Rapid and profound changes in Earth surface environments and biota across the Frasnian-Famennian (Fr-Fa) boundary are well known and related to one of the five most severe mass extinction events in Earth history. Here, we present sedimentological, biostratigraphical, petrophysical (gamma-ray spectrometry, magnetic susceptibility) and geochemical (X-ray fluorescence) data from environmentally distinct sections in the Moravian Karst (Czech Republic) and compare them with the Steinbruch Schmidt section in the Kellerwald (Rheinisches Schiefergebirge, Germany). Both areas were located at the southern margin of Laurussia. The studied sections span the interval from the Lower or Upper rhenana to the Palmatolepis minuta minuta or younger conodont zones and the foraminiferal Eonodosaria evlanensis Zone and Eonodosaria evlanensis-Quasiendothyra communis Interzone including high resolution biozonation of the Fr-Fa boundary interval. In the Moravian Karst pure limestone facies of an inclined carbonate ramp reflect the world-wide trend in the widespread occurrence of calcimicrobes during upper Frasnian and lower Famennian. Geochemical and petrophysical data show a decrease in grain size of the siliciclastic supply and carbonate productivity in the Kellwasser Event intervals probably due to a deepening and correlate with maximum flooding surfaces and highstand system tracts in the Steinbruch Schmidt. Certain differences in some geochemical proxies between the Moravian Karst and Steinbruch Schmidt are due to lower carbonate dilution of the latter. Significant Zr, TiO$_2$, Mn or Fe$_2$O$_3$ enrichments may indicate the influence of volcanic sources in the studied Moravian Karst Fr-Fa sections. • Key words: Frasnian-Famennian boundary, Kellwasser Events, conodont and foraminifer biostratigraphy, microfacies, gamma-ray spectrometry, magnetic susceptibility, element geochemistry.

Tomáš Weiner, Jiří Kalvoda & Tomáš Kumpan, Department of Geological Sciences, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic; tomasweiner@seznam.cz, dino@sci.muni.cz, kumpan.tom@gmail.com • Eberhard Schindler, Senckenberg Forschungsinstitut und Naturmuseum Frankfurt, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Eberhard.Schindler@senckenberg.de • Daniel Šimíček, Department of Geology, Palacký University, 17. listopadu 12, 772 00 Olomouc, Czech Republic; daniel.simicek@upol.cz

The end-Frasnian Kellwasser Events (KWE) and the Frasnian-Famennian (Fr-Fa) boundary are well known for their linkage with one of the five most intensive mass extinctions of the Phanerozoic (McLaren 1970, Hallam & Wignall 1997, House 2002, Racki 2005, McGhee 2013). The series of extinctions collectively comprise the Kellwasser Crisis which represents rather long time interval (1 my in total) including the Lower and Upper Kellwasser Events (LKE and UKE) (Gereke & Schindler 2012). According to the standard conodont zonation (sensu Ziegler & Sandberg 1990), the LKE is assigned to the lower part of the Upper rhenana Zone, whereas the UKE represents the upper part of the linguiformis Zone (Ziegler & Sandberg 1990, Schindler 1990b, Feist & Schindler 1994).

The Givetian-Frasnian coral-stromatoporoid reef ecosystems were significantly affected right from the beginning of the Kellwasser Crisis slightly prior to the onset of the LKE (McGhee 1996, Kiessling et al. 2000, Copper 2002) and various groups, such as trilobites, cephalopods, tentaculitoids, conodonts, brachiopods and some terrestrial biota suffered significant losses before the end of the UKE.

In this paper, we provide new data on the Fr-Fa interval in three previously unpublished sections (Fig. 1) in the Moravian Karst (Moravo-Silesian Zone of the Bohemian Massif, Czech Republic) including conodont and foraminifer biostratigraphy, microfacies analysis, field GRS, MS and bulk-rock element geochemistry. They are correlated with the Steinbruch Schmidt section (Kellerwald, Germany) which was studied in the same way using petrophysical and geochemical tools. This section exposes lithologically distinctive KWE horizons and represents the former auxiliary stratotype which is – compared to the stratotype Coumiac section – much thicker. The aim of our integrated stratigraphic study is to test correlative potential of the KWE sections without distinctive lithological changes and with less accurate resolution in biostratigraphic time control.

Geological settings

The Moravian sections are representative of a vast carbonate platform extending from eastern Moravia to southeastern Poland (Racki et al. 2002, Bábek et al. 2007). Moravia, Poland and the Kellerwald area were located in an epicontinental basin at the Rhenohercynian margin of Laurussia (Franke 1995, 2002; Kalvoda et al. 2008). The succession in Steinbruch Schmidt was deposited on a submarine rise (Fig. 1), below the wave-base level, and consists of condensed pelagic cephalopod limestones consisting of dark-grey to black limestones, marls and shales of the Kellwasser intervals (Buggisch 1972; Schindler 1990a, b; 1993). The late Frasnian–early Famennian sedimentary successions exposed at Hády (GPS 49° 13´ 8´´ N, 16° 40´ 20.7´´ E),
Šumbera (49° 13´37.7˝ N; 16° 40´23.9˝ E) and Lesní lom sections (GPS 49° 13´28.89˝ N; 16° 41´44.79˝ E) are located on the outskirts of Brno. These sections comprise relatively pure limestones deposited on a carbonate ramp (Hladil et al. 1991), which, during the Famennian, progressively developed into a NW-SE-oriented halfgraben with the deposition of hemipelagic nodular limestones and carbonate turbidites (Kalvoda 1998, Kalvoda et al. 2008). Coeval interval was studied in the Moravian Karst in two localities. The Lesní lom section, investigated by Hladil et al. (1991), was quarried out and Šumbera sections studied by the previous authors (Hladil & Kalvoda 1993a, Streitová 1994, Racki et al. 2002) were covered and as there were no coordinates given it was not possible to indentify them with the section presented in this paper.

The profiles were logged in a bed-by-bed manner for microfacies characteristics. A total of 75 samples for microfacies analysis were taken at random intervals (see Figs 3–5). Polished sections and standard-sized thin-sections (27 × 46 mm) were prepared. Thin-sections were studied using a polarising microscope Nikon Eclipse 80i connected to a Nikon DS-F1 digital camera. A total of 47 conodont samples (weight between 1–4 kg) were analysed. The samples were macerated in 15% solution of acetic acid. Insoluble residues were separated after the dissolution process using a 0.125 mm mesh size. Standard conodont zones based on Ziegler (1962, 1969), Ziegler & Sandberg (1990) and revised Famennian conodont zones of Spalletta et al. (2017) are used in this paper. For further reading, we refer to Fig. 2 for correlation of the three previously published conodont zonations in the lower Famennian. In consistence with many other researches, we cite the zones of Ziegler & Sandberg (1990) as Lower, Middle, Upper and Uppermost instead of Early, Middle, Late and Latest (see Spalletta et al. 2017).

A total of 191 field GRS assays were measured at the logged sections at 10 to 25 cm thick intervals, depending on section thickness and required detail (Lesni lom: 48 points, Hády: 42 points, Šumbera: 56 points, Steinbruch Schmidt: 45 points). The GRS data were collected using a RS-230 Super Spec portable spectrometer (Radiation Solutions, Inc., Canada) with a 2 × 2˝ (103 cm²) bismuthgermanate (BGO) scintillation detector. The assay time was set to 240 s, which is sufficient for carbonate rocks (e.g. Hladil et al. 2006). The counts per second in the selected energy windows were automatically converted to concentrations of K (%), U (ppm) and Th (ppm) by the instruments. The computed (or “clay”) gamma-ray (CGR), which is used as a good proxy of the sum of clay fraction in carbonates, was calculated from the spectral values using

Materials and methods

The profiles were logged in a bed-by-bed manner for microfacies characteristics. A total of 75 samples for microfacies analysis were taken at random intervals (see Figs 3–5). Polished sections and standard-sized thin-sections (27 × 46 mm) were prepared. Thin-sections were studied using a polarising microscope Nikon Eclipse 80i connected to a Nikon DS-F1 digital camera. A total of 47 conodont samples (weight between 1–4 kg) were analysed. The samples were macerated in 15% solution of acetic acid. Insoluble residues were separated after the dissolution process using a 0.125 mm mesh size. Standard conodont zones based on Ziegler (1962, 1969), Ziegler & Sandberg (1990) and revised Famennian conodont zones of Spalletta et al. (2017) are used in this paper. For further reading, we refer to Fig. 2 for correlation of the three previously published conodont zonations in the lower Famennian. In consistence with many other researches, we cite the zones of Ziegler & Sandberg (1990) as Lower, Middle, Upper and Uppermost instead of Early, Middle, Late and Latest (see Spalletta et al. 2017).

A total of 191 field GRS assays were measured at the logged sections at 10 to 25 cm thick intervals, depending on section thickness and required detail (Lesní lom: 48 points, Hády: 42 points, Šumbera: 56 points, Steinbruch Schmidt: 45 points). The GRS data were collected using a RS-230 Super Spec portable spectrometer (Radiation Solutions, Inc., Canada) with a 2 × 2˝ (103 cm²) bismuthgermanate (BGO) scintillation detector. The assay time was set to 240 s, which is sufficient for carbonate rocks (e.g. Hladil et al. 2006). The counts per second in the selected energy windows were automatically converted to concentrations of K (%), U (ppm) and Th (ppm) by the instruments. The computed (or “clay”) gamma-ray (CGR), which is used as a good proxy of the sum of clay fraction in carbonates, was calculated from the spectral values using
the formula \(\text{CGR [API]} = \text{Th [ppm]} \cdot 3.93 + \text{K [%]} \cdot 16.32 \) (Rider 1999).

Rock samples for bulk MS measurements were collected at 3 (Moravian Karst) to 5 cm (Steinbruch Schmidt) vertical step intervals and then measured with a laboratory KLY-4S kappabrige (Agico, Czech Republic; magnetic field intensity of 300 Am\(^{-1}\), operating frequency of 920 Hz, sensitivity of 4 \times 10^{-8} \text{SI}). Mass-specific MS data expressed in m\(^3\)/kg were used. A total of 599 MS samples (Lesní lom: 144 samples, Hády: 146 samples, Šumbera: 162, Steinbruch Schmidt: 147) were measured.

Rock samples used for the MS measurements were pulv- erised in an agate mortar down to < 63 μm fraction. The powder was placed in plastic cells with a Mylar foil bottom and analysed by a Delta Premium (Innov-X, USA) energy dispersive X-ray fluorescence (EDXRF) spectrometer for 240 seconds using the Geochem VANAD mode. The EDXRF data, expressed in counts per seconds (cps), were calibrated by independent inductively coupled plasma mass spectrometry (ICP-MS) analysis (total digestion) of 30 samples by the ACME accredited analytical laboratory, Vancouver, Canada. Linear regression functions of the EDXRF signal (cps) vs. ICP-MS concentrations were used as the calibration equations to convert the cps data to wt% and ppm, while the correlation coefficients (R\(^2\)) indicated the sensitivity of the EDXRF method (Tab. 1)

Biostratigraphy and facies/microfacies description and interpretation of the Steinbruch Schmidt section

Biostratigraphy

At Steinbruch Schmidt, 7.5 m of Late Devonian cephalo-
pod limestones are exposed including the Lower and Upper Kellwasser Event intervals (LKWI and UKWI, respectively). It is one of the classical localities and many researchers studied the abandoned quarry (e.g. Buggisch 1972; Sandberg et al. 1988; Ziegler & Sandberg 1990; Schindler 1990a, b; Schülke 1995; Walliser 1996; Casier & Lethiers 1998; Devleeschouwer et al. 2002; Kaufmann et al. 2004; Pujol et al. 2006; Dopieralska et al. 2016). The section re-

pakstones. Shallow-water fauna (brachiopods, bivalves, crinoids, gastropods, trilobites, corals) is restricted, both environmentally and in numbers whereas pelagic/nektontic elements dominate, including goniatites, orthocon cephalo-
pods, homocentids, and entomozoaceans. The latter two groups are well preserved in the KW intervals and show mass-occurrences in distinct beds. Relatively abundant lin-
gulid brachiopods and especially “buchiolid” bivalves can be found. Lingulids can easily be transported by drifting, but are also considered to be tolerant to low-oxygen condi-
tions (e.g. Bond & Zatoń 2003, Marynowski et al. 2011 from lower Famennian strata; Posenato et al. 2014 across the Permian-Triassic boundary). For the group of “buc-
hiolid” bivalves the same holds true – Grimm (1998) who re-

vised many taxa of “Buchiola” even suspected a chemo-

 trophic mode of life, at least for some taxa of the group. Above the Fr-Fa boundary, fossils are much less abundant in the Famennian.

The rocks are extremely rich in condonts; Ziegler & Sandberg (1990) reported up to 11,200 specimens/kg from the linguisformis Zone – the number of conodonts decreases in the Famennian, especially immediately above the UKWI, but is still up to 2,500 per kilogram in the Middle crepida Zone (Schülke 1995). The palamteolepid-poly-

gnathid conodont biofacies dominates – icrodids only in-

crease in number in the final interval of the KW Crisis close to the Fr-Fa boundary (e.g. Sandberg et al. 1988, Ziegler & Sandberg 1990, Schindler 1990b, Schülke 1995); similar observations have been made in other areas around the Fr-Fa boundary (e.g. in the Polish Holy Cross Mountains by Szulczewski 1989, Matyja & Narkiewicz 1992, Racki et al. 2002; in the area of the type locality of the Fr-Fa boundary in the French Montagne Noire by Gir-

ard 1995, Girard & Feist 1997). The typical conodonts of the late Frasnian and the early Famennian are present. As it would lead much too far to mention most of the taxa occur-
r in the time interval under consideration, only a few critical ones shall be highlighted. The data mainly come from the papers of Sandberg et al. (1988), Ziegler & Sandberg (1990) and Schülke (1995); they studied the conodonts extensively in the Steinbruch Schmidt section – for details and preceeding conodont research we refer to these publications.

Characteristic taxa for the Frasnian are ancyrodelliids (e.g. Ancyrodellic nodosa, Ancyrodellic curvata), Palmateolips rhena rhena rhena, Pa. nasuta and Ancyrodes
tiensi through the late Lower rhena to the Upper rhena to linguisformis zones, and Pa. bogartensis (for-

merly Pa. rotunda) in the Upper rhena and linguisformis zones. The diagnostic taxon of the linguisformis Zone (Pa. linguisformis) is – unlike in many areas around the globe – abundant in the Steinbruch Schmidt section. After the severe loss of conodont taxa referred to by many au-

thors, a restricted number of taxa carried on in the basal
Famennian: Palmatolepis triangularis and Pa. subperlobata occur immediately above the Fr-Fa boundary in the Lower triangularis (= Pa. subperlobata to Pa. triangularis) Zone, Pa. delicatula and Pa. claki enter in the Middle triangularis (= Pa. delicatula platys) Zone; Polygnathus brevilaminus is abundant above the Fr-Fa boundary – only very few specimens are reported from the Upper rhenana Zone (Ziegler & Sandberg 1990) and the linguiformis Zone (Schülke 1995 – one questionable specimen). Two taxa indicating the short time interval just below and above the Fr-Fa boundary are known from the section: Palmatolepis praetriangularis and Ancyroides ubiquitus – the latter was found in the last limestone bed below the Fr-Fa boundary (Schindler 1990b).

Besides the conodonts, fossils of other faunal groups are present in the Steinbruch Schmidt section, which indicate distinct levels within the Fr-Fa interval. Mass occurrences of Homoctenus ultimus, the last representative of the homocenid tentaculitoids prior to their disappearance, are known from the black limestone beds of the UKWI and the grey limestones underneath; H. tenuicinctus is present in the LWKI (Schindler 1990b). From the basal bed of the Famennian, two specimens of Homoctenus sp. have been recognized in a thin-section; although there is a report from China of homocenids reaching as high as the Famennian rhomboidea (= Pa. rhomboidea to Pa. gracilis) Zone – and a dacryoconarid Styliolina specimen even higher (Li 2000), this is one of the rare cases when homocenids cross the Fr-Fa boundary for a short time (Schindler 1990a, b, 2012; Over 2002 also reported a few specimens of Homoctenus above the Fr-Fa boundary from the Northern Appalachian Basin in New York State). Very good indicators for the position in the lower part of the UKWI are two entomozoacean ostracods: 1) Entomopriminita kayseri is very abundant in the lower black limestone bed; and 2) E. splendens, a perfect index fossil, is known only from the basal UKWI (Gros-Ouffenorde & Schindler 1990, Schindler 1990b). Both taxa can be traced and correlated over long distances (Schindler 1993); Olempska (2002) reported both taxa from the Polish Holy Cross Mountains. Among the trilobites, some taxa are important to be mentioned – with one exception (see following paragraph), they are not present in the oxygen-depleted Kellwasser Event intervals (KWI) themselves: Palpebralia brecciae can be used to recognize the linguiformis Zone in cases where conodonts are absent – wide correlation of the taxon is possible (for details see Feist & Schindler 1994).

Facies and microfacies

In the Steinbruch Schmidt section, the pelagic limestones mostly consist of mudstones/wackestones. In particular parts of the section, characteristic developments can be observed which may be regarded as ‘Time-Specific Facies’ (TSF; e.g. the patterns of the two KWI themselves, the beds below them or the strata right above the UKWI). TSF-phenomena have been introduced by Walliser (1984a, b, 1986) and may be tools for stratigraphic assignment and/or widespread correlation (for further reading and cited literature see Brett et al. 2012). Application of TSF in the Steinbruch Schmidt section has been demonstrated by Schindler (1990b, 1993), Over & Schindler (2003) and Gereke & Schindler (2012).

The KWI themselves are developed in a form typical of the pelagic deeper-water settings on submarine rises. The black limestones are enriched in fossils and often display lamination at mm-scale. Benthic fossils are very rare (due to O₂-depletion) – probably with the exception of “buchiolid” bivalves and a rare find of a trilobite fragment in the LWKI (Schindler 1993). Concerning the topic of benthic organisms in O₂-depleted environments we refer to Rakociński et al. (2016) and literature therein – see also above.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>rhomboidea Late rhomboidea</td>
<td>Palmatolepis gracilis gracilis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rhomboidea Early rhomboidea</td>
<td>Palmatolepis rhomboidea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper crepida Latest crepida</td>
<td>Palmatolepis glabra pectinata</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Middle crepida Middle crepida</td>
<td>Palmatolepis glabra prima</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower crepida Early crepida</td>
<td>Palmatolepis crepida</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper triangularis Late triangularis</td>
<td>Palmatolepis minuta minuta</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Middle triangularis Middle triangularis</td>
<td>Palmatolepis delicatula platys</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower triangularis Early triangularis</td>
<td>Palmatolepis triangularis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>linguiformis Late rhenana</td>
<td>Palmatolepis subperlobata</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2. Upper Frasnian and lower Famennian conodont zones. Correlation between three lower Famennian conodont zonations of Ziegler (1962, 1969), Ziegler & Sandberg (1990) and Spalletta et al. (2017) is provided. After Spalletta et al. (2017).
Biostatigraphy and facies/microfacies description and interpretation of Moravian Karst sections

Conodont biostatigraphy

The Šumbera section is composed of four laterally correlated outcrops (Fig. 3). Frasnian strata about 1.3 m thick are exposed in the lower part of the succession. Owing to the low number of conodonts recovered, the lowermost part of this interval (below sample V2-19) was assigned to the Upper *rhenana* or even lower Frasnian zones of the standard conodont zonation (*sensu* Ziegler & Sandberg 1990). The overlying strata belong to the Upper *rhenana* to *linguiformis* zones as documented by the occurrence of various taxa including *Palmatolepis bogartensis*, *Pa. klugi* and *Pa. rhenana* (samples V2-19, V2-22, V2-24 V2-25). Various polygnathids (*e.g.* *Polygnathus webbi*) and ancyrodellids (*Ancyrodella curvata*) also occur in this interval. The *linguiformis* Zone (sample V2-2) is documented by rare occurrences of *Pa. linguiformis* along with more frequent *Pa. bogartensis*, *Pa. cf. nasuta* and polygnathids. The Fr-Fa boundary is situated within a 0.1 to 0.15 m thick interval between samples V2-27 and V2-26 (brachiopod coquina). This interval spans to the upper part of the *linguiformis* Zone to the *Pa. subperlobata* Zone. *Palmatolepis subperlobata*, defining the base of the Famenian (*e.g.* Klapper 2007, Spalletta et al. 2017), was found in the sample V2-26 and *Pa. cf. subperlobata* was obtained from the sample V2-27. Other taxa from the sample V2-27 suggest Frasnian age, as documented by *Pa. gigas gigas*. Various polygnathids (*e.g.* *Polygnathus brevilaminus*, *Po. webbi*), icriodids (*Icriodus alternatus*) and ancyrodellids (*Ancyrodella curvata*) were found in this sample.

The *Pa. triangularis* Zone (*sensu* Spalletta et al. 2017) seems to be absent or developed in very reduced thickness (below the sampling resolution). The *Pa. subperlobata* Zone (sample V2-26) is thus overlain by an approximately 0.25 to 0.3 m thick interval assigned to *Pa. delicatula platys* zone. Various taxa, including *Pa. clarki*, *Pa. triangularis*, *Pa. subperlobata*, *Pa. ultima*, *Pa. cf. minuta*, icriodids and polygnathids were recovered here. The overlying interval interpreted as *Pa. m. minuta* to *Pa. crepida* Zone (about 2.4 m thick) yielded various palmatolepids such as *Pa. subperlobata*, *Pa. triangularis*, *Pa. spathula*, *Pa. delicatula postdelicatula*, *Pa. lobicornis*, icriodids (*e.g.* *Icriodus a. alternatus*, *I. a. helmsi*) and polygnathids (*e.g.* *Po. brevilaminus*, *Po. webbi*). The uppermost part of
the succession (around 1 m thick) above *Pa. minuta minuta* to *Pa. crepida* Zone thus corresponds to the same or younger zone.

The lowermost part of the Hády section (about 1.6 m thick) (Fig. 4) yielded relatively poor conodont material (sample HL2-16), which allowed us to identify the Upper *rhenana* Zone (or older). The overlying interval (about 0.8 m thick) supposedly represents the *rhenana* to *linguiformis* Zone interval. *Palmatolepis linguiformis* was not recorded in this section, probably because of its rare occurrence in the studied area and even on a worldwide scale in shallower-water facies. Other palmatolepids from this interval include *Pa. rhenana*, *Pa. cf. nasuta*, *Pa. cf. subrecta*, polygnathids (*e.g.* *Po. decorosus*, *Po. cf. webbi*, *Po. cf. brevilaminus*), *Ancyrodella curvata* and *Ancyroides leonis*. It is followed by an interval (0.4 m thick) lacking stratigraphically significant conodonts and typical Frasnian foraminiferal guides, inferred as *Pa. subperlobata* to *Pa. delicatula platys* Zone. The entry of *Pa. clarki* indicated the *Pa. delicatula platys* Zone. Various polygnathids (*e.g.* *Po. aequalis*, *Po. cf. xylus*) were also found within this interval. The uppermost part of the section (about 1.8 m thick) thus corresponds to the *Pa. delicatula platys* or younger conodont zones, as suggested by the biostratigraphy of the underlying interval.

The Lesní lom section (Fig. 5) is represented by a 22 m-thick Frasnian succession. The lower and middle part of the section (about 18 m thick) is tentatively attributed to the Upper *rhenana* (or older) conodont Zone. This interval yielded various palmatolepids (*e.g.* *Pa. cf. gigas gigas*, *Pa. cf. juntianensis*, *Pa. bogartensis*), polygnathids (*e.g.* *Po. webbi*, *Po. politus*, *Po. cf. brevis*), icriodids (*I. alternatus alternatus*, *I. a. helmsi*), ancyroellids (*Ancyrodella curvata*) and ancyrognathids (*e.g.* *Ancyrognathus triangularis*). The upper part (about 4.5 m thick) was assigned to the Upper *rhenana* to *linguiformis* zones. This interval yielded various conodonts, including palmatolepids *Pa. bogartensis*, *Pa. rhenana*, *Pa. nasuta*, *Pa. g. extensa*, *Pa. hassi*, *Pa. klugi*, *Pa. cf. linguiformis*, polygnathids (*e.g.* *Po. webbi*, *Po. brevilaminus*, *Po. aequalis*), *Ancyrognathus* sp. and *Ancyroides leonis*.

Foraminiferal biostratigraphy

In all the studied Moravian sections the uppermost Frasnian *Eodosaria evlanensis* Zone was distinguished. The typical associations of multilocular foraminifers are represented by species of *Nanicella*, *Eodosaria*, *Frondilina* and *Tikhinella*, which are accompanied by unilocular foraminifers represented by species of *Bisphaera*, *Irregullina*, *Parastegnammina* and *Parathurammina* (Hladil et al. 1991, Hladil & Kalvoda 1993b, Kalvoda 2002). The associations in the lower parts of the Lesni lom and Šumbera sections (Figs 3, 5) are accompanied by *Multiseptida corallina* which indicates the lower part of the *Eodosaria evlanensis* Zone (Kalvoda 2002). However, the vertical septation of chambers that enables the distinction between *Multiseptida* and *Eogeinitzina* is often poorly preserved or destroyed by diagenesis, which makes it difficult to fix the last occurrence of *Multiseptida*.

The uppermost Frasnian association of *Eodosaria*, *Eogeinitzina*, *Nanicella* and *Frondilina* provides reliable evidence for the distinction of the Fr-Fa boundary at all
studied sections (Figs 3–5). The very top of the *linguiformis* conodont Zone in the Šumbera section (Fig. 3) marks the last occurrence of the above described foraminiferal association indicating that it probably disappeared within the UKWI below or at the Fr-Fa boundary. Foraminifers recorded in the lowermost Famennian are rare and represented by uniloculars, such as *Bisphaera* sp., *Irregularina* sp., *Eotuberitina* sp., *Parastegnammina* sp. and *Parathurammina* sp., which correlate with the *Eonodosaria evlanensis–Quasiendothyra communis* Interzone defined by Kalvoda (2002).

Facies and microfacies

A) Mudstones and wacke/packstones/microbial boundstones (Fig. 6A, B). — The macroscopic lithology generally corresponds to calcisilites to fine-grained calcarenites. Microscopic observation revealed transitions between mudstones and wackestones to packstones, locally with a “clotted” structure.

In the Frasnian part of the Šumbera section, the large intraclasts of the B and C microfacies (see below) are composed of sediment developed as microfacies A. The microfacies was also observed in several restricted stratigraphic intervals in the Famennian part of the Šumbera section (samples V2-21, V2-23, V2-3). In these intervals, the microfacies are locally finely laminated. Very thin (commonly less than 1 mm) discontinuous intercalations of peloidal/intraclastic grainstones (B) were locally observed (sample V2-23). Bioclasts are mainly represented by crinoid ossicles, brachiopods, ostracods and girvanellid filaments. In places, current-aligned straight-shelled cephalopod shells were macroscopically observed (sample V2-23). Microfacies observed in places are very similar to “clotted” structures described by Adachi *et al.* (2004), Hips & Haas (2006) or Shen & Webb (2008) and can be thus regarded as microbial boundstones. They are commonly rather blurry and are more clearly developed in protected areas of the microfacies (e.g. under bioclasts or inside of shells).

Intraclastic material of this microfacies A observed in the microfacies B (peloidal/intraclastic/bioclastic packstones to grainstones) contains bioclasts, such as echinoderms, ostracods, girvanellids and peloids.

In the Hády section, the microfacies A was observed in thin-section in the uppermost Frasnian (in intraclastic material), close to the Fr-Fa boundary (sample HL2-12). Here, allochems are composed of crinoids, moravamminids, peloids, ostracods, foraminifers, microproblematics and girvanellids. The “clotted” structure is locally present, reflecting the microbial origin (microbial boundstone). The microfacies is common in intraclasts of the microfacies C (intraclast rudstones) in various stratigraphic levels across the section.

B) Peloidal/intraclastic/bioclastic packstones to grainstones (locally with transitions to rudstones) (Fig. 6C, D). — Based on macroscopic observation, this microfacies corresponds to massive calcarenites. Microscopically, packstones to grainstones with somewhat variable content of peloids, intraclasts and bioclasts were observed. The origin of peloids and the differentiation between peloids and similar-sized intraclasts is often problematic. In some cases the peloids are represented by abundant micritized renalcids. The blocky sparite prevails, whereas radiaxial fibrous sparite is infrequently present. The fragmentation of bioclasts and locally developed grading probably reflect the deposition above the storm wave base.

In the Šumbera section, the microfacies locally show normal or inverse grading in micro-scale. Skeletal allochems, mainly represented by brachiopods and echinoderms, are relatively rare, with the exception of several parts, which are enriched in biota. Brachiopods are often fragmented; complete articulated shells are rare. Echinoderms are represented by fragmented or unfragmented crinoid ossicles, sometimes affected by bioerosion and micritization (micrite envelopes). Other biota include renalcids, isolated girvanellid filaments, foraminifers, ostracods, conodonts, gastropods and various microproblematics. In rare instances, brachiopods form nuclei of oncocids (Fig. 6D). The oncoid cortexes consist of girvanellids, *Allonema* and *Rothpletzella*. “Clotted” structure is locally present in packstone areas, which suggest a microbial origin. Intraclasts, mm- to cm-sized, occur principally in the Frasnian part of the section. These intraclasts are composed of the microfacies A (see above) with locally developed “clotted” structure (A). Locally, it is possible to classify the larger intraclasts as reworked microbial boundstones.

In the Hády section, the microfacies B is less common in the lower part of the section corresponding to the Upper *rhenana* or older conodont Zone (samples HL2-15, HL2-16). Bioclasts are represented by: crinoids, peloids,
foraminifers, microproblematics, calcispheres, ostracods, renalcids, moravamminids and corals.

The microfacies B is dominant, especially in the lower part, while it is also present in the middle part of the Lesní lom section. Skeletal debris is mostly represented by echinoderms, moravamminids and, locally, mollusc fragments. Unlike the Šumbera and Hády sections, this microfacies often contains large corals in Lesní lom. Other bioclasts include: ostracods, brachiopods, foraminifers, stromatoporoids, microproblematics, bryozoans, girvanellids and moravamminids, some of them with micritic envelopes.

C) Intraclast rudstones (Fig. 6E, F). – This microfacies macroscopically corresponds to limestone breccias (calci-rudites). Microscopic observation revealed large intraclasts surrounded by pack- to grainstone-matrix composed of microfacies B (peloidal/intraclastic/bioclastic packstones to grainstones). The large cm-sized intraclasts, composed of the microfacies A, are often elongated and angular to subangular, suggesting very short transport. Normal and inverse grading was locally observed.

In the Šumbera section, intraclast rudstones occur, especially in the Frasnian part. Skeletal allochems are represented by fragmented echinoderms (crinoids), brachiopods, girvanellids, moravamminids, foraminifers, tabulate and rugose corals, udotheadal and solenoporacean algae, bryozoans, Rothpletzella and ichthyoliths. A specific sub-type of this microfacies locally contains relatively abundant udotheadal algae (sample V2-19). Stromataëctis was locally observed. Some peloids are obviously strongly micritized renalcids.

In the Hády section, the rudstones are present across the entire succession. Bioclasts are represented by: brachiopods, corals, gastropods, foraminifers, calcispheres, micro-problematics, ostracods, conodonts and ichthyoliths. Intraclasts are mainly represented by “clotted” wacke/packstones of the microfacies A with various bioclasts (e.g. echinoderms, brachiopods, moravamminids, calcispheres, ostracods) and, partly by peloidal/intraclast grainstones. Stromataëctis structures are abundant in higher parts of the section.

In the Lesní lom section, the intraclast/peloidal rudstone was only observed in the sample NLL 12.5. Allochems are represented by ostracods, brachiopods, gastropods and peloids. Large intraclasts are represented by mudstones, wacke/packstones and microbial boundstones with a “clotted” structure of the microfacies A. Biota in the intraclastic material include ostracods, gastropods, calcispheres, foraminifers and Rothpletzella.

D) Brachiopod rudstone (Fig. 6G, H). – This microfacies is restricted to a single bed approximately 5 cm thick at the Šumbera section (sample V2N4, assumed as Lower triangularis Conodont Zone). It is characterized by large
articulated and fragmented brachiopods surrounded by blocky and radiaxial fibrous sparite and spaces infilled by intraclast/peloidal grainstones (microfacies B). Large complete brachiopod shells are often filled with cement or peloidal/intraclastic grainstone with fragmented brachiopods and echinoderms. Blocky and radiaxial fibrous sparite cements were also observed in some brachiopod infills. The fragmentation and chaotic arrangement of brachiopods suggests hydrodynamic transport possibly during a storm event.

Environmental comparison of Steinbruch Schmidt and Moravian Karst sections

Combined observations of sedimentology/facies and fossil content show that the Steinbruch Schmidt succession has been deposited in significantly deeper water than the sediments from the Moravian Karst sections. In Steinbruch Schmidt barely any intraclasts, no coquinas of benthic organisms and no stromatactis features are present. However, hardgrounds are developed in some of the beds (e.g. in the marker bed below the UKWI – see Schindler 1993, Gereke & Schindler 2012) and intense bioturbation is present.

The rocks of the Steinbruch Schmidt section were deposited on a submarine rise surrounded by relatively deeper basinal areas (e.g. Schmidt 1925, 1935; Rabien 1956; Meischner 1971) whereas the Moravian Karst sections were deposited in a carbonate ramp environment (Hladil 1991). The Steinbruch Schmidt section belongs to the Rhenohercynian Belt and comprises cephalopod limestone facies (e.g. Tucker 1974, Tucker & Wright 1990). The cephalopod limestones – as well as the embedded Kellwasser intervals – are often very condensed. For the Kellwasser intervals this reduced thickness can be observed e.g. in the Kellwasser type locality in the Kellwasser Valley of the Harz Mountains (e.g. Gereke & Schindler 2012, Gereke et al. 2014) or in the Sessacker Trench section in the Dill Syncline of the Rheinisches Schiefergebirge (e.g. Schindler et al. 1998). The thickness of the Kellwasser sediments may vary significantly, from one bed of 0.1 to 0.2 m (e.g. Hühnerbach Valley, Sessacker Trench section) to almost 1 m (Aeke Valley) (compare e.g. Schindler 1988, 1990b, 1993; Gereke & Schindler 2012).

Deposition of intraclastic rudstones in Šumbera and particularly Hády sections and occurrence of Frasnian continental basal clastics in the near vicinity (Stelcl 1969, Krmíček 2006) suggest rather shallower environment possibly in the proximal part of a carbonate ramp. The Lesní lom section is generally characterized by thicker and more fine-grained sediments (mudstones to grainstones), which probably reflect a relatively more distal position to the shore than in the case of Šumbera and Hády sections.

The basic differences between the pelagic limestones in the Steinbruch Schmidt section and the limestones of the Moravian Karst deposited on a wide carbonate ramp are mainly recognisable in respect to the fossil content and the sedimentary features. Whereas in the Kellerwald area fossils of the pelagic offshore realm dominate (e.g. dacyroconarids, homoctenids, goniatites, straight-shelled cephalopods, entomozaecean ostracods), the Moravian Karst sections yield a variety of shallow-water organisms (e.g. brachiopods, bryozoans, benthic foraminifers, corals, crinoids, trilobites as well as different kinds of algae); peloids, bioturbated shells and coquinas of fragmented shells are also present. The prevailing carbonates in the Steinbruch Schmidt section are mud- and wackestones whereas in the Moravian Karst grainstones, packstones, rudstones and even breccias are frequent. In summary, there is a low-energy deeper-water facies in the Steinbruch Schmidt section and successions of high-energy shallow-water facies in the Moravian Karst.

Gamma-ray spectrometry

The basic statistics of the measured gamma-ray values are presented in Tab. 1 and all measured values are in Table I in the electronic supplementary appendix. The CGR values vary from 0.8 to 49.8 API. Relatively high values were measured in the pelagic limestones of the Steinbruch Schmidt section, whereas much lower values are typical for sections in the Moravian Karst (Fig. 7; Tab. 1). The highest covariance with the total dose rate was found for K ($R^2 = 0.82$) in Steinbruch Schmidt. This suggests that K mainly drives the
Table 1. Calibration equations used for conversion of XRF signal (cps) to ICP-MS oxide and element concentrations (wt%, ppm).

<table>
<thead>
<tr>
<th>Oxide/element</th>
<th>Calibration equation</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>SiO₂ (wt%) = 0.0002 × Si (cps) + 0.0771</td>
<td>0.990</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>Al₂O₃ (wt%) = 0.0002 × Al (cps) + 0.2671</td>
<td>0.991</td>
</tr>
<tr>
<td>CaO</td>
<td>CaO (wt%) = 0.0001 × Ca (cps) + 3.0784</td>
<td>0.998</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>Fe₂O₃ (wt%) = 0.0001 × Fe (cps) + 0.0348</td>
<td>0.994</td>
</tr>
<tr>
<td>K₂O</td>
<td>K₂O (wt%) = 0.0001 × K (cps) + 0.1664</td>
<td>0.996</td>
</tr>
<tr>
<td>TiO₂</td>
<td>TiO₂ (wt%) = 0.0001 × Ti (cps) – 0.0298</td>
<td>0.992</td>
</tr>
<tr>
<td>MnO</td>
<td>MnO (ppm) = 0.0001 × Mn (cps) – 0.0056</td>
<td>0.993</td>
</tr>
<tr>
<td>Rb</td>
<td>Rb (ppm) = 0.9707 × Rb (cps) – 0.311</td>
<td>0.999</td>
</tr>
<tr>
<td>Sr</td>
<td>Sr (ppm) = 1.2185 × Sr (cps) – 12.171</td>
<td>0.996</td>
</tr>
<tr>
<td>Zr</td>
<td>Zr (ppm) = 1.1708 × Zr (cps) – 4.8282</td>
<td>0.997</td>
</tr>
<tr>
<td>Cu</td>
<td>Cu (ppm) = 0.7812 × Cu (cps) – 5.1203</td>
<td>0.983</td>
</tr>
<tr>
<td>Pb</td>
<td>Pb (ppm) = 0.9966 × Pb (cps) – 2.7427</td>
<td>0.999</td>
</tr>
<tr>
<td>Zn</td>
<td>Zn (ppm) = 0.8444 × Zn (cps) – 5.7096</td>
<td>0.989</td>
</tr>
</tbody>
</table>

two horizons can be correlated with LKWI and UKWI from the Steinbruch Schmidt (Fig. 8).

Bulk magnetic susceptibility

Median MS values for each section are reported in Tab. 2 and all measured values are in Table II in the electronic supplementary appendix. Samples from the Steinbruch Schmidt have the highest values; the Hády and Šumbera sections have lower values and the lowermost mean values come from the Lesní lom section. Our MS curve of the Steinbruch Schmidt section corresponds in high detail with the MS curves published by Crick et al. (2002) and Riquier et al. (2009); correlation is less straightforward due to lower number of samples), which illustrates a good reproducibility of the MS data. MS is generally high in the interval from the base of the section (Lower *rhenana* conodont Zone) to the upper part of the Upper *rhenana* conodont Zone (1 m above LKWI) (Fig. 7). MS within the LKWI is highly variable, ranging from very high to very low values (both in shale and limestone beds). Upper parts of the Upper *rhenana* and the lower portions of the *linguiformis* conodont zones are characterized by lower values, which again increase at the base of the UKWI. Maximum MS values are observed within and just above the UKWI. In general, MS is relatively high in the Famennian and displays two cycles (Fig. 7).

The MS curve of the Hády section shows several correlative features with the Steinbruch Schmidt curve. Two levels with increased MS values occur just below the Fr-Fa boundary (Upper *rhenana* to *linguiformis* conodont zones) corresponding to the GRS-based equivalents of the LKWI and UKWI (Fig. 7). There is no distinct MS record in the Kellwasser Crisis interval in the Lesní lom and Šumbera sections, although the uppermost Frasnian parts have generally higher values compared to the underlying succession (Fig. 7). MS values markedly increase in the upper part of the Famennian at the Hády (*Palmoletopis delicatula platys* or higher conodont zones) and Šumbera section (*Pa. minuta minuta* or younger zone).

Element geochemistry

Median values of major and trace element concentrations for each section are listed in Tab. 3 and all measured values

\[
\begin{align*}
\text{SiO}_2 & = 0.0002 \times \text{Si (cps)} + 0.0771 & R^2 = 0.990 \\
\text{Al}_2\text{O}_3 & = 0.0002 \times \text{Al (cps)} + 0.2671 & R^2 = 0.991 \\
\text{CaO} & = 0.0001 \times \text{Ca (cps)} + 3.0784 & R^2 = 0.998 \\
\text{Fe}_2\text{O}_3 & = 0.0001 \times \text{Fe (cps)} + 0.0348 & R^2 = 0.994 \\
\text{K}_2\text{O} & = 0.0001 \times \text{K (cps)} + 0.1664 & R^2 = 0.996 \\
\text{TiO}_2 & = 0.0001 \times \text{Ti (cps)} - 0.0298 & R^2 = 0.992 \\
\text{MnO} & = 0.0001 \times \text{Mn (cps)} - 0.0056 & R^2 = 0.993 \\
\text{Rb} & = 0.9707 \times \text{Rb (cps)} - 0.311 & R^2 = 0.999 \\
\text{Sr} & = 1.2185 \times \text{Sr (cps)} - 12.171 & R^2 = 0.996 \\
\text{Zr} & = 1.1708 \times \text{Zr (cps)} - 4.8282 & R^2 = 0.997 \\
\text{Cu} & = 0.7812 \times \text{Cu (cps)} - 5.1203 & R^2 = 0.983 \\
\text{Pb} & = 0.9966 \times \text{Pb (cps)} - 2.7427 & R^2 = 0.999 \\
\text{Zn} & = 0.8444 \times \text{Zn (cps)} - 5.7096 & R^2 = 0.989 \\
\end{align*}
\]
Figure 8. Correlation of the studied Moravian Karst and Rheinisches Schiefergebirge Fr-Fa sections based on the conodont biostratigraphy and U gamma-ray, magnetic susceptibility, SiO2 and Zr/Rb logs. Correlative trends of the Zr/Rb curves are marked by arrows.

Table 2. Median (med), minima (min) and maxima (max) of gamma-ray spectrometry and magnetic susceptibility values and covariance between total dose rate (TOT) and U, K and Th for each of the studied sections.

<table>
<thead>
<tr>
<th>Sections</th>
<th>CGR</th>
<th>K</th>
<th>U</th>
<th>Th</th>
<th>U/Th</th>
<th>TOT:U</th>
<th>TOT:K</th>
<th>TOT:Th</th>
<th>Th/K</th>
<th>MS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>units</td>
<td>API</td>
<td>%</td>
<td>ppm</td>
<td>ppm</td>
<td>R^2</td>
<td>R^2</td>
<td>R^2</td>
<td>R^2</td>
<td></td>
</tr>
<tr>
<td>Steinbruch Schmidt (n = 45)</td>
<td>min</td>
<td>28.1</td>
<td>0.8</td>
<td>0.5</td>
<td>3.4</td>
<td>0.1</td>
<td></td>
<td>4.21·10^-8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>max</td>
<td>49.8</td>
<td>1.8</td>
<td>3.9</td>
<td>6.0</td>
<td>0.8</td>
<td></td>
<td>3.9·10^-7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hady (n = 42)</td>
<td>min</td>
<td>12.8</td>
<td>0.4</td>
<td>2.6</td>
<td>1.5</td>
<td>1.0</td>
<td></td>
<td>6.25·10^-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>med</td>
<td>21.8</td>
<td>0.7</td>
<td>4.8</td>
<td>2.5</td>
<td>2.1</td>
<td>0.9</td>
<td>0.4</td>
<td>0.5</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>max</td>
<td>35.3</td>
<td>1.2</td>
<td>10.1</td>
<td>4.0</td>
<td>3.0</td>
<td></td>
<td>2.98·10^-7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Šumbera (n = 56)</td>
<td>min</td>
<td>6.8</td>
<td>0.1</td>
<td>2.0</td>
<td>0.9</td>
<td>0.3</td>
<td></td>
<td>-3·10^-8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>med</td>
<td>14.3</td>
<td>0.4</td>
<td>3.6</td>
<td>2.2</td>
<td>0.6</td>
<td>0.8</td>
<td>0.3</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>max</td>
<td>23.1</td>
<td>0.5</td>
<td>5.4</td>
<td>3.8</td>
<td>1.3</td>
<td></td>
<td>4.92·10^-7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lesní lom (n = 48)</td>
<td>min</td>
<td>0.8</td>
<td>0.0</td>
<td>0.9</td>
<td>0.2</td>
<td>1.1</td>
<td></td>
<td>-6.7·10^-8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>med</td>
<td>5.4</td>
<td>0.1</td>
<td>3.2</td>
<td>0.8</td>
<td>4.4</td>
<td>1.0</td>
<td>0.4</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>max</td>
<td>12.4</td>
<td>0.4</td>
<td>7.2</td>
<td>1.9</td>
<td>12.7</td>
<td></td>
<td>1.41·10^-7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Median values of selected oxides and elements measured by XRF and calibrated by independent ICP-MS analysis. *SiO2 and K2O concentrations are below detection limits in prevailing number of samples from the Moravian Karst and the median was calculated just from few samples with detectable (considerably higher) values.

<table>
<thead>
<tr>
<th>Sections</th>
<th>Al2O3</th>
<th>SiO2</th>
<th>K2O</th>
<th>TiO2</th>
<th>CaO</th>
<th>Fe2O3</th>
<th>MnO</th>
<th>Zr</th>
<th>Rb</th>
<th>Sr</th>
<th>Pb</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>wt%</td>
<td></td>
</tr>
<tr>
<td>Steinbruch Schmidt (n = 147)</td>
<td>2.3</td>
<td>6.5</td>
<td>0.5</td>
<td>0.1</td>
<td>41.0</td>
<td>0.5</td>
<td>0.1</td>
<td>39.3</td>
<td>16.6</td>
<td>248.3</td>
<td>5</td>
<td>8.7</td>
</tr>
<tr>
<td>Hady (n = 146)</td>
<td>0.7*</td>
<td>0.7</td>
<td>0.2*</td>
<td>0.01</td>
<td>45.4</td>
<td>0.1</td>
<td>0.01</td>
<td>2.2</td>
<td>2.0</td>
<td>286.1</td>
<td>0.7</td>
<td>5.4</td>
</tr>
<tr>
<td>Šumbera (n = 162)</td>
<td>0.5*</td>
<td>0.6</td>
<td>0.2*</td>
<td>0.01</td>
<td>45.2</td>
<td>0.1</td>
<td>0.01</td>
<td>2.3</td>
<td>2.0</td>
<td>233.5</td>
<td>1.1</td>
<td>5.5</td>
</tr>
<tr>
<td>Lesní lom (n = 144)</td>
<td>0.6*</td>
<td>0.8</td>
<td>0.2*</td>
<td>0.01</td>
<td>45.7</td>
<td>0.1</td>
<td>0.01</td>
<td>3.9</td>
<td>2.7</td>
<td>204.7</td>
<td>4.0</td>
<td>6.2</td>
</tr>
</tbody>
</table>
Median concentrations of measured elements markedly differ between the Moravian Karst sections and Steinbruch Schmidt (Tab. 3). The concentrations of typically terrigenous detrital elements, such as Al, K, Ti, Zr and Rb are about two- to one-order of magnitude lower in the pure shallow-marine limestone facies from the Moravian Karst as compared with the deeper-marine nodular and black limestones, marlstones and shales from Steinbruch Schmidt (see Tab. 3). The Al₂O₃ concentrations are below the detection limits (DL) of the XRF device in the prevailing number of samples (Lesní lom: 107 samples < DL/44 samples > DL; Hády 63/23; Šumbera 95/11) from the Moravian Karst; therefore they were applied in normalisation only when the measured data made it possible. Consequently, the target element concentrations were normalised to Rb, which is an alternative refractory terrigenous element considered a conservative proxy of clay-sized detrital fractions in sediments (e.g. Schulte & Speijer 2009, Jones et al. 2012). Normalizations to Rb or Al are used to eliminate the dilution effect of quartz and carbonate minerals due to variable grain size and rate of carbonate production in marine depositional settings (e.g. Brumsack 2006), although pitfalls are related to this approach (see Van der Weijden 2002).

Principal Component Analysis (PCA) revealed several groups of elements, which show similar geochemical affinities and behaviour in our XRF dataset (Fig. 9a). Group 1 represents elements usually related to detrital terrigenous fraction in sediments, Al, Si, K, Ti, Zr and Rb, both for the Moravian Karst sections and Steinbruch Schmidt (Fralick & Kronberg 1997, Rachold & Brumsack 2001, Niebuhr 2005, Sageman & Lyons 2005, Śliwiński et al. 2010, Whalen et al. 2015, Bábek et al. 2016). Data from the
Moravian Karst revealed good statistic correlation between Rb, Si and Zr (R² = 0.7–0.9) and a markedly lower correlation between Ti and Si, Rb, Zr (R² = 0.2–0.4; Fig. 9a). Aluminium measured in a few samples with an Al content above detection limits revealed good statistic correlations (R² = 0.8–0.9) with Si, Rb and Zr. High negative correlation (R² = −0.5 to −0.8) between these detrital proxies and the carbonate proxy Ca (Fig. 9a) reflects the effect of dilution of terrigenous siliciclastics in marine carbonates (Brumsack 2006). The concentrations of Al, Si, K, Ti, Zr and Rb increase and the Zr/Rb and Ti/Rb ratios decrease in the equivalents of the KWI in the Moravian Karst sections, along with the increasing MS values and UGRS concentrations (Fig. 7). As Zr and Ti are contained in silt- and fine-grained sand-sized heavy minerals, the Zr/Rb and Ti/Rb ratios can be used as proxies of detrital grain size in fine-grained siliciclastic and mixed carbonate-siliciclastic sediments (e.g. Fralick & Kronberg 1997, Dypvik & Harris 2001, Schulte & Speijer 2009, Jones et al. 2012, Nováková et al. 2013). This geochemical signature suggests that carbonate production decelerated during the KWE along with the increasing MS values and UGRS concentrations (Fig. 7). These correlations are consistent with GRS and MS correlations.

Based on a combination of the above-mentioned geochemical signatures (Al increase, Zr/Rb, Ti/Rb decrease in KWI) and biostratigraphy, the Moravian Karst sections can be correlated in high-resolution manner with the Steinbruch Schmidt (Fig. 8). These correlations are consistent with GRS and MS correlations.

Good correlations of Fe vs. Si (R² = 0.8–0.9) and Fe vs. Rb (R² = 0.7–0.8; Fig. 9b) at Hády and Šumbera suggest that most of Fe is associated with the clay fraction. These correlations are lower (R² = 0.3–0.4) in Steinbruch Schmidt and Lesní lom. MS and the detrital proxy curves reveal very similar stratigraphic trends (Fig. 7). Moreover, data from the Hády section show a high statistic correlation between MS vs. Rb (R² = 0.8; Fig. 9b), MS vs. Si (R² = 0.8) and lower correlation between MS vs. Ti (R² = 0.4). This suggests that the MS signal from the studied sections is driven by detrital particles diluted in the diagenetic calcium carbonate (see Riquier et al. 2009 for comprehensive MS analysis of the Steinbruch Schmidt section).

Group 2 from the PCA comprises of elements Pb, Cu and Zn in Steinbruch Schmidt (Fig. 9a) and Pb and Cu in the Moravian Karst sections, which are often used as paleoproductivity and redox potential proxies (e.g. Schnetger et al. 2000, Dean 2007, Śliwiński et al. 2010). In all Moravian sections, Cu, Pb and partly Zn show poor correlation with the other elements. Zn correlates well with Rb in the basal Famennian strata at Šumbera and Hády sections (R² = 0.7), reflecting its association with clays (Schlegel et al. 2001, Sdiri et al. 2014). In the Lesní lom section, high values of Pb were found in the UKWI and correlate partly with high Rb (Fig. 7). Lead weakly correlates with Fe (R² = 0.3) at Lesní lom, which may indicate its incorporation in pyrite. Nevertheless, higher contents of Pb may also be attributed to microbialites (Kamber et al. 2004).

Zinc and lead show good statistic correlation (R² = 0.8) in the Steinbruch Schmidt, whereas correlation between Cu/Zn and Pb/Cu is poor (R² = 0.1–0.2). Aluminium and Rb moderately correlate with Cu (R² = 0.6) but weakly with Pb and Zn (R² = 0.2). Zinc and Cu reveal very low correlation with Fe (R² = 0.2–0.3). These correlations may indicate that a significant portion of Cu is incorporated in clay minerals and Pb and Zn probably in organic matter. Zinc and Cu are partially related to pyrite. Concentrations of non-normalised paleoproductivity proxies Pb (Fig. 8), Zn and Cu, as well as Pb/Rb, Zn/Rb and Cu/Rb increase in the UKWI and more distinctively at the top of the UKWI.

Ratios of Mn/Al and Fe/Al are often regarded as proxies of hydrothermal input (Taylor & McLennan 1985) or anoxic conditions (Maynard 2005, Lyons & Severmann 2006). In the Moravian Karst, anomalously high Mn/Al ratios (mean 0.146; compare to PAAS: Mn/Al = 0.0085)
may indicate a general hydrothermal influence connected with widespread bimodal magmatism (Přichystal 1993, Janoušek et al. 2014). Manganese does not correlate with Fe, while higher Fe/Al (mean value 0.9) may reflect anoxic conditions (Lyons & Severmann 2006) or could be also linked to volcanic activity.

Uranium measured by ICP-MS (and calculated U/Th) shows higher values compared to UGRS in both the KWE black shale intervals from Steinbruch Schmidt (Fig. 7). Lower values of U/ThGRS are caused by the averaging of U and Th content in a larger bulk of scanned rock, which included surrounding limestones.

Discussion

The conodont biostratigraphic data from the Moravian sections document the overall biostratigraphic span of the Lower or Upper rhenana to Palmatolepis minuta minuta or younger conodont zones and enable to us follow the biotic and facies changes at the Fr-Fa boundary in detail. Multilocular foraminifers of the Eogoneinitzina, Eonodosaria-Nanicella association reach the UKWI and disappear at or below the Fr-Fa boundary. The Moravian facies are represented by ramp limestones (see Hladil et al. 1991). The metazoan reef environment was considerably reduced during the late Frasnian (Schindler 1990b, McGhee 1996, Copper 2002). Heavily calcifying biota was largely replaced by calcimicrobial consortia, such as Renalcis, Rothpletzella, Girvanella and Epiphyton, which dominated in the uppermost Frasnian and Famennian (Copper 2002). Microbial facies reflecting this environmental change were recorded from various shallow-water settings across the world (e.g. Wood 2000, Whalen et al. 2002, Chow & George 2004, Shen et al. 2008, Rakociński & Racki 2016) although the traces of microbial activity were also recorded in deep-water environments (e.g. in the Holy Cross Mountains; Marynowski et al. 2011). Microbial structures represented by renalcids and Rothpletzella from the Šumbera area were previously depicted by Racki et al. (2002). The currently recorded Moravian association of calcimicrobes is more diversified than that found in the Holy Cross Mts. in Poland (Rakociński & Racki 2016) and might be compared with calcimicrobial associations from reef environments at various sites, including the Australian Canning Basin (e.g. Wood 2000, 2004), China (Shen et al. 2010) or Russia (Antoshkina 2006). However, the Moravian Karst ramp environment was less favourable for the development of larger mud mounds than those reported from Australia (e.g. Wood 2000, 2004) or China (Shen et al. 2010). Nevertheless, the wide occurrence of microbial limestones and calcimicrobes in the Moravian Karst follows the global trends during the uppermost Frasnian and lower Famennian.

Before starting a discussion of geochemical and petrophysical signatures it is important to highlight that the limestones in Moravia are very pure and were deposited in an area, to a certain extent similarly as in the neighbouring southern Poland, under the influence of strong bimodal magmatism (Přichystal 1993, Racki et al. 2002, Kalvoda et al. 2008, Janoušek et al. 2014) and that their detrital input may have been largely controlled by atmospheric volcanic transport.

Carbonate successions of the Moravian Karst display an increase in detrital proxies (Al, K, Si, Rb, Zr and Ti contents), GRS measured U concentrations, U/Th ratios and MS values in the uppermost Frasnian (Upper rhenana to linguiformis conodont zones) strata. In contrast the Zr/Rb, Ti/Rb ratios and CaO content decrease (Figs 7, 8). These geochemical trends correlate with the Kellwasser intervals in the reference section of Steinbruch Schmidt, where high detrital concentrations are present in the shaly beds and low concentrations in limestones of KWE; whereas Zr/Rb and Ti/Rb values are low and U/Th values are high both in shaly and carbonate facies of KWE (Figs 7, 8). A decrease in Ti/Rb and Zr/Rb in the KWE level in the Moravian Karst and Steinbruch Schmidt section is in accordance with data from the Harz Mountains and in the LKE level from the Eifel Mountains in Germany (Pujol et al. 2006, Riquier et al. 2006). Contrary to Dopianalska et al. (2016) who based on Nd isotopes (among others also in Steinbruch Schmidt section) postulated a fall in sea level during the deposition of the Kellwasser intervals, the decrease in Ti/Al was interpreted here as the result of restricted clastic input during sea-level rise (Pujol et al. 2006, Riquier et al. 2006). The decrease in grain size of the siliciclastic supply and carbonate productivity in the KWE intervals is as a consequence of a deepening and is in accord with our geochemical signature from the Moravian Karst and the Steinbruch Schmidt sections. The minima in Zr/Rb at the base of the LKW1 and UKWI in Steinbruch Schmidt coincide with the maximum flooding surfaces reported by Devleeschouwer et al. (2002). The Zr/Rb increase is related to progradational microfacies parasequences (Devleeschouwer et al. 2002) of highstand system tract (LKW1) and lowstand system tract (above LKW1 in the Upper rhenana conodont Zone), together with lower parts of a transgressive system tract (top of the Upper rhenana conodont Zone). Values of Zr/Rb decrease in the upper part of the transgressive system tract (linguiformis conodont Zone) and reaches a minimum at the maximum flooding surface at the base of UKWI. Zr/Rb values increase again during the highstand system tract of the UKWI.

On the other hand, an increase in Zr/Al2O3 was reported from the KWI of the Holy Cross Mountains, Poland, from the Montagne Noire, France and the Polar Urals, Russia (Racki et al. 2002, Yudina et al. 2002, Pujol et al. 2006). The increase in Zr/Al2O3 (> 0.001) can be explained by
a coarser clastic, often volcaniclastic contribution (Racki et al. 2002, Pujol et al. 2006, Racki et al. 2012). Racki et al. (2002) also reported a Zr/Al₂O₃ increase at the base of the Famennian from probably another Šumbera section, which can be equivalent to a Zr/Rb peak in the Lower triangularis (= Pa. subperlobata) conodont Zone from our dataset (Fig. 7). However, this interval was not documented from the base of Famennian at Hády. The excessive Zr, showing good correlation with Rb and Si and excessive Ti in the Moravian Karst, together with similar data from southern Poland, may represent a reflection of the widespread coeval bimodal magmatism of the Moravian-Silesian Zone (Dvořák 1985, Přichystal 1993, Janoušek et al. 2014). It may also be in accord with anomalously high Mn/Al, which is a proxy of hydrothermal input. A good statistical correlation exists between Si, Rb and Zr in the Moravian Karst sections, which may be in accordance with the common presence of zircon of volcanic origin in the Frasnian sediments from Moravia (Hladil 2002, Gilíková et al. 2006, Krmíček 2006). Volcaniclastic ilmenite, epidote, zircon and rutile were reported in Devonian tuffites, which were found in close vicinity of the studied sections (Gilíková et al. 2006, Krmíček 2006). However, Al (or Al₂O₃) normalization could be biased due to very low Al concentrations, which can result in artificially higher ratios (Van der Weijden 2002, Tribovillard et al. 2006, Collin et al. 2015). This could also play a role in the case of the Moravian sections.

In all Moravian sections, Cu, Pb and, to some extent, Zn show poor correlation with the other elements and are probably mostly bound to organic matter. The absence of mutual correlation among palaeoproductivity proxies in all sections probably reflects their relative affinities to different types of organic matter.

The KWI in the Moravian Karst and Steinbruch Schmidt are characterized by increased U and U/Th. Seawater U is taken up by sediments under suboxic to anoxic conditions ranging from shallow epeiric seas to deep open oceans (Plank & Langmuir 1998, Ruffell & Worden 2000, Hladil et al. 2006, Bond et al. 2013). Hladil et al. (2006) noticed a similar anomalously high content of U, displayed by very low Th/U signatures, in the Eifelian and Frasnian shallow water “pure” limestones of the Moravian Karst. They excluded the effect of anoxic waters on the U enrichment due to low total organic carbon (TOC) concentrations and low U: TOC covariance; furthermore they reported similar U-rich carbonates from the NE margin of the Great Bahama Bank, where U is related to impurities from Saharan dust. Variations in U concentration correlate well with XRF siliciclastic content in the Lesní lom and Hády sections (Fig. 7). This could indicate that a potential source of U enrichment is the detritic fraction, possibly derived from the widespread Devonian felsic volcanites (Gilíková et al. 2006, Krmíček 2006). However, higher U enrichment may also reflect the bias of normalisation in pure limestones. Increased U and decreased Th/U were reported previously from other Moravian Karst Fr-Fa sections (Ostrov u Macochy, Mokrá; Bábek et al. 2007) and from the Hranice Palaeozoic (Czech Republic; Hladil et al. 2006). The U maxima of LKWI and UKWI from Lesní lom and Hády (Fig. 8) can be correlated with maxima of the lower and upper part of the 6th cycle of Hladil et al. (2006, p. 234).

High U/Th values from the KWI were also reported in earlier studies from Montagne Noire and Morocco (Riquier et al. 2005, 2009) and low Th/U values from the Holy Cross Mountains, Poland (Bond & Zatoń 2003, Bond et al. 2004) and Alberta, Canada (Bond et al. 2013). This is in accordance with interpretation of hypoxic to anoxic conditions associated with both KWE maximum flooding surfaces (Devleeschouwer et al. 2002), based on the high TOC content and excessive concentrations of siderophile and chalcophile elements (Racki et al. 2002, Tribovillard et al. 2004, Riquier et al. 2005, Pujol et al. 2006). Geochemical and sedimentological proxies indicate a widespread hypoxia to anoxia typical of most sections exhibiting the Kellwasser Crisis (Joachimski & Buggisch 1993, Racki 2005, Gereke & Schindler 2012, George et al. 2014); however, exceptions do occur (Carnic Alps, Austria; Bond et al. 2004). Gereke (2007) discussed the possibility that even local oxic “events” may be involved in the course of the Kellwasser Crisis.

Conclusions

The detailed conodont zonation in the Moravian sections made it possible to follow, in detail, biotic changes across the Fr-Fa boundary. The ramp limestones recorded the decline of metazoon biota, largely replaced by rich calcimicrobial associations, thus consistent with the global trend during this interval. The association of multilocular foraminifers reached the UKWI and became extinct in the uppermost Frasnian close to the Fr-Fa boundary. The Kellwasser Crisis left comprehensible petrophysical and
geochemical signatures in the studied Fr-Fa sections from the Moravian Karst. These were probably related to a decrease in carbonate productivity, which caused a relative increase in siliciclastic components in the sediments (Si, Rb, Ti and Zr; Fig. 7). Lower Zr/Rb and Ti/Rb ratios (Fig. 8) indicate a decrease in grain size, related to the increase in distance from a clastic source, or attenuation of aeolian transport. Similar changes were documented from the reference section Steinbruch Schmidt, related to maximum flooding surfaces and high stand system tracts (Devleeschouwer et al. 2002) of both KWI (Fig. 8). Element normalizations in the Moravian Karst sections may be somewhat biased due to the pure limestones. However, significant Zr, TiO₂, Mn or Fe₂O₃ enrichments may indicate some influence of volcanic sources at the studied Moravian Karst Fr-Fa sections, which is in accordance with previous results from the Moravian Karst (Zukalová 1980, Dvořák 1985, Hladil 2002, Racki et al. 2002) and southern Poland (Racki et al. 2002, Pujol et al. 2006, Rakociński et al. 2016). MS values display a close link with siliciclastic content (Fig. 7) and are therefore considered as proxy of siliciclastic influx across Fr-Fa boundary interval in the Moravian Karst sections. U/Th increase in the LKWI and UKWI of the Steinbruch Schmidt section (Fig. 7) supports previously interpreted dysoxic to anoxic conditions (e.g. Pujol et al. 2006) during the deposition in the event intervals. U concentrations are also generally high in the studied Moravian Karst sections. Higher U content is probably related to a detritic fraction rich in U (good correlation with siliciclastic content proxies). Enrichment in palaeoproductivity proxies (Zn, Pb) appears only in the LKWI and UKWI of the Steinbruch Schmidt section, whereas only relative increases in Zn and Pb were documented in the (Upper?) Kellwasser interval from the Lesní lom and Šumbra sections.

Acknowledgements

The reviewers Marek Narkiewicz and Michal Rakociński are thanked for their helpful suggestions. This research was supported by the Czech Science Foundation project GA14-18183S and is a contribution to the International Geoscience Programme (IGCP) Project 652 – Reading geologic time in Paleozoic sedimentary rocks.

References

BRETT, C.E., MC LAUGHLIN, P.I., SCHINDLER, E., HISTON, K. &...

DEAN, W.E. 2007. Sediment geochemical records of productivity and oxygen depletion along the margin of western North America during the past 60,000 years: telecommunications with Greenland Ice and the Carriaco Basin. *Quaternary Science Reviews* 26, 98–114. DOI 10.1016/j.quascirev.2006.08.006

FRANKEN, W., RODEN, R.S., FRANKE, W. & WEBER, K. (eds) *Pre-Permian Geology of

DOI 10.1002/9781444304855.ch4

