelmatozoan Limestone' in the Ossa-Morena Zone, the 'unidad calcárea superior' in the Cantabrian Zone, the Estana Formation in the Pyrenees, and the Ferradosa Formation from the Portuguese Central Iberian Zone (e.g. Hafenrichter 1979; Sarmiento 1990, 1993, 2002; Sarmiento et al. 2001; del Moral 2003, 2007; del Moral & Sarmiento 2008).

PALAEOGEOGRAPHIC ZONES OF THE IBERIAN MASSIF

Figure 1. Tectonic map of the Iberian Massif including the different palaeogeographic zones (modified from Martínez Catalán 2011 and Rodríguez-Cañero et al. 2018).

In contrast, Ordovician conodont studies in NW Spain are scarcely developed due to the absence of favourable facies and the pervasive Variscan metamorphism with cleavage that affected the region. The landmark study by Sarmiento et al. (1999) improved the Upper Ordovician conodont biostratigraphic scheme of the northern Central Iberian Zone, by documenting the Amorphognathus ordovicicus Zone in the Casaio Formation, the Aquiana Limestone, and in calcareous pebbles of the glacial-related Rozadais Formation.

In the present contribution, we analyse a conodont assemblage from the Casaio Formation, characterised by specimens referable to the genera Amorphognathus, ?Baltoniodus, ?Drepanoistodus, "Drepanodus", Eocarniodus, Hamarodus, Icriodella, Istorinus, Panderodus, Sagittodontina, Scabbardella, and Walliserodus. The conodont assemblage documents the A. ordovicicus Zone in the Casaio Formation and, despite being strongly affected by Barrovian metamorphism, the recovered specimens allowed a detailed taxonomical analysis, shedding light on the poorly known Upper Ordovician conodont faunas from the northern Gondwanan margin.

Geological setting

A thick passive margin succession accumulated on the northern margin of Gondwana during the Early Palaeozoic, subsequent to the opening of the Rheic Ocean (e.g. Aramburu et al. 2002). Its rift-drift transition is temporally constrained by the widespread Lower Ordovician magmatism disseminated throughout NW the northern area of the Central Iberian Zone (Fig. 1). The Upper Ordovician succession is generally characterised by alternating shales, siltstones and sandstones overlain by limestones and glaciomarine diamictites (e.g. Gutiérrez-Marco et al. 2002). According to U-Pb detrital zircon provenance data, the passive margin of NW Iberia was situated close to the palaeoposition of central North Africa and the Saharan Craton, remaining relatively stable at least from the Ordovician until the onset of the collision between Gondwana and Laurussia in the Late Devonian (Pastor Galán et al. 2013). Successively, the Lower Palaeozoic deposits in Iberia were involved in the Variscan Orogeny, associated with metamorphism, erosion and the oroclinal buckling of an originally near-linear convergent margin (e.g. Nance et al. 2012). The Casaio Formation (Barros Lorenzo 1989)

Iberia, especially in the "Ollo de Sapo" volcanic belt in

comprises a meta-sedimentary succession 60-100 m thick, consisting of metasandstone, quartzite and slate cropping out near Casaio (Ourense, Galicia), overlying the essentially Darriwilian Luarca Formation (Gutiérrez-Marco et al. 1999), and overlain either by the Rozadais Formation in the Truchas Syncline or the Aquiana Limestone in the Caurel-Peñalba Syncline (Sarmiento et al. 1999). It contains several calcareous intercalations, up to 4 m in thickness, informally known as Trigal limestones (Gutiérrez-Marco et al. 1988), which crop out discontinuously along both flanks of the Truchas Syncline and, locally, in the northern flank of the Teleno Anticline. The scarce palaeontological data from the Casaio Formation derives from these calcareous levels. Accordingly, Gutiérrez-Marco et al. (1996) reported a diverse pelmatozoan association (*Cyclocharax paucicrenellatus*, *Trigonocyclicus* cf. *vajgatschensis*, *Cyclocyclicus* sp., and undetermined cystoids), analogous to the one present in the Aquiana Limestone.

Sarmiento *et al.* (1999) documented *Hamarodus*, *Sagittodontina*, and *Scabbardella* from the Trigal limestones, and referred them to the lower part of the *A. ordovicicus* Zone based on the record of *Amorphognathus* sp. and *Sagittodontina robusta* in the overlying Aquiana Limestone at La Chana section, and regional stratigraphic correlation. However, the highly variable thicknesses (0-300 m) of the Aquiana Limestone over a few km of distance may involve diachronic carbonate deposition, as observed in the Upper Ordovician sedimentary successions of the Baltic Basin (*e.g.* Kröger *et al.* 2017). In the present contribution, we verify the age proposed by Sarmiento *et al.* (1999) for the Trigal limestones by direct means, based on a larger conodont collection, and the partly cartographic lateral stratigraphic correlation of the Casaio Formation with the Aquiana Limestone (*e.g.* Gutiérrez-Marco *et al.* 1988), supported by detailed cartographic work.

Material and methods

The current conodont collection is derived from outcrops of the Trigal limestones of the Casaio Formation located 1.5 km E of Yeres, along the pathway to Orellán (Figs 2, 3). In this section, the Trigal limestones are characterised by 2.2 m of ferruginous meta-siltstone, followed above by 7.2 m of meta-bioclastic limestone, in beds 3–25 cm in thickness, and partly dolomitised. The described succession has a lenticular shape and is contained within grey slates of the Casaio Formation. Five exploratory meta-limestone samples (samples CA, Fig. 2) were

Figure 2. Geological map of the study area with sampled points (modified from Rodríguez Fernández et al. in press).

Bulletin of Geosciences • Vol. 94, 4, 2019

Table 1. Consider the Construction of Species from the Trigal limestones of the Casaio Formation.	
---	--

					-			
Sample	CA1	CA2	CA2.2	CA2.5	CA3	Y1	Y3	Total
Weight (g)	3500	5600	11 500	2500	3550	2100	4200	32 950
Amorphognathus ordovicicus Branson & Mehl								
M			4					4
Pa			53				2	55
Pb		5	31					36
Sa			1					1
Sb			1					1
Sc			3					3
Sd						1		1
Amorphognathus sp. A del Moral								
Pb			2					2
?Baltoniodus sp. nov. A								
Pa			5					5
Pb		2	5					7
?M		1						1
"Clavohamulus sp. 1" Knüpfer		-	8					8
"Drepanodus suberectus" Rexroad			2					2
"Drepanoistodus cf. suberectus" (Branson & Mehl)								
M			1					1
p			5					5
S			12					12
2Drepanoistodus sp			12					12
M		1	1					2
S		1	11	1				12
"Focarniodus" aff gracilis (Phodes)		1	11	1				12
Locarmonus an. gracus (Mollicor)		1						1
D			1					1
r M		1	10					1
NI S		1	10				1	19
		1	11				1	13
Icriodella iberlensis sp. nov.		0	0.4			1		02
PI		8	84			1		93
P2		2	45					4/
M		2	3					3
S K R C		2	11					13
Istorinus erectus Knupfer			13					13
Panderodus gracilis Branson & Mehl			2					2
Panderodus panderi (Stauffer)			I					I
Sagittodontina bifurcata Knüpter								
Pa		1	15					16
Pb			5					5
?Pc		1	4					5
S			4					4
<u>M</u>			1					1
"Sagittodontina" sp.								
Pa			2					2
Pb			8					8
Sa–Sb		6	31					37
Sc			8					8
Sd		6	53					59
Scabbardella altipes (Henningsmoen)								
acodiform		8	20				1	29
drepanodiform		10	18		2			30
distacodiform	1	10	14		1			26
Walliserodus cf. debolti Serpagli			2					2
Indet. fragments		51	353		2	2		408
Total	1	117	872	1	5	4	4	1004

processed in buffered acetic acid following the standard techniques (Jeppsson et al. 1985, Stone 1987). All of the rock samples yielded conodonts, which led to further intensive resampling, conditioned by their productivity and availability in the outcrops. After processing a total rock weight of 26.6 kg, 589 conodont elements and hundreds of undeterminable fragments were recovered (Tab. 1). Within the insoluble residue, iron oolites were also recovered. Additionally, four exploratory samples were obtained from a complementary section (samples Y, 9.5 kg total rock weight), where the upper level of the Trigal limestones is overlain by a dm-scale ferruginous bed, and four other samples from outcrops of the Aquiana Limestone along the N-536 route (samples AO, 12 kg total rock weight), though they were almost barren of microfossils (Tab. 1), probably reflecting a stronger grade of recrystallisation and dolomitisation towards the west. Conodont elements are uniformly grey (CAI 6), which indicates palaeotemperatures in the range of 360-550 °C following the calibration of Rejebian et al. (1987), consistent with the greenschists facies of the siliciclastic sediments in the area. Conodont elements are often ductile deformed, showing cleavage and frequent iron stains. Given the metamorphism that affects the Casaio Formation, the possible preservation of the conodont elements in the meta-limestones appears to be related to the high organic matter content (Epstein et al. 1977) and impurities of the meta-limestones, which can delay thermal maturation and degradation.

The conodont specimens are housed in the Museo Geominero (IGME) of Spain, under repository codes MGM-82070 to MGM-82130. Conodont images were obtained with a Zeiss Axiocam 506 camera attached to an Axio Scope A1 petrographic microscope (Departamento de Geología, Universidad de Oviedo) and an Olympus LEXT OLS4000 confocal laser microscope (LAMARX, Universidad Nacional de Córdoba). Image stacking was conducted with Zerene Stacker and Adobe Photoshop. SEM imaging was avoided due to the mounting risks of the delicate, metamorphosed conodont elements.

Biostratigraphy and biofacies

The conodont collection from the Casaio Formation is quantitatively dominated by four genera: *Icriodella* (26%), *Sagittodontina* (24%), *Amorphognathus* (17%), and *Scabbardella* (14%) (excluding the undeterminable deformed or broken fragments). Less frequent are *Hamarodus* (6%), and rarely ?*Drepanoistodus*, ?*Baltoniodus*, *Istorinus*, "*Clavohamulus*", *Panderodus*, *Eocarniodus*, and *Walliserodus*, which combine for the remaining 13% of the assemblage (Fig. 4). Based on its composition, the Casaio conodont fauna is ascribed to the Mediterranean Province of Sweet & Bergström (1984), with locally abundant faunas of low diversity, characteristic of Late Ordovician polar to subpolar regions. It shares the typical species association of the

Figure 3. Schematic stratigraphic columns for the Ordovician in the study area, with the position of samples in the Trigal limestones of the Casaio Formation (northern Central Iberian Zone).

Figure 4. Pie charts with relative abundance of conodont genera in the lower *Amorphognathus ordovicicus* Zone of regions discussed in the text (see text for references).

Sagittodontina robusta-Scabbardella altipes Biofacies, which is known from Thuringia (Knüpfer 1967, Fuchs 1990, Ferretti & Barnes 1997), Libya (Bergström & Massa 1992), Portugal (Sarmiento *et al.* 2001), Spain (Carls 1975, Sarmiento *et al.* 2011, and references therein), and NW France (Paris *et al.* 1981, Ferretti *et al.* 2014a), though with a different frequency distribution of the conodont species. The Carnic Alps, an important sector of the peri-Gondwana Mediterranean Province characterized by the Hamarodus europaeus-Dapsilodus mutatus*Scabbardella altipes* Biofacies (Serpagli 1967, Bagnoli *et al.* 1988, Ferretti & Schönlaub 2001), is linked with the conodont assemblage from the Casaio Formation by the common occurrence of *Amorphognathus*, *Drepanoistodus*, *Hamarodus*, *Icriodella*, *Panderodus*, *Sagittodontina* and *Scabbardella*.

Icriodella is generally a rare component of the *Sa-gittodontina robusta-Scabbardella altipes* Biofacies in Baltoscandia (Fig. 4), except during occasional immigration pulses (Sweet & Bergström 1984). Conversely, it

is far more frequent in the Late Ordovician warm-water environments of the British Isles, characterised by the Amorphognathus-Plectodina Biofacies, where it may comprise up to 10% of the faunal assemblage as in the Crûg Limestone (Lindström 1959, Orchard 1980, Savage & Bassett 1985). Icriodella and Panderodus are typical components of Late Ordovician-Llandovery shallowshelf biofacies (Aldridge & Jeppsson 1984, Sweet & Bergström 1984, Watkins & Kuglitsch 1997, Barnes 2019). The slightly older (Oandu Stage) Phragmodus undatus-Icriodella-Plectodina Biofacies of Baltoscandia is characterised by warm-water conodont taxa associated with bahamitic limestones (Sweet & Bergström 1984). The ubiquitous general distribution of the coniform genera Panderodus and Drepanoistodus in the Vauréal Formation of Anticosti Island, Quebec, is prone to reflect its pelagic habit of life (Nowlan & Barnes 1981, Barnes 2019).

In the North American Late Ordovician, Amorphognathus species are frequently associated with rather deep water deposits (e.g. Sweet & Bergström 1984). For instance, the shallow shelf facies of the Midcontinent Realm in the Canadian Shield, characterised by *Oulodus*, Aphelognathus, Plectodina, Phragmodus and Rhipidognathus, records brief invasions of Amorphognathus, Icriodella and Periodon (North Atlantic Province species), at times of maximum transgression of cooler Iapetus waters (Sweet et al. 1971, Barnes & Fåhræus 1975, Barnes 2019). However, Amorphognathus species in the Vauréal Formation follow an opposite pattern, with a much higher abundance in inner sublittoral than outer sublittoral environments (Zhang et al. 2006). As Amorphognathus is also common in distal, graptolite-bearing environments of the Baltic region, it is possible that the distribution of Amorphognathus was more dependent on water temperature than on water depth. This is supported by the general palaeogeographic distribution of the Katian conodont faunas, as distant regions with variable environments may share fairly similar conodont assemblages (e.g. Sweet & Bergström 1984).

Based on the possible stenothermal character of *Icriodella*, the *Icriodella-Sagittodontina-Amorphognathus* Biofacies here proposed may either represent a migration episode associated with climate amelioration in the polar to circumpolar regions (*e.g.* early Boda warming *sensu* Melchin *et al.* 2013) or, alternatively, a lower latitude

Figure 5. Upper Ordovician conodont biostratigraphic scheme of Iberia-Bohemia (South Gondwana) indicating the position of the Trigal limestones of the Casaio Formation, and its global correlation with the conodont successions established in other palaeogeographic domains. Compiled after Gutiérrez-Marco *et al.* (2017), Zhen & Percival (2017) and Zhang (2018), with the stage slices of Bergström *et al.* (2009) and the Ordovician Time Scale of Cooper *et al.* (2012).

	G	lob	al		United K	ingdom	Iberia - E	sohemia	Aust	tralia	Baltos	scandia	North	America		China	
	səir	əɓe	age ice	sein	Stade	Conodont	Stade	Conodont	Stade	Conodont	re Stade	North Atlantic	riês Stade	N. America	n _{nt} Stage	North China	South China
-	əS	stS	IS PIS	9S		Zone		Zone		Zone	es.	Conod.Zone	əS	Conod.Zor	le	C. Zone	C. Zone
145-		.'iH	Hi1 Hi1		Hirnantian		Hirnantian			ć	Porkuni	<u>Noixodontus</u>	Gamach	ian Aphelogne shatzeri	t. Hirnantian	ć	
Т				llib	Rawtheyan	Amorph.		Amorph.	Bolindian -			Amorph.	UE	Aphelogna	f. Chiantand	A.zuoquensis	Amorpn.
1	u		Ka4	us⊁			Kralodvorian			Anhelognat	یا التوار		sitei <u>;</u> -	divergens		A.divergens	ordovicicus
	вi			1	Caulleyan	ordovicicus		ordovicicus		arandis	3Н	ordovicicus	nnix Kichmon	dian Aphelogna	t. kiangian	Aphelognat.	0,000,000
	С	UE	Ka3	~	Pusgillian		Trigal lim	estones -	ľ	0	:		pui			grandis	
1	İΛ	sitež	Ka2							Tao. tumidus-	Vormsi		O Maysvill	ian <u>Ou robust</u> u	হা	Y.yaoxianensi	Protop.
450-	o p	К			Streffordiar	Amorph.		Amorph.	Factonian .	Too blonding	Rakvere	Amorph.	Edenia	in velicuspis		Yoaxiangnathus neimenguensis	Hamarodus
1	٦					superbus	5	superbus		Idu. Vidi uus		superpuls		Balndina		Balndina	hrominanous
	0		Ka1	-	Chenevan					Tao. phillipi	-		Chatfield	tian confluens		confluens	previrameus
Г	J (oop			Berounian		T	Ph. undatus		- Balt.	Kial	PI. tenuis	Neichian-	Ph. undatus	Baltoniodus
Ţ	эc			ele		Amorph	Ε	Amornh		- Tas. careyi	n.	in alobatus	ver	PTI. UNUGIL	shanian	Deledelle	alohatus
455-	d d	uei	Sa2	SO.	Burrellian	turnor por	=	transmeis		B. compressa	ιΛ	J	łoM	compress	G	compressa	
	Π	qp				IVACICIUSIS		IN ACT CLISIS	Gisbornian		Haljala	B. gerdae	Turinia	In E.quadrydacti	INS	E.quadrydactilus	Baltoniodus
		ue								~		ų -		Pl.acuelea	ta	Pl.acueleats	variabilie
1		S	C		Aurelucian		-					A B. variab.				D opposite of	
-			0.9	_	5	P. anserinus	Dobrotiv.	P. anserinus		P. anserinus	PUKIUSE	P. anserinus	AVIIIE OCK	all Call.Swee	le	r.anocinuo	P. anserinus

palaeogeographic position for the northern Central Iberian Zone within the northern Gondwanan margin. Accordingly, the glacial-related Rozadais Formation, which overlies the Casaio Formation in the Truchas Syncline, includes cryptostomate bryozoan in calcareous pebbles that suggest relatively warm waters, and resemble others assemblages recovered in NW France, Germany, Argentina, and the Pelmatozoan Limestone of the Ossa-Morena Zone (N. Spjeldnaes *in* Sarmiento *et al.* 1999).

The record of A. ordovicicus in the Trigal limestones of the Casaio Formation implies deposition during the homonymous biozone, of late Katian age (Ka3-Ka4, Fig. 5). Refinement of the age comes from the composition of the conodont assemblage, which allows for biostratigraphic correlation with the Kalkbank of Thuringia (Knüpfer 1967, Fuchs 1990, Ferretti & Barnes 1997), and the broadly coeval Sholeshook Limestone of Wales, which Ferretti et al. (2014b) assigned to the lower A. ordovicicus Zone, in agreement with previous trilobite, graptolite, and chitinozoan data (Fig. 5). Specifically, additional time constraints are provided by Icriodella iberiensis sp. nov., which occurs in the upper levels of the "Bancos Mixtos", provisionally assigned to the A. superbus Zone (del Moral & Sarmiento 2008), and to the A. superbus Zone of the Nabiullino Formation of the Southern Urals (Mavrinskaya & Yakupov 2016). It is also associated with typical conodont assemblages of the A. ordovicicus Zone in the Urbana Limestone of the southern Central Iberian Zone (del Moral & Sarmiento 2008), and of the Sholeshook Limestone of Wales (Ferretti et al. 2014b). A thorough revision of the collections containing Icriodella iberiensis sp. nov. would help to refine its specific biostratigraphical range and geographical dispersion.

The rare occurrence of warm-water *Panderodus* in our samples is consistent with the opposite large contributions of the cold-water *Scabbardella*, as observed in the upper part of the Mójcza succession (Dzik 1998). On the other hand, *Hamarodus brevirameus* (Walliser 1964) is widely distributed, though with variable abundance, in Late Ordovician rocks from Europe (Bergström & Ferretti 2014). It is also scarcely represented in the North American Midcontinent domain (Ferretti *et al.* 2014b), whereas it characterises the early Katian in South China (Wang *et al.* 2019). *Dapsilodus*, a coniform genus generally present in the Katian successions from Baltoscandia, the British Isles and North America, is absent in our samples and in the meridional outcrops of the Central Iberian Zone (del Moral & Sarmiento 2008).

A Q-mode cluster analysis of conodonts at generic level (n = 35) from the Casaio Formation, the Urbana Limestone from the southern Central Iberian Zone (del Moral & Sarmiento 2008), the Kalkbank of Thuringia (Ferretti & Barnes 1997), southern Sardinia (Ferretti & Serpagli 1991, 1998), the Uqua Formation of the Carnic Alps (Serpagli

1967, Bergström & Ferretti 2014), the upper Slandrom Limestone of Siljan (south-central Sweden, Baltoscandia; Ferretti et al. 2014b), the Sholeshook and Crûg limestones from South Wales (Savage & Bassett 1985, Ferretti et al. 2014b), the Cautley Mudstone (Orchard 1980) and the Keisley Limestone (Bergström & Ferretti 2014) of N England, and the Portrane Limestone from Ireland (Ferretti et al. 2014c) is presented in Fig. 6. Among the conodont faunas from the regions listed above, we use for comparison the North American faunas from the upper Dubuque Formation from Iowa (Red River Province; Ferretti et al. 2014b) and the Vauréal Formation of the Anticosti Island, eastern Canada (Nowlan & Barnes 1981). Clustering was conducted using the UPGMA method and the Jaccard index was adopted to measure similarity (c = 0.90).

The algorithm numerically confirms the strong similarity of the conodont assemblage from the Casaio Formation to the Thuringian conodont faunas and, to a lesser extent, to the faunas present in the Urbana Limestone and Sardinia (Fig. 6), all of them characteristic of the Mediterranean Province of the North Atlantic Realm (Sweet & Bergström 1984, Ferretti & Serpagli 1998). The British Province conodont faunas (Cautley, Keisley, Portrane, Sholeshook) cluster along with those from Siljan (Baltoscandia Province), exhibiting a considerable similarity for the North Atlantic Realm. The conodont fauna from the Uqua Formation of the

Figure 6. Cluster analysis (UPGM) of Katian localities at genera level (see text for references).

Carnic Alps (Mediterranean Province) occurs associated with both the British and Baltoscandia provinces as well, verifying previous affinity observations (Ferretti & Serpagli 1998). On the other hand, the low-latitude North American Midcontinent Realm (Sweet & Bergström 1984, Bergström & Ferreti 2014) is represented by the conodont faunas from Iowa and Anticosti, which cluster along with those from the British Crûg Limestone.

Systematic palaeontology

The conodont species obtained from the Trigal limestones of the Casaio Formation, and their frequency per sample, are listed in Tab. 1. Many of the species are well-known taxa so only a short comment with the Linnean taxonomy is provided, along with illustrations of representative conodont elements. Note that only key identifications and most recent review studies are given in the synonymy lists.

Phylum Chordata Bateson, 1886 Class Conodonta Eichenberg, 1930 Order Belodellida Sweet, 1988 Family Belodellidae Khodalevich & Tschernich, 1973

Genus Walliserodus Serpagli, 1967

Type species. – Acodus curvatus Branson & Branson, 1947.

Walliserodus cf. *debolti* Serpagli, 1967 Figure 7K, O

Remarks. – Two acodiforms, with a nearly symmetrical conspicuous costa on each lateral side, keeled anterior and posterior margins, and laterally flattened, were recovered in our material. These elements resemble the specimen illustrated by Serpagli (1967) as *W. debolti* (Rexroad) s.f. (pl. 31, fig. 1a–c). Cooper (1975) described *Walliserodus curvatus* in terms of multielement taxonomy, consisting of *Acodus curvatus* s.f. Branson and Branson, *Paltodus debolti* s.f. Rexroad and other form species. He also observed that *W. debolti* (Rexroad) *sensu* Serpagli shows great morphologic variability and suggested that it is probably more primitive than *W. curvatus*.

Order Prioniodontida Dzik, 1976 Family Balognathidae Hass, 1959

Remarks. – Several important genera are included within this family and merit brief discussion based on our collections. For instance, different criteria have been proposed to distinguish the different species of *Amorphognathus*. The specific differences are more

pronounced in the holodontiform (M) element, yet it is underrepresented in our samples. Savage & Bassett (1985) analysed A. superbus from Rhodes' (1953) type localities of the Cymerig Limestone, noting that M elements were rare and more plastic than earlier suspected. They proposed taking into account the morphology of the Pb elements to help to distinguish A. superbus from A. ordovicicus, as the Pb elements in the later are smaller and more robust than in earlier species of the genus. In A. superbus, Savage & Bassett (1985) distinguished: a) sinistral Pb elements of large size, deeply excavated, and with a strongly sinuous aboral inner margin; and b) dextral Pb elements with an inner aboral margin which is deeply indented but nonsinuous. Bergström & Massa (1992) and Ferretti et al. (2014b) reassessed the morphological characteristics of the M element as the main basis for species distinctiveness in Amorphognathus, independent of its frequency of occurrence. Based on their Welsh collection, Ferretti et al. (2014b) recognised an evolutionary trend in the denticle location of the M element of Amorphognathus duftonus Rhodes, from a lateral position in stratigraphically older specimens to a postero-lateral one in younger specimens. Following this criteria, Bergström & Ferretti (2014) concluded that Amorphognathus duftonus present in the Keisley Limestone represents the more advanced evolutionary stage.

On the other hand, the distinction between the Pb elements for the apparatus reconstructions of *Sagittodontina* and of *Amorphognathus* is not clearly established, producing a considerable level of confusion (see discussion by del Moral & Sarmiento 2008). Bergström (1983, fig. 4) first proposed the apparatus of *Sagittodontina bifurcata* Knüpfer s.f. (Fig. 8C, E), based on Libyan specimens, and suggested a similar oral-architecture to *Amorphognathus*. Fuchs (1990) reconstructed the apparatus of *Sagittodontina* after analysing the original collection of Knüpfer (1967) and additional material from Thuringia. Bergström & Massa (1992) discussed and illustrated the Libyan collection as *Sagittodontina robusta* (Fig. 8E), including the previous synonymy.

In the apparatus reconstruction of *Sagittodontina bifurcata* Knüpfer proposed by Dzik (1989), the morphotypes *S. robusta* Knüpfer, *S. bifurcata* Knüpfer, *S. r. flammeus* Knüpfer, *S. separata* Knüpfer, *S. unidentata* Knüpfer, *Sagittodontus dentatus* Ethington, *S. robustus* Rhodes, and *Lonchodus* sp. occupied the sp (Pa) position, whereas *Ambalodus triangularis* var. *indentatus* Rhodes (corrected genus name after Branson & Mehl original designation) occupied the oz (Pb) position (Fig. 8F). However, in the latter form species, the lateral process develops "at base of apical denticle" (Rhodes 1953), and not from the first denticle anterior to the cusp as illustrated by Dzik (1994, pl. 22, fig. 7). The later characteristic is instead more typical of *Rhodesognathus* (Bergström & Sweet 1966). Previously, Orchard (1980) considered *Ambalodus triangularis* var. *indentatus* Rhodes (1953) as the Pb element in the oral reconstruction of *A. superbus*, a criterion followed by Savage & Bassett (1985). Fuchs (1990) referred *Ambalodus triangularis* var. *indentatus* Rhodes *sensu* Knüpfer (1967) as the Pb element of *Sagittodontina robusta*. Both having a sinuous inner margin, the form species of Knüpfer (1967) is distinguished from Rhodes' holotype by the lack of basal ledge and the slightly larger anterior denticles.

Ferretti & Barnes (1997) restudied after Knüpfer (1967) the Kalkbank conodont faunas of Thuringia with additional material and adopting multielement taxonomy. They described as Pa elements conodonts of rather different shapes belonging to "the morphogenus 'Sagittodontina Knüpfer, 1967' with the cusp slightly inclined posteriorly", embracing specimens with a platform-like posterior process (pl. 4, fig. 2) or pyramidal-shaped elements devoid of denticles (pl. 4, fig. 9) in the same morphologic category, following previous criteria (Dzik 1989, Bergström & Massa 1992). Ferretti & Barnes (1997) noticed that their Pb elements (sinistral 'ambalodiform' elements, pl. 4, figs 5–7) in their reconstruction of Sagittodontina robusta could belong to a separate apparatus along with a dextral 'ambalodiform' element (pl. 2, figs 11-13) that was previously considered to belong to Rhodesognathus elegans. The Pb elements illustrated by Ferretti & Barnes (1997) fit better with Ambalodus triangularis var. indentatus Rhodes (1953) as observed by del Moral & Sarmiento (2008), whereas the 'ambalodiform' element is treated herein as part of the ?Baltoniodus sp. nov. A apparatus.

Bergström & Massa (1992) suggested that Noixodontus might be a junior synonym of Sagittodontina based on the striking similarity of the Sa-Sd and M elements. The authors also considered the remote possibility that, given the relatively small size of the Sagittodontina and Noixodontus collections, the Pa element included in the apparatus reconstruction of S. robusta could belong to another apparatus. Actually, the Libyan Pa element which they ascribed to Sagittodontina robusta (Bergström & Massa 1992, pl. 1, figs 13, 14; Fig. 8E) differs from Sagittodontina bifurcata Knüpfer s.f. (Fig. 8C) in that the anterolateral process is markedly directed downwards, producing a sort of deflected bowed anticusp, and in that the anterior process is apparently bar-type, with subequal sized denticles, and not distally decreasing in height. According to Dzik (1998), it resembles rather an element of Rhodesognathus from the Mójcza Limestone. McCracken (1987) regarded Noixodontus as a valid genus based on additional morphologic differences of the Pa and Pb elements.

In a more recent contribution, del Moral & Sarmiento (2008) provided an alternative apparatus reconstruction for

Sagittodontina, based on the southern Central Iberian Zone conodont collections. They suggested that Sagittodontina bifurcata Knüpfer s.f. corresponds with the Pa element whereas Sagittodontina unidentata Knüpfer s.f. represents the Pb morphotypes (Fig. 8C, D, G). Previously, del Moral (2007) also illustrated pastinate elements (interpreted as Sagittodontus dentatus Ethington sensu Knüpfer s.f., pl. 29, figs 13, 16) as P elements of Sagittodontina robusta, without giving further details. Our specimens from the Casaio Formation fit well with del Moral & Sarmiento's (2008) proposal, though the current level of knowledge impedes determining the full apparatus reconstruction for Sagittodontina, and we do not discard the possible presence of Pc or Pd morphotypes pairs in Sagittodontina as recognised in others balognathid natural assemblages (Aldridge et al. 1995, 2013).

On the other hand, given the poor preservation of our material, the number of S elements in *Sagittodontina* is probably overestimated by including ramiform elements of *Amorphognathus* with the proximal section broken. The latter could be clearly distinguished if they preserved the characteristic hindeodellid denticulation (though Bergström & Leslie 2010, illustrated S-series elements devoid of it in late forms of *A. ordovicicus* from its type area.

Ferretti & Barnes (1997) suggested that the fragments classified as *Clavohamulus* n. sp. 1 and 2 by Knüpfer (1967) probably represent broken ramiform processes of *Sagittodontina*. We agree in that they are probably fragmentary in origin, although is hard to assign them to a particular genus, as determined in our samples (Fig. 11I, J). Particularly, *Clavohamulus* sp. 1 Knüpfer has the cusp so strongly curved inwards that it reflects a different style of denticulation (note that the original term *Clavohamulus* designates an upper Furongian–lower Tremadocian genus). Dzik (1989) also suggested that *Istorinus erectus* Knüpfer (1967) may represent broken fragments of *Sagittodontina*, a proposal refuted by Bergström & Massa (1992) and subsequent authors by the finding of complete specimens, as in our samples.

Genus Amorphognathus Branson & Mehl, 1933

Type species. – Amorphognathus ordovicicus Branson & Mehl, 1933.

Amorphognathus ordovicicus Branson & Mehl, 1933 Figure 7A–H, J, L

- 1999 Amorphognathus ordovicicus Branson & Mehl. Sarmiento et al., pp. 490, 492, 494, pl. 1, figs 1–4.
- 2008 *Amorphognathus ordovicicus* Branson & Mehl. del Moral & Sarmiento, pp. 210–216, pl. 5, figs 1–21 (full synonymy).

Figure 7. Late Katian conodonts from the Trigal limestones of the Casaio Formation, northern Central Iberian Zone. All elements are from sample CA2.2, except for V from sample CA2. • A–H, J, L, *Amorphognathus ordovicicus* Branson & Mehl; A – Pa element, MGM-8209O-1; B – Pa element, MGM-8209O-2; C – blade of Pa element, MGM-8209O-3; D – M element, MGM-8209O-4; E – Pb element, MGM-8209O-5; F – Pa element, MGM-8209O-6; G – Pa element, MGM-8209O-7; H – Pb element, MGM-8209O-8; J – blade of Pa element MGM-8209O-9; L – Sc element, MGM-8209O-10. • I – *Amorphognathus* sp. A del Moral, Pb element, MGM-8209O-11. • K, O – *Walliserodus* cf. *debolti* Serpagli; K – MGM-8209O-12; O – MGM-8209O-13. • M–N, P–X – *Sagittodontina bifurcata* Knüpfer; M – Pa element, MGM-8209O-14; N – Pa element, MGM-8209O-15; P – Pa element, MGM-8209O-16; Q – Pa element, MGM-8209O-17; R – Pb element, MGM-8209O-18; S – Sb element, MGM-8209O-19; T – Sa element, MGM-8209O-20; U – ?Pc element, MGM-8209O-21; V – ?Pc element, MGM-8208O-1; W – ?M element, MGM-8209O-22; X – ?S element MGM-8209O-23. All scale bars are 100 µm.

2014b Amorphognathus ordovicicus Branson & Mehl. – Ferretti et al., p. 819, figs 70, 12a–e.

Remarks. – The M (holodontiform) elements recovered in our collection are distinguished by a robust, erect cusp, and an anterolateral process carrying a denticle (Fig. 7D). The prominent cusp and the poorly developed processes agree morphologically with the late Katian representatives of the species (Bergström & Leslie 2010, Ferretti *et al.* 2014b). Fragments of Pa elements are frequent in our samples, of both blade and non-blade types, as described by Bergström & Sweet (1966). Dextral and sinistral Pb elements may vary largely in size and in the angle between the anterior and posterior processes. Denticulation in the posterior process of the Pb element may be of relatively uniform size or present a large denticle surrounded by smaller ones (Fig. 7E).

Amorphognathus sp. A del Moral (2003) Figure 7I

2003 Amorphognathus sp. A. - del Moral, p. 279, pl. 1, fig. 5.

Description. – An ambalodiform element characterised by a large denticle in the posterior process.

Remarks. – Del Moral (2003) described a similar element from the Katian "unidad calcárea superior" of the Cantabrian Zone, yet with the basal margin nearly straight. The limited number of specimens recovered in our material inhibits making further inferences.

Genus Sagittodontina Knüpfer, 1967

Type species. - Sagittodontina robusta s.f. Knüpfer, 1967.

Sagittodontina bifurcata Knüpfer, 1967

Figures 7M, N, P–X; 8C, G, I

- 1997 Sagittodontina robusta Knüpfer. Ferretti & Barnes, pp. 30–32, pl. 4, figs 1–23.
- 1999 Sagittodontina robusta Knüpfer. Sarmiento et al., pp. 495–496, pl. 1, figs 6–17, pl. 2, figs 1–5.
- 2008 Sagittodontina robusta Knüpfer. del Moral & Sarmiento, pp. 223–228, pl. 7, figs 1–21 (full synonymy).
- 2014a Sagittodontina robusta Knüpfer. Ferretti et al., fig. 3w, z-af.

Remarks. – We adopt here the original multielement designation of Bergström (1983) and Dzik (1989), based on the platform-equipped Pa element of Knüpfer (1967), and the apparatus reconstruction of del Moral & Sarmiento (2008; Fig. 8G). The *Sagittodontina* specimens

illustrated by Paris *et al.* (1981, pl. 2, figs 12, 13), del Moral & Sarmiento (2008), and Ferretti (1998, pl. 2, figs 1, 2) verify the symmetry of the Pb elements in the *Sagittodontina* apparatus. The pastinate elements ascribed to *Sagittodontina* (*e.g.* Dzik 1989, Fuchs 1990) may either represent a Pc element or, actually, belong to *Noixodontus* or a related genus. A few robust ramiform elements recovered are tentatively assigned to this species.

"Sagittodontina" sp.

Figures 8A, E, H; 9A-K

? 1992 Sagittodontina robusta Knüpfer. – Bergström & Massa, pp. 1338–1339, pl. 1, figs 6–14.

Description. - Pa elements characterised by a long anterior process of relative uniform high, carrying >8 subcrect denticles fused at its base. The anterior process is bar-like, aligned with the posterior process and softly curved; it is directed downwards at an angle of ca. 15°. The cusp is high and erect. The lateral process deflects downwards (mainly) and backwards from the anterior region of the cusp, producing a sort of anticusp, pointing outwards. The lateral process is short and may carry few denticles. In oral view, the Pa element gradually broadens from the anterior region to the posterior one. The posterior process lacks denticles close to the cusp and broadens posteriorly. The Pb element is scaphate, of triangular to crescent-shape in lateral view. It has a large basal sheath lateraly flattened, particularly on the anterior process. The latter carries seven-twelve proclined denticles. The outer lateral process develops as a bulge or adentate keeled margin from the anterior section of the cusp. In oral view, the posterior process is straight, lined with the cusp and the anterior process. It carries >5denticles, though the more proximal are rudimentary. In complete specimens, an adentate posterolateral crease is observed running weakly from the inner posterior section of the cusp to a more defined edge in the basal sheath. The latter is more developed on the inner side of the Pb element, presenting a subsquared shape.

Remarks. – The posterior section of the Pa element illustrated as *Sagittodontina robusta* by Bergström & Massa (1992, pl. 1, figs 13, 14) is similar to the type material (*S. bifurcata* s.f.) illustrated by Knüpfer (1967, pl. 7, fig. 5), but clearly different by its anterior bar (Fig. 8C, E). Therefore, it is possible that the Pa element in the apparatus reconstruction of Bergström & Massa (1992) does not correspond with the type material from Thuringia, and then, would require a new formal designation. Moreover, the Pb element is possibly represented by *Ambalodus triangularis indetantus* Rhodes *sensu* Knüpfer (1967, pl. 9, fig. 1), which differs from Rhodes' type specimen (Rhodes, 1953, pl. 20, figs 35–37, 56) by the

Figure 8. Proposed oral apparatus reconstructions for the genus *Sagittodontina* Knüpfer (1967), based on material originally described as form species from the Kalkbank Formation of Thuringia (A–D), and supported by studied collections from Libya (E), Thuringia (F), South Central Iberian Zone (G), and the conodont elements from the Casaio Formation, Northern Central Iberian Zone (H–I). The black arrows indicate how the form species of Knüpfer (1967) represent Pa or Pb elements in the alternative multielement hypothesis, not always supported by morphometrically comparable elements. The white arrows indicate the possible synonymy of *S. bifurcata* sensu Bergström (1983) with *"Sagittodontina*" sp. from the Casaio Formation.

thinner walls and the lack of basal ledge. Despite the absence of complete Pa elements in the Casaio Formation, its general shape suggests it is conspecific with the Libyan material.

Family Prioniodontidae Bassler, 1925

Genus Baltoniodus Lindström, 1971

Type species. – Prioniodus navis Lindström, 1954.

?Baltoniodus sp. nov. A

Figure 9L–Q, S–T

1967 Ambalodus triangularis triangularis Branson & Mehl. – Knüpfer, p. 20, pl. 9, fig. 2a, b.

- ? 1985 Amorphognathus superbus Rhodes. Bergström & Orchard, p. 60, pl. 2.4, fig. 1 (only).
- ? 1990 *Rhodesognathus elegans* (Rhodes). Fuchs, p. 206, pl. 6, figs 3, 4, pl. 7, fig. 5.
 - 1997 'ambalodiform' element. Ferretti & Barnes, pp. 36, 38, pl. 2, figs 11–13.
 - 1999 Amorphognathus sp. Sarmiento et al., p. 494, pl. 1, fig. 5.
 - 2008 Amorphognathus aff. ordovicicus Branson & Mehl. del Moral & Sarmiento, p. 216, pl. 6, fig. 3 (only).
- 2008 Amorphognathus? sp. Sarmiento et al., p. 88, pl. 2, fig. 5 (only).

Description. – Pa element pastinate, characterised by a long, straight and denticulated anterior bar. The cusp is stout and slightly proclined or reclined. The anterior

outer lateral process deflects at ca. 45° from the anterior edge of the cusp and progressively curves down and backwards. It is short and may carry small denticles. The posterior process is bar-like, rudimentary to denticulated. The angle between the anterior and posterior processes varies between ca. 75–125°. Only dextral Pa forms are known. Pb elements characterised by a long, generally curved anterior process with proclined denticles and by a posterior platform (rarely preserved), with anterolateral, posterior and posterolateral processes. The latter is delicately defined as a small sulcus in the basal cavity and in the oral surface by small, aligned denticles, diverging from approximately the first denticle of the posterior process.

Remarks. – Pb elements of *?Baltoniodus* sp. nov. A are easily distinguished from their homologous elements in *"Sagittodontina"* sp. as the first possess a less flattened aspect and a less flaring basal sheath. P elements in *?Baltoniodus* sp. nov. A may also resemble *Rhodeso-gnathus*, though in the latter the anterolateral process branches from the first denticle anterior to the cusp and not as a rib from the anterior region of the cusp as it occurs in *?Baltoniodus* sp. nov. A. In addition, the anterior basal ledge is apparently not conspicuous in all the specimens, as illustrated by Ferretti & Barnes (1997, pl. 2, figs 11–13).

Family Icriodontidae Müller & Müller, 1957

Genus Icriodella Rhodes, 1953

Type species. – Icriodella superba Rhodes, 1953.

Remarks. - Rhodes (1953) defined the genus Icriodella during the period of conodont form taxonomy, based on the characteristic platform Pa element with two rows of denticles on the anterior process (icrions). Bergström & Sweet (1966) recognised a quinquimembrate apparatus of Icriodella, incorporating Pb (pyramidal pastinate), M (makellate) and Sa and Sb elements (alate and tertiopedate) to the oral reconstruction. Aldridge et al. (2013) described Notiodella keblon based on natural assemblages recovered from the Hirnantian Soom Shale of South Africa, recognising a 17-element apparatus. Aldridge et al. (2013) distinguished Notiodella from Icriodella based on the M element morphology, but leaving open its possible junior synonymy, which was later demonstrated by Bergström & Ferretti (2014). Following the proposal of Dzik (2015), Icriodella consists of 2 P₁ (Pa), 2 P₂ (Pb), 2 pairs of M, 1 unpaired S (S₀), and 8 paired S (S_1 – S_4) elements.

Icriodella iberiensis sp. nov.

Figure 10A-I, K

- 1999 *Icriodella* sp. Sarmiento *et al.*, pp. 496, 497, pl. 2, figs 12, 15.
- 2007 *Icriodella superba* Rhodes. del Moral, pp. 225–227, pl. 5, fig. 1, pl. 33, figs 1–17.
- 2008 Icriodella superba Rhodes. del Moral & Sarmiento, pp. 230–232, pl. 8, figs 1–15.
- 2014b Icriodella superba Rhodes. Ferretti et al., fig. 13u-v.
- 2016 Icriodella superba Rhodes. Mavrinskaya & Yakupov, pl. 1, fig. 15.

Types. – Holotype: P_1 element MGM-8209O-43 (Fig. 10B), Paratypes: P_1 elements MGM-8209O-42 (Fig. 10A), MGM-8209O-44 (Fig. 10C), MGM-8209O-45 (Fig. 10D), MGM-8209O-47 (Fig. 10F). Sample CA2.2, Trigal limestones, Casaio Formation.

Etymology. – After the Iberian Massif, from where it is defined.

Diagnosis. – A species of *lcriodella* in which the P_1 element is characterized by a short posterior process, measuring *ca.* 1:5 or less of the length of the anterior process. The posterior process may carry up to four rudimentary denticles, whereas the elongated anterior process carries up 12 discrete denticles distributed along two rows, generally aligned in pairs. The basal cavity is deep and occupies the entire length of the element.

Description. – The P_1 element is narrow, pastiniscaphate, with a long anterior process and short lateral and posterior processes. The longer process is broad and tapers gradually anteriorward. It may bear up to 12 denticles; these may present different arrangements but characteristically occur in pairs aligned perpendicular to each lateral margin. Unpaired, centred denticles are common towards the narrow anterior extremity of the P_1 element. A single denticle may also occur at approximately halfway between the cusp and the paired-rows of denticles. Centreddenticles may appear in other parts of the anterior process but are less frequent. The cusp is double the anterior denticles in height. It is reclined, laterally compressed, and presents a well-developed external lateral costa that projects into a process, but rarely preserved. The posterior process is short and bears up to four short, basally-fused denticles, the uppermost is located at ca. mid-height of the cusp. Basal cavity is well developed along the entire length of the element. The P₂ element is pyramidal pastinate, defined by anterior, posterior and anterolateral basal processes. The inner flank is flat whereas the outer and the anterior flanks are slightly concave. The angle between the anterior and the posterior margins ranges from $20-40^{\circ}$, defining a deep basal cavity. Cusp height is extremely

Figure 9. Late Katian conodonts from the Trigal limestones of the Casaio Formation, northern Central Iberian Zone. The elements C and Q are from sample CA2, the remainder from sample CA2.2. \bullet A–K – "*Sagittodontina*" sp.; A – Pa element, MGM-8209O-24; B – Pb element, MGM-8209O-25; C – Pb element, MGM-8208O-2; D – Sa element, MGM-8209O-26; E – Sa element, MGM-8209O-27; F – Pb element, MGM-8209O-28; G – Sb element, MGM-8209O-29; H – Sc element, MGM-8209O-30; I – Sd element, MGM-8209O-31; J – Sd element, MGM-8209O-32; K – Sb element, MGM-8209O-33. \bullet L–Q, S, T – *?Baltoniodus* sp. nov. A; L – Pa element, MGM-8209O-34; M – Pb element, MGM-8209O-35; N – Pb element, MGM-8209O-36; O – Pa element, MGM-8209O-37; P – Pa element, MGM-8209O-38; Q – ?M element, MGM-8208O-3; S – Pa element, MGM-8209O-39; T – ?Sa element, MGM-8209O-40. \bullet R – *Eocarniodus aff. gracilis* (Rhodes), ?Sb element, MGM-8209O-41. All scale bars are 100 µm.

variable. The M elements are subtriangular in lateral and oral views, producing three slightly concave walls. Cusp is proclined and relatively short. Long anterior process carrying short, proclined denticles. No denticulation is discernible on posterior or outer-lateral process. Basal cavity deep, which extends under whole element. The S elements recovered closely resemble the P_2 element. They are tertiopedate, laterally compressed, triangular in lateral view, adenticulate, and have a relatively short cusp. The lateral costa runs mid-way between the anterior and posterior processes.

Remarks. - P1 elements of Icriodella iberiensis sp. nov. are clearly discernible from typical populations of *I. superba* by the unequal length of the processes (Orchard 1980). The P₁ element of *I. prominens* Orchard differs mainly from its homologous element in *I. iberiensis* by its larger cusp, more developed posterior process, and in the outline of the anterior process as seen in oral view. The P1 element of Icriodella sp. nov. A (Nowlan 1983) from the Grog Brook Group, New Brunswick, also presents a short posterior process, yet the denticulation on the anterior margin is rudimentary or absent and replaced by transverse ridges. Furthermore, the P₁ element of *I. iberiensis* sp. nov. differs conspicuously from the P₁ element of *I. rhodesi* Bergström & Ferretti (2014) in the height of the cusp and in the style of denticulation of the anterior process, characterised by transversal ridges. Savage & Bassett (1985) illustrated as *I. superba* a P_1 element with a short posterior process (pl. 82, fig. 30) that resembles I. iberiensis sp. nov.; however, the former has small transverse ridges connecting the anterior denticles, and the aboral margin is situated higher at the posterior bar.

Microstructure: Sarmiento (1993) described a delicate striation in the P_2 elements recovered from the Urbana Limestone, later verified by del Moral (2007), and confirmed also in our specimens.

Order Belodellida Sweet, 1988 Family Ansellidae Fåhræus & Hunter, 1985

Genus Hamarodus Viira, 1974

Type species. – Distomodus europaeus Serpagli, 1967.

Hamarodus brevirameus (Walliser, 1964)

Figure 10J, L-O

- 1964 ?Neoprioniodus brevirameus n. sp.; Walliser, p. 47, pl. 4, fig. 5, pl. 29, figs 5–10 (Sc element).
- 1967 Distomodus europaeus n. sp.; Serpagli, p. 64, pl. 14, figs 1–6 (P element).
- 1994 Hamarodus brevirameus (Walliser). Dzik, p. 111, pl. 24, figs 14–19, text–fig. 31a.

- 1998 Hamarodus europaeus (Serpagli). Ferretti & Serpagli, pp. 226–228, pl. 2, figs 1–14.
- 2008 *Hamarodus europaeus* (Serpagli). del Moral & Sarmiento *et al.*, pp. 184–188, pl. 1, figs 3–22, pl. 2, figs 1–3 (full synonymy).
- 2014b *Hamarodus brevirameus* (Walliser). Ferretti *et al.*, fig. 13a–c, e–g, i, j.
- 2014 *Hamarodus brevirameus* (Walliser). Bergström & Ferretti, fig. 11a–h.

Remarks. – Dzik (1994) considered *Hamarodus europaeus* as junior subjective synonym of *H. brevirameus* (Walliser) after reassessing the ramiform elements found by Walliser (1964) in the Cellon Section in the Carnic Alps. According to del Moral (2007), the differences between the Pa and Pb elements (*e.g.* Dzik 1989, Orchard 1980) are subtle and do not justify its differentiation. Del Moral (2007) provided a detailed description of the components of the apparatus of *Hamarodus europaeus*, which contains P, M, Sa, Sb, Sc, and Sd elements.

Order Panderodontida Sweet, 1988 Family Panderodontidae Lindström, 1970

Genus Panderodus Ethington, 1959

Type species. – Paltodus unicostatus Branson & Mehl, 1933.

Panderodus gracilis (Branson & Mehl, 1933) Figure 10P, Q

- 1933 *Paltodus gracilis*; Branson & Mehl, p. 108, pl. 8, figs 20, 21.
- 1995 Panderodus gracilis (Branson & Mehl). Trotter & Webby, p. 483, pl. 5, figs 1–4, 9, 10, 12–15.
- 2008 *Panderodus gracilis* (Branson & Mehl). del Moral & Sarmiento, pp. 200, 202–204, pl. 4, figs 1–11 (full synonymy).

Remarks. – A symmetrical coniform element with a lateral costa on each side, fine striations and bifurrowed was recovered from the Casaio Formation, with both anterior and posterior margins rounded. A second element, despite being slightly deformed, is characterised by a proclined cusp, striae, and two weakly developed panderontid sulcus asymmetrically located, and rounded anterior and keeled posterior margins. The first element would correspond to the aequaliform element, and the second one to the graciliform element, according to the descriptive terminology of Sansom *et al.* (1994).

Panderodus panderi (Stauffer, 1940)

Figure 10V

Figure 10. Late Katian conodonts from the Trigal limestones of the Casaio Formation, northern Central Iberian Zone. The elements G and O are from sample CA2, the remainder from sample CA2.2. • A–I, K – *Icriodella iberiensis* sp. nov.; A – P₁ element, MGM-8209O-42 (paratype); B – P₁ element, MGM-8209O-43 (holotype); C – P₁ element, MGM-8209O-44 (paratype); D – P₁ element, MGM-8209O-45 (paratype); E – M element, MGM-8209O-46; F – P₁ element, MGM-8209O-47 (paratype); G – P₂ element, MGM-8208O-46; H – P₂ element, MGM-8209O-47 (paratype); G – P₂ element, MGM-8208O-47; H – P₂ element, MGM-8209O-48; I – S element, MGM-8209O-49; K – P₂ element, MGM-8209O-50. • J, L–O – *Hamarodus brevirameus* (Walliser); J – P element, MGM-8209O-51; L – Sc element, MGM-8209O-52; M – M element, MGM-8209O-55; Q –aequaliform element, MGM-8209O-56. • R, S, U – *Drepanoistodus gracilis* (Branson & Mehl); P – graciliform element, MGM-8209O-55; Q –aequaliform element, MGM-8209O-56. • R, S, U – *Drepanoistodus suberectus* (Branson & Mehl); R – Sa element, MGM-8209O-57; S – P element, MGM-8209O-58; U – S element, MGM-8209O-59. • T – "*Drepanodus suberectus*" (Branson & Mehl) *sensu* Rexroad, 1967 s.f., MGM-8209O-60. • V – *Panderodus panderi* (Stauffer), MGM-8209O-61. • W–AC – ?*Drepanoistodus* sp.; W – S element, MGM-8209O-62; X – ?Sa element, MGM-8209O-63; Y – S element, MGM-8209O-64; Z – S element, MGM-8209O-65; AA – S element, MGM-8209O-66; AB – S element, MGM-8209O-67; AC – M element, MGM-8209O-68. All scale bars are 100 µm.

- 1940 Paltodus panderi; Stauffer, p. 427, pl. 60, figs 8, 9.
- 1979 *Panderodus panderi* (Stauffer). Sweet, p. 64, fig. 7.2–7.6, 7.10.
- 1981 *Panderodus panderi* (Stauffer). Nowlan & Barnes, p. 17, pl. 6, figs 3–4, 14.
- ?2008 Panderodus panderi? (Stauffer). del Moral & Sarmiento, pp. 205, 206, pl. 2, figs 12, 13 (full synonymy).

Remarks. – The recovered element is characterised by an erect cusp, short base, a weakly defined sulcus proximate to the inner anterior margin, and the panderodontid sulcus located in a median position on the outer face of the element. The strong curvature of the element, the basal thickening, and the posterior extension of the base is consistent with previous reports for this species.

Order Protopanderodontida Sweet, 1988 Family Drepanoistodontidae Bergström, 1981

Genus Drepanoistodus Lindström, 1971

Type species. – Oistodus forceps Lindström, 1954.

?Drepanoistodus sp.

Figure 10W-AC

1997 Drepanoistodus? sp. – Ferretti & Barnes, p. 33, pl. 5, figs 1–12.

Description. – Simple cone, erect to slightly recurved with a large basal cross-section. Elements laterally compressed with weakly keeled anterior and posterior margins, and deep basal cavity. A rudimentary denticle or protuberance may occur low on the anterior margin. Oistodiform (M) element laterally compressed with a wide base and slightly geniculated.

Remarks. – The few elements recovered are consistent with the illustrated specimens from Thuringia (Ferretti & Barnes 1997), but do not allow reconstruction of its apparatus.

Family Protopanderodontidae Lindström, 1970

Genus Scabbardella Orchard, 1980

Type species. – Drepanodus altipes Henningsmoen, 1948.

Scabbardella altipes (Henningsmoen, 1948) Figure 11A–F

1948 Drepanodus altipes n. sp.; Henningsmoen, p. 420, pl. 25, fig. 14.

- 1980 Scabbardella altipes (Henningsmoen). Orchard, pp. 25, 26, pl. 5, figs 2–5, 7–8, 12, 14, 18, 20, 23, 24, 28, 30, 33, 35, text-fig. 4c (multielement taxonomy).
- 2008 Scabbardella altipes (Henningsmoen). del Moral & Sarmiento, pp. 189–192, pl. 3 , fig. 1–20.
- 2010 *Scabbardella altipes* (Henningsmoen). Rodríguez-Cañero *et al.*, fig. 5.9–5.12.
- 2015 Scabbardella altipes (Henningsmoen). Zhen et al., pp. 111–115, figs 13–15 (full synonymy).
- 2018 Scabbardella altipes (Henningsmoen). Zhang et al., fig. 3k–m.

Remarks. – Orchard (1980) recognised a seximembrate apparatus in *Scabbardella* composed of two drepanodiforms, two acodiforms and two distacodiforms elements, arranged in a symmetry transition series. Based on a large collection from the Wairuna Formation (middle Katian) of North Queensland, Zhen *et al.* (2015) distinguished longbased (M1) and short-based (M2) drepanodiform elements with smooth lateral faces, long-based symmetrical (Sa) and short-based slightly asymmetrical (Sd) distacodiform elements to a deep and narrow groove on each lateral side, and longbased (Sb) and short-based (Sc) acodiform elements with a deep and narrow groove on the external flank.

It is noteworthy that despite the pervasive cleavage that affects the specimens, fine longitudinal striations of *S. altipes* are still visible (Fig. 11B). This character helps to distinguish it from *Besselodus* and *Dapsilodus*, which are characterised by oblique fine striations on the anterior basal margin.

Order unknown Family unknown

"Drepanodus suberectus" (Branson & Mehl) sensu Rexroad (1967) s.f.

Figure 10T

- 1967 Drepanodus suberectus (Branson & Mehl). Rexroad, pp. 30, 31, pl. 2, fig. 4.
- 1981 "Drepanodus suberectus" (Branson & Mehl) (sensu Rexroad) s.f. – McCracken & Barnes, p. 76, pl. 7, fig. 43.
- 1986 Noixodontus girardeauensis (Satterfield). Amsden & Barrick, p. 68, pl. 7, fig. 8 (only).

Remarks. – As it was observed by McCracken & Barnes (1981) in the Ellis Bay Formation, simple cones from Silurian strata have been incorrectly referred to as *D. suberectus* s.f. because those elements are anteroposteriorly compressed rather than laterally compressed. Similar elements along with others corresponding to *Istorinus erectus* were interpreted by Amsden & Barrick (1986) as the morphotype A of *Noixodontus*. The single

Figure 11. Late Katian conodonts from the Trigal limestones of the Casaio Formation, northern Central Iberian Zone. The elements B, C, G, K and P are from sample CA2, the remainder from sample CA2.2. • A–F – *Scabbardella altipes* (Henningsmoen); A – acodiform, MGM-8209O-69; B – distacodiform, MGM-8208O-6; C – acodiform, MGM-8208O-7; D – distacodiform, MGM-8209O-70; E – acodiform, MGM-8209O-71; F – drepanodiform, MGM-8209O-72. • G–H, K – indeterminate conodont elements; G – MGM-8208O-8; H – MGM-8209O-73; K – MGM-8208O-9. • L – ramiform fragment, MGM-8209O-74. • I, J – "*Clavohamulus* sp. 1" Knüpfer; I – MGM-8209O-75; J – MGM-8209O-76. • M–O – *Istorinus erectus* Knüpfer; M – MGM-8209O-77; N – MGM-8209O-78; O – MGM-8209O-79. • P – gen. et sp. indet. A, MGM-8208O-10.

element recovered from the Casaio Formation does not allow to make further inferences.

Genus Eocarniodus Orchard, 1980

Type species. – Prioniodus gracilis Rhodes, 1955.

Eocarniodus aff. *gracilis* (Rhodes, 1955) Figure 9R

2014b *Eocarniodus* aff. *E. gracilis* (Rhodes). – Ferretti *et al.*, p. 825, fig. 10, fig. 16b–d, f–p, r–v (full synonymy).

Remarks. – A minute, robust element with thickened lateral margins was recovered from sample CA2. It is aborally deflected, probably an original character increased by deformation. It has anterior and posterior processes carrying basally fused denticles. Its general

aspect corresponds to the Sb? elements of *Eocarniodus* illustrated by Ferretti *et al.* (2014b).

Genus Istorinus Knüpfer, 1967

Type species. – Istorinus erectus Knüpfer, 1967.

Istorinus erectus Knüpfer, 1967 Figure 11M–O

- 1967 Istorinus erectus n. sp.; Knüpfer, p. 31, pl. 6, figs 4-6.
- ? 2000 Istorinus? sp. Furey-Greig, p. 138, fig. 5.16.
- 2008 Istorinus erectus Knüpfer. del Moral & Sarmiento, p. 233, pl. 2, figs 21–23.
- 2014a Istorinus erectus Knüpfer. Ferretti et al., fig. 31.
- 2014b Istorinus erectus Knüpfer. Ferretti et al., fig. 16a-e.
- ? 2014b Eocarniodus aff. E. gracilis (Rhodes). Ferretti et al., fig. 16k, l.

Remarks. – Following the descriptive classification of Ferretti & Barnes (1997), only the morphotype 2 of *Istorinus erectus* is present in the Casaio Formation, *i.e.* conodonts with triangular shape, straight base and anteroposteriorly compressed. A secondary denticle may emerge from the cusp itself or being discrete, small or up to half cusp height.

Gen. et sp. indet. A

Figure 11P

Remarks. – A single curved bar fragment with three widely spaced, suberect peg-like denticles was recovered. The basal cavity is well defined along the entire length of the fragment, distally reducing in size. By the characteristics of the fragment, it probably represents another conodont genus (*e.g. ?Oulodus, ?Plectodina*) in the Casaio Formation.

Conclusions

A reassessment of the conodont faunas of the Casaio Formation from the northern Central Iberian Zone not only confirms a late Katian Amorphognathus ordovicicus Zone depositional time for its meta-limestones, but confirms as well that the Katian conodont taxonomy and biostratigraphy is far from being stabilised, and that more studies for the refinement of the long-ranging Amorphognathus ordovicicus Zone and its faunas are required. In that sense, the different species of Icriodella, such as I. iberiensis sp. nov., which have wide palaeogeographic distribution, may provide additional tools to improve biostratigraphic resolution and regional correlations. Additionally, our taxonomic study notes the variety of elements that have been attributed to Sagittodontina, but which are difficult to reconcile with previous oral reconstructions, probably reflecting mixed generic assignments. Finally, the conodont faunas from the Casaio Formation provided additional clues on the timing and nature of the first pulse of Katian limestone deposition (Boda Event) in NW Spain.

Acknowledgements

Senior author greatly thanks CONICET and the Geology Department of the Oviedo University for a visiting research fellowship. Particular thanks are extended to C. Aramburu, F. Bastida, and L.P. Fernández for introducing him to the geology of Spain. J.L. Alonso and S. García-López provided insightful discussions and continuous support. We appreciate useful comments by the reviewers of the manuscript, A. Ferretti and P. Männik. We are indebted to C.R. Barnes, who provided extensive suggestions to improve this manuscript. This is a contribution to the IGCP 653, The onset of the Great Ordovician Biodiversification Event.

References

- ALDRIDGE, R.J. & JEPPSSON, L. 1984. Ecological specialists among Silurian conodonts. *Palaeontology 32*, 141–149.
- ALDRIDGE, R.J., MURDOCK, D.J.E., GABBOTT, S.E. & THERON, J.N. 2013. A 17-element conodont apparatus from the Soom Shale Lagerstätte (Upper Ordovician), South Africa. *Palaeontology* 56(2), 261–276. DOI 10.1111/j.1475-4983.2012.01194.x
- ALDRIDGE, R.J., PURNELL, R.J., GABBOTT, S.E. & THERON, J.N. 1995. The apparatus architecture and function of *Promissum pulchrum* Kovács-Endrödy (Conodonta, Upper Ordovician) and the prioniodontid plan. *Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences* 347(1321), 275–291. DOI 10.1098/rstb.1995.0027
- AMSDEN, T.W. & BARRICK, J.E. 1986. Late Ordovician-Early Silurian strata in the Central United States and the Hirnantian Stage. *Oklahoma Geological Survey Bulletin 139*, 1–103.
- ARAMBURU, C., MÉNDEZ-BEDIA, I. & ARBIZU, M. 2002. The Lower Palaeozoic in the Cantabrian Zone (Cantabrian Mountains, NW Spain), 35–49. In GARCÍA-LÓPEZ, S. & BASTIDA F. (eds) Palaeozoic Conodonts from Northern Spain. Cuadernos del Museo Geominero 1. Instituto Geológico y Minero de España, Madrid.
- BAGNOLI, G., FERRETTI, A., SERPAGLI, E. & VAI, G.B. 1988. Late Ordovician conodonts from the Valbertad Section (Carnic Alps). *Giornale di Geologia 60*, 138–149.
- BARNES, C.R. 2019. Impacts of climate-ocean-tectonic changes on early Paleozoic conodont ecology and evolution evidenced by the Canadian part of Laurentia. *Palaeogeography*, *Palaeoclimatology*, *Palaeoecology*. DOI 10.1016/j.palaeo.2019.02.018
- BARNES, C.R. & FAHRÆUS, L.E. 1975. Province, communities, and the proposed nektobenthic habit of Ordovician conodontophorids. *Lethaia* 8, 133–149.

DOI 10.1111/j.1502-3931.1975.tb01308.x

- BARROS LORENZO, L.C. 1989. Nuevos datos geológicos y cartográficos sobre el flanco Sur del Sinclinorio de Truchas (Ourense-León, NW de España). *Cuadernos do Laboratorio Xeolóxico de Laxe 14*, 93–116.
- BARTLETT, R., ELRICK, M., WHEELEY, J.R., POLYAK, V., DESROCHERS, A. & ASMEROM, Y. 2018. Abrupt global-ocean anoxia during the Late Ordovician–early Silurian detected using uranium isotopes of marine carbonates. *Proceedings of the National Academy of Sciences 115(23)*, 5896–5901. DOI 10.1073/pnas.1802438115
- BASSLER, R.S. 1925. Classification and stratigraphic use of the conodonts. *Geological Society of America Bulletin 36*, 218–220.
- BATESON, W. 1886. The ancestry of the Chordata. *Quarterly Journal of Microscopical Science* 26, 535–571.
- BERGSTRÖM, S.M. 1981. Drepanoistodontidae, 128–129. In ROBISON, R.A. (ed.) Treatise on Invertebrate Paleontology,

Part W, Miscellanea (Supplement 2) Conodonta. Geological Society of America, Boulder, Colorado.

- BERGSTRÖM, S.M. 1983. Biogeography, evolutionary relationships, and biostratigraphic significance of Ordovician platform conodonts. *Fossils and Strata* 15, 35–58.
- BERGSTRÖM, S.M. & FERRETTI, A. 2014. Conodonts in the Upper Ordovician Keisley Limestone of northern England: taxonomy, biostratigraphical significance and biogeographical relationships. *Papers in Palaeontology 1(1)*, 1–32. DOI 10.1002/spp2.1003
- BERGSTRÖM, S.M. & LESLIE, S.A. 2010. The Ordovician zone index conodont *Amorphognathus ordovicicus* Branson & Mehl, 1933 from its type locality and the evolution of the genus *Amorphognathus* Branson & Mehl, 1933. *Journal of Micropalaeontology 29(1)*, 73–80. DOI 10.1144/jm.29.1.73
- BERGSTRÖM, S.M. & MASSA, D. 1992. Stratigraphic and biogeographic significance of Upper Ordovician conodonts from northwestern Libya, 1323–1342. *In SALEM*, M.J., HAMMUDA, O.S. & ELIAGOUBI, B.A. (eds) *The Geology of Libya*. Elsevier, Amsterdam.
- BERGSTRÖM, S.M. & ORCHARD, M.J. 1985. Conodonts of the Cambrian and Ordovician Systems from the British Isles, 32–67. In HIGGINS, A.C. & AUSTIN, R.L. (eds) A stratigraphical index of conodonts. Ellis Horwood Limited.
- BERGSTRÖM, S.M. & SWEET, W.C. 1966. Conodonts from the Lexington Limestone (Middle Ordovician) of Kentucky and its equivalents in Ohio and Indiana. *Bulletins of American Paleontology 50(229)*, 271–441.
- BERGSTRÖM, S.M., XU, C., GUTIÉRREZ-MARCO, J.C. & DRONOV, A. 2009. The new chronostratigraphic classification of the Ordovician System and its relations to major regional series and stages and to δ13C chemostratigraphy. *Lethaia* 42(1), 97–107. DOI 10.1111/j.1502-3931.2008.00136.x
- BOUCOT, A.J, JIA-YU, R., XU, C. & SCOTESE, C.R. 2003.
 Pre-Hirnantian Ashgill climatically warm event in the Mediterranean region. *Lethaia 36(2)*, 119–131.
 DOI 10.1080/00241160310001245
- BRANSON, E.B. & BRANSON, C.C. 1947. Lower Silurian conodonts from Kentucky. *Journal of Paleontology* 21, 549–556.
- BRANSON, E.B. & MEHL, M.G. 1933. Conodonts studies n° 2: Conodonts from the Joachim (Middle Ordovician) of Missouri; Conodonts from the Plattin (Middle Ordovician) of Missouri; Conodonts from the Maquoketa-Thebes (Upper Ordovician) of Missouri; A study of Hinde's types of conodonts preserved in the British Museum. University of Missouri Studies 8(2), 77–167.
- CARLS, P. 1975. The Ordovician of the Eastern Iberian Chains near Fombuena and Luesma (Prov. Zaragoza, Spain). *Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 150(2)*, 127–146.
- CHERNS, L. & WHEELEY, J.R. 2007. A pre-Hirnantian (Late Ordovician) interval of global cooling – The Boda event re-assessed. *Palaeogeography, Palaeoclimatology, Palaeo*ecology 251(3), 449–460. DOI 10.1016/j.palaeo.2007.04.010
- COOPER, B.J. 1975. Multielemental conodonts from the Brassfield Limestone (Silurian) of Southern Ohio. *Journal of Paleontology 49(6)*, 984–1008.

- COOPER, R.A., SADLER, P.M., HAMMER, O. & GRADSTEIN, F.M. 2012. Chapter 20 The Ordovician Period, 489–523. *In* GRADSTEIN, F.M., OGG, J.G., SCHMITZ, M.D. & OGG, G.M. (eds) *The Geologic Time Scale*. Elsevier, Boston. DOI 10.1016/B978-0-444-59425-9.00020-2
- DEL MORAL, B. 2003. Primeros conodontos kralodvorienses (Ordovícico Superior) de la Zona Cantábrica, Portilla de Luna, León (España). *Revista Española de Micropaleontología* 35(3), 275–283.
- DEL MORAL, B. 2007. Conodontos y microfacies del Ordovícico Superior de la Cordillera Ibérica y Sierra Morena oriental. 427 pp. Ph.D. thesis, Universidad Complutense de Madrid, Spain.
- DEL MORAL, B. & SARMIENTO, G.N. 2008. Conodontos del Katiense (Ordovícico Superior) del sector meridional de la Zona Centroibérica (España). Revista Española de Micropaleontología 40(3), 169–245.
- DZIK, J. 1976. Remarks on the evolution of the Ordovician conodonts. *Acta Palaeontologica Polonica 21*, 395–455.
- DZIK, J. 1989. Conodont evolution in high latitudes of the Ordovician. *Courier Forschungsinstitut Senckenberg 117*, 1–28.
- DZIK, J. 1994. Conodonts of the Mójcza Limestone. Acta Palaeontologica Polonica 53, 43–128.
- DZIK, J. 1998. Evolution of the Late Ordovician high-latitude conodonts and dating of Gondwana glaciations. *Bolletino della Società Paleontologica Italiana 37(2–3)*, 237–253.
- DZIK, J. 2015. Evolutionary roots of the conodonts with increased number of elements in the apparatus. *Earth and Environmental Science Transactions of the Royal Society of Edinburgh 106(1)*, 29–53. DOI 10.1017/S1755691015000195
- EICHENBERG, W. 1930. Conodonten aus dem Culm des Harzes. *Paläontologische Zeitschrift 12*, 177–182. DOI 10.1007/BF03044446
- EPSTEIN, A.G., EPSTEIN, J.B. & HARRIS, L.D. 1977. Conodont color alteration – An index to organic metamorphism. *Geological* Survey Professional Paper 995, 1–27. DOI 10.3133/pp995
- ETHINGTON, R.L. 1959. Conodonts of the Ordovician Galena Formation. *Journal of Paleontology 33(2)*, 257–292.
- FAHRÆUS, L.E. & HUNTER, D.R. 1985. Simple-cone conodont taxa from the Cobbs Arm Limestone (Middle Ordovician), New World Island, Newfoundland. *Canadian Journal* of Earth Sciences 22(2), 1171–1182. DOI 10.1139/e85-120
- FERRETTI, A. 1998. Late Ordovician conodonts from the Prague Basin, Bohemia. *Palaeontologia Polonica 58*, 123–139.
- FERRETTI, A. & BARNES, C.R. 1997. Upper Ordovician conodonts from the Kalkbank limestone of Thuringia, Germany. *Palaeontology* 40, 15–42.
- FERRETTI, A. & SCHÖNLAUB, H.P. 2001. New conodont faunas from the Late Ordovician of the Central Carnic Alps, Austria. *Bollettino della Società Paleontologica Italiana* 40, 3–15.
- FERRETTI, A. & SERPAGLI, E. 1991. First record of Ordovician conodonts from southwestern Sardinia. *Rivista Italiana di Paleontologia e Stratigrafia 97(1)*, 27–34.
- FERRETTI, A. & SERPAGLI, E. 1998. Late Ordovician conodont faunas from southern Sardinia, Italy: biostratigraphic

and paleogeographic implications. *Bolletino della Società Paleontologica Italiana 37(2–3)*, 215–236.

- FERRETTI, A., BERGSTRÖM, S.M. & BARNES, C.R. 2014b. Katian (Upper Ordovician) conodonts from Wales. *Palaeontology* 57(4), 801–831. DOI 10.1111/pala.12089
- FERRETTI, A., BERGSTRÖM, S.M. & SEVASTOPULO, G.D. 2014c. Katian conodonts from the Portrane Limestone: the first Ordovician conodont fauna described from Ireland. *Bollettino della Società Paleontologica Italiana 53(2)*, 105–119.
- FERRETTI, A., MESSORI, A. & BERGSTRÖM, S.M. 2014a. Composition and significance of the Katian (Upper Ordovician) conodont fauna of the Vaux Limestone ('Calcaire des Vaux') in Normandy, France. *Estonian Journal of Earth Sciences* 63(4), 214–219. DOI 10.3176/earth.2014.21
- FORTEY, R.A. & COCKS, L.R.M. 2005. Late Ordovician global warming—The Boda event. *Geology* 33(5), 405–408. DOI 10.1130/G21180.1
- FUCHS, A. 1990. Bemerkungen zu Stratigraphie und Charakter der ordovizischen Conodontenfauna Thüringens. *Neues Jahrbuch für Geologie und Paläeontologie 4*, 193–214.
- FUGANTI, A. & SERPAGLI, E. 1968. Geological remarks on Urbana Limestone and evidence for its Upper Ordovician age by means of conodonts – Eastern Sierra Morena, South Spain. *Bolletino della Società Paleontologica Italiana 87*, 511–521.
- FUREY-GREIG, T. 2000. Late Ordovician and Early Silurian conodonts from the "Uralba Beds", northern New South Wales. Alcheringa: An Australasian Journal of Palaeontology 24(2), 83–97. DOI 10.1080/03115510008619526
- GHIENNE, J.-F., DESROCHERS, A., VANDENBROUCKE, T.R.A., ACHAB, A., ASSELIN, E., DABARD, M.-P., FARLEY, C., LOI, A. ET AL. 2014. A Cenozoic-style scenario for the end-Ordovician glaciation. *Nature Communications* 5, art. 4485. DOI 10.1038/ncomms5485
- GUTIÉRREZ-MARCO, J.C., ARAMBURU, C., ARBIZU, M., BERNÁRDEZ, E., HACAR RODRÍGUEZ, M.P., MÉNDEZ-BEDIA, I., MONTESINOS LÓPEZ, R., RÁBANO, I., TRUYOLS, J. & VILLAS, E. 1999. A biostratigraphical review of the Middle Ordovician shales from NW Spain (Cantabrian and Westasturian-Leonese zones, and northernmost part of the Central Iberian Zone). *Acta Geologica Hispanica 34(1)*, 3–87.
- GUTIÉRREZ-MARCO, J.C., ARBIZU, M., MÉNDEZ-BEDIA, I., RÁBANO, I. & ARIAS, D. 1996. Equinodermos ordovícicos del noroeste de España, 67–69. *In PALACIOS*, T. & GOZALO, R. (eds) *Comunicaciones XII Jornadas de Paleontología*.
- GUTIÉRREZ-MARCO, J.C., RÁBANO, I., GÓMEZ MORENO, G. & HACAR RODRÍGUEZ, M.P. 1988. Revisión bioestratigráfica de la sucesión ordovícico-silúrica del sector meridional de la zona asturoccidental leonesa (prov. de Orense y León), NO. de España. *Resumes X Reunión de Xeoloxía e Minería do N.O. peninsular, A Coruña*, 36.
- GUTIÉRREZ-MARCO, J.C., ROBARDET, M., RÁBANO, I., SARMIENTO, G.N., SAN JOSÉ LANCHA, M.A., HERRANZ ARAÚJO, P. & PIEREN PIDAL, A.P. 2002. Ordovician, 31–49. *In* GIBBONS, W. & MORENO, T. (eds) *The geology of Spain*. Geological Society of London, London. DOI 10.1144/GOSPP.4

GUTIÉRREZ-MARCO, J.C., SÁ, A.A., GARCÍA-BELLIDO, D.C. & RÁ-

BANO, I. 2017. The Bohemo-Iberian regional chronostratigraphical scale for the Ordovician System and palaeontological correlations within South Gondwana. *Lethaia* 50(2), 258–295. DOI 10.1111/let.12197

- HAFENRICHTER, M. 1979. Paläontologisch- Ökologische und Lithofazielle Untersuchungen des "Ashgill-Kalkes" (Jungordovizium) in Spanien. Arbeiten aus dem Paläontologischen Institut Würzburg 3, 1–139.
- HASS, W.H. 1959. Conodonts from the Chappel Limestone of Texas. U.S. Geological Survey Professional Paper 294, 365–399. DOI 10.3133/pp294J
- HENNINGSMOEN, G. 1948. The Tretaspis Series of the Kullatorp core. Bulletin of the Geological Institut of University of Uppsala 32, 374–432.
- JEPPSSON, L., FREDHOLM, S. & MATTIASSON, B. 1985. Acetic acid and phosphatic fossils – a warning. *Journal of Paleontology* 59(4), 952–956.
- KHODALEVICH A.N. & TSCHERNICH, V.V. 1973. Novoe podsemeystvo Belodellinae (Konodonty). *Trudy Sverdlovskogo Gornogo Instituta 93*, 42–47. [in Russian]
- KNOPFER, J. 1967. Zur Fauna und Biostratigraphie des Ordoviziums (Gräfenthaler Schichten) in Thüringen. *Freiberger Forschungshefte C220(Paläontologie)*, 1–119.
- KRÖGER, B., HINTS, L. & LEHNERT, O. 2017. Ordovician reef and mound evolution: The Baltoscandian picture. *Geological Magazine 154(4)*, 683–706. DOI 10.1017/S0016756816000303
- LINDSTRÖM, M. 1954. Conodonts from the lowermost Ordovician strata of South-Central Sweden. *Geologiska Föreningen i Stockholm Förhandlingar 76(4)*, 517–604. DOI 10.1080/11035895409453581
- LINDSTRÖM, M. 1959. Conodonts from the Crug Limestone (Ordovician, Wales). *Micropaleontology 5(4)*, 427–452. DOI 10.2307/1484127
- LINDSTRÖM, M. 1970. A suprageneric taxonomy of the conodonts. *Lethaia 3(4)*, 427–445.

 $DOI \ 10.1111/j.1502\text{--}3931.1970.tb00834.x$

- LINDSTRÖM, M. 1971. Lower Ordovician conodonts of Europe, 21–61. In Sweet, W.C. & BERGSTRÖM, S.M. (eds) Symposium on Conodont Biostratigraphy. Geological Society of America, Memoir 127. DOI 10.1130/MEM127-p21
- MARTÍNEZ CATALÁN, J.R. 2011. Are the oroclines of the Variscan belt related to late Variscan strike-slip tectonics? *Terra Nova* 23(4), 241–247. DOI 10.1111/j.1365-3121.2011.01005.x
- MAVRINSKAYA, T.M. & YAKUPOV, R.R. 2016. Ordovician deposits of the western slope of the Southern Urals and their correlation based on conodonts and chitinozoans. *Russian Geology and Geophysics 57(2)*, 265–281. DOI 10.1016/j.rgg.2016.02.004
- MCCRACKEN, A.D. 1987. Description and correlation of Late Ordovician conodonts from *D. ornatus* and *P. pacificus* graptolite zones, Road River Group, northern Yukon Territory. *Canadian Journal of Earth Sciences 24(7)*, 1450–1464. DOI 10.1139/e87-137
- MCCRACKEN, A.D. & BARNES, C.R. 1981. Conodont biostratigraphy and paleoecology of the Ellis Bay Formation, Anticosti Island, Quebec, with special reference to Late Ordovician –

Early Silurian chronostratigraphy and the systemic boundary. *Bulletin of the Geological Survey of Canada 329*, 51–134. DOI 10.4095/119430

- MELCHIN, M.J., MITCHELL, C.E., HOLMDEN, C. & ŠTORCH, P. 2013. Environmental changes in the Late Ordovician–early Silurian: Review and new insights from black shales and nitrogen isotopes. *Geological Society of America Bulletin 125(11–12)*, 1635–1670. DOI 10.1130/B30812.1
- MÜLLER, K.J. & MÜLLER, E.M. 1957. Early Upper Devonian (Independence) conodonts from Iowa, Part 1. *Journal of Paleontology 31*, 1069–1108.
- NANCE, R.D., GUTIÉRREZ-ALONSO, G., KEPPIE, J.D., LINNEMANN, U., MURPHY, J.B., QUESADA, C., STRACHAN, R.A. & WOODCOCK, N.H. 2012. A brief history of the Rheic Ocean. *Geoscience Frontiers* 3(2), 125–135. DOI 10.1016/j.gsf.2011.11.008
- NOWLAN, G.S. 1983. Biostratigraphic, paleogeographic, and tectonic implications of Late Ordovician conodonts from the Grog Brook Group, northwestern New Brunswick. *Canadian Journal of Earth Sciences 20*, 651–671. DOI 10.1139/e83-060
- Nowlan, G.S. & Barnes, C.R. 1981. Late Ordovician conodonts from the Vauréal Formation, Anticosti Island, Quebec. *Geological Survey of Canada Bulletin, 329(Part 1)*, 1–49. DOI 10.4095/119429
- ORCHARD, M.J. 1980. Upper Ordovician conodonts from England and Wales. *Geologica et Palaeontologica 14*, 9–44.
- PARIS, F., PELHATE, A. & WEYANT, M. 1981. Conodontes ashgilliens dans la Formation de Rosan, coupe de Lostmarch'h (Finistère, Massif Armoricain). Conséquences paléogéographiques. Bulletin de la Société Géologique et Mineralogique de Bretagne 13(2), 15–35.
- PASTOR-GALÁN, D., GUTIÉRREZ-ALONSO, G., MURPHY, J.B., FERNÁNDEZ-SUÁREZ, J., HOFMANN, M. & LINNEMANN, U. 2013. Provenance analysis of the Paleozoic sequences of the northern Gondwana margin in NW Iberia: Passive margin to Variscan collision and orocline development. *Gondwana Research 23(3)*, 1089–1103. DOI 10.1016/j.gr.2012.06.015
- REJEBIAN, V.A., HARRIS, A.G. & HUEBNER, J.S. 1987. Conodont color and textural alteration: An index to regional metamorphism, contact metamorphism, and hydrothermal alteration. *GSA Bulletin 99(4)*, 471–479.

DOI 10.1130/0016-7606(1987)99<471:CCATAA>2.0.CO;2

- REXROAD, C.B. 1967. Stratigraphy and Conodont Paleontology of the Brassfield (Silurian) in the Cincinnati Arch Area. *Indiana State Department of Natural Resources Geological Survey Bulletin 36*, 1–79.
- RHODES, F.H.T. 1953. Some British Lower Palaeozoic conodont faunas. *Philosophical Transactions of the Royal Society of London B237*, 261–334. DOI 10.1098/rstb.1953.0005
- RHODES, F.H.T. 1955. The Conodont Fauna of the Keisley Limestone. *Quarterly Journal of the Geological Society* 111(1-4), 117-140.

DOI 10.1144/GSL.JGS.1955.111.01-04.07

 RODRÍGUEZ-CAÑERO, R., JABALOY-SÁNCHEZ, A., NAVAS-PAREJO, P.
 & MARTÍN-ALGARRA, A. 2018. Linking Palaeozoic palaeogeography of the Betic Cordillera to the Variscan Iberian Massif: new insight through the first conodonts of the Nevado-Filábride Complex. International Journal of Earth Sciences 107(5), 1791–1806. DOI 10.1007/s00531-017-1572-8

- RODRÍGUEZ-CAÑERO, R., MARTÍN-ALGARRA, A., SARMIENTO,
 G.N. & NAVAS-PAREJO, P. 2010. First Late Ordovician conodont fauna in the Betic Cordillera (South Spain): a palaeobiogeographical contribution. *Terra Nova 22(5)*, 330–340. DOI 10.1111/j.1365-3121.2010.00954.x
- RODRÍGUEZ FERNÁNDEZ, L.R., TOYOS, J.M., DÍEZ MONTES, A., GONZÁLEZ MENÉNDEZ, L., HEREDIA, N., RUBIO ORDÓÑEZ, A., MARTÍN PARRA, L.M. & RUBIO PASCUAL, F.L. in press. Mapa Geológico de España E. 1:200.000, hoja n.º18 (Ponferrada). Instituto Geológico y Minero de España, Madrid.
- SANSOM, I.J., ARMSTRONG, H.A. & SMITH, M.P. 1994. The apparatus architecture of *Panderodus* and its implications for coniform conodont classification. *Palaeontology* 37(4), 781–799.
- SARMIENTO, G.N. 1990. Conodontos de la Zona Ordovicicus (Ashgill) en la Caliza Urbana, Corral de Calatrava (Ciudad Real). *Geogaceta* 7, 54–56.
- SARMIENTO, G.N. 1993. Conodontos ordovícicos de Sierra Morena (Macizo Hespérico meridional). 598 pp. Ph.D. thesis, Universidad Complutense de Madrid, Spain.
- SARMIENTO, G.N. 2002. Lower Palaeozoic of the Iberian Cordillera, 281–297. In GARCÍA-LÓPEZ, S. & BASTIDA, F. (eds) Palaeozoic conodonts from northern Spain. Cuadernos del Museo Geominero 1. Instituto Geológico y Minero de España, Madrid.
- SARMIENTO, G.N., DEL MORAL, B. & PIÇARRA, J.M. 2001. Late Ordovician (Ashgillian) conodonts from Serra do Buçaco (Portugal). *Coloquios de Paleontología* 52, 95–105.
- SARMIENTO, G.N., GUTIÉRREZ-MARCO, J.C. & DEL MORAL, B. 2008. Conodontos de la "Caliza de Pelmatozoos" (Ordovícico Superior), Norte de Sevilla, Zona de Ossa-Morena (España). *Coloquios de Paleontología 58*, 73–99.
- SARMIENTO, G.N., GUTIÉRREZ-MARCO, J.C. & ROBARDET, M. 1999. Conodontos ordovícicos del noroeste de España. Aplicación al modelo de sedimentación de la región limítrofe entre las zonas Asturoccidental-leonesa y Centroibérica durante el Ordovícico Superior. *Revista de la Sociedad Geológica de España 12(3–4)*, 477–500.
- SARMIENTO, G.N., GUTIÉRREZ-MARCO, J.C., RODRÍGUEZ-CAÑERO,
 R., MARTÍN ALGARRA, A. & NAVAS-PAREJO, P. 2011. A brief summary of Ordovician conodont faunas from the Iberian Peninsula, 505–514. *In* GUTIÉRREZ-MARCO, J.C., RÁBANO, I.
 & GARCÍA-BELLIDO, D. (eds) Ordovician of the World, *Cuadernos del Museo Geominero 14*. Instituto Geológico y Minero de España, Madrid.
- SAVAGE, N.M. & BASSETT, M.G. 1985. Caradoc-Ashgill conodont faunas from Wales and the Welsh Borderland. *Palaeontology* 28(4), 679–713.
- SERPAGLI, E. 1967. I Conodonti dell'Ordoviciano superiore (Ashgilliano) delle Alpi Carniche. *Bolletino della Società Paleontologica Italiana 63*, 1–111.
- STAUFFER, C.R. 1940. Conodonts from the Devonian and Associated Clays of Minnesota. *Journal of Paleontology* 14(5), 417–435.

- STONE, J. 1987. Review of investigative techniques used in the study of conodonts, 17–34. In AUSTIN, R.L. (ed.) Conodonts: Investigative Techniques and Applications. Ellis Horwood Limited, Chichester.
- SWEET, W.C. 1979. Late Ordovician conodonts and biostratigraphy of the western Midcontinent Province. *Brigham Young University Geology Studies 26*, 45–86.
- SWEET, W.C. 1988. The Conodonta: Morphology, taxonomy, paleoecology and evolutionary history of a long-extinct animal phylum. 212 pp. Clarendon Press, New York.
- SWEET, W.C. & BERGSTRÖM, S.M. 1984. Conodont provinces and biofacies of the Late Ordovician, 69–86. In CLARK, D.L. (ed.) Conodont Biofacies and Provincialism. Geological Society of America Special Paper 196. DOI 10.1130/SPE196-p69
- SWEET, W.C., ETHINGTON, R.L. & BARNES, C.R. 1971. North American Middle and Upper Ordovician conodont faunas, 163–193. In SWEET, W.C. & BERGSTRÖM, S.M. (eds) Symposium on Conodont Biostratigraphy. Geological Society of America Memoir 127. DOI 10.1130/MEM127-p163
- TROTTER, J.A. & WEBBY, B.D. 1995. Upper Ordovician conodonts from the Malongulli Formation, Cliefden Caves area, central New South Wales. AGSO Journal of Australian Geology & Geophysics 15(4), 475–499.
- VILLAS, E., VENNIN, E., ÁLVARO, J.J., HAMMANN, W., HERRERA, Z.A. & PIOVANO, E.L. 2002. The Late Ordovician carbonate sedimentation as a major triggering factor of the Hirnantian glaciation. *Bulletin de la Société Géologique de France* 173(6), 569–578. DOI 10.2113/173.6.569
- VIIRA, V. 1974. *Konodonty Ordovika Priblatiki*. 142 pp. Eesti NSV Teaduste Akadeemia, Geoloogia Instituudi, Valgus, Tallinn.
- WALLISER, O.H. 1964. Conodonten des Silurs. Abhandlungen des

Hessischen Landesamtes für Bodenforschung zu Wiesbaden 41, 1–106.

- WANG, Z.-H., ZHEN, Y.Y., BERGSTRÖM, S.M., WU, R.-C., ZHANG, Y.-D. & MA, X. 2019. A new conodont biozone classification of the Ordovician System in South China. *Palaeoworld 28*, 173–186. DOI 10.1016/j.palwor.2018.09.002
- WATKINS, R. & KUGLITSCH, J.J. 1997. Lower Silurian (Aeronian) megafaunal and conodont biofacies of the northwestern Michigan Basin. *Canadian Journal of Earth Sciences 34*, 753–764. DOI 10.1139/e17-062
- ZHANG, K., YUAN, A. & FENG, Q. 2018. The Upper Ordovician Microfossil assemblages from the Pagoda Formation in Zigui, Hubei Province. *Journal of Earth Science 29(4)*, 900–911. DOI 10.1007/s12583-017-0958-7
- ZHANG, S. 2018. Upper Ordovician conodont biostratigraphy and revised lithostratigraphy and geological map, Akpatok Island, Ungava Bay, Nunavut. *Canadian Journal of Earth Sciences* 55(1), 52–69. DOI 10.1139/cjes-2017-0145
- ZHANG, S., BARNES, C.R. & JOWETT, D.M.S. 2006. The paradox of the global standard Late Ordovician–Early Silurian sea level curve: Evidence from conodont community analysis from both Canadian Arctic and Appalachian margins. *Palaeogeography, Palaeoclimatology, Palaeoecology 236(3–4)*, 246–271. DOI 10.1016/j.palaeo.2005.11.002
- ZHEN, Y.Y. & PERCIVAL, I.G. 2017. Late Ordovician conodont biozonation of Australia—current status and regional biostratigraphic correlations. *Alcheringa* 41(3), 285–305. DOI 10.1080/03115518.2017.1282982
- ZHEN, Y.Y., PERCIVAL, I.G. & MOLLOY, P.D. 2015 Late Ordovician conodonts and brachiopods from near Greenvale in the Broken River Province, north Queensland. *Proceedings of the Linnean Society of New South Wales 137*, 85–133.