Palynological data from sediments of the Hunsrückschiefer type, Lower Devonian of the SW Hunsrück, Germany

RAINER BROCKE, VOLKER KNEIDL, VOLKER WILDE & WALTER RIEGEL

The Devonian Hunsrückschiefer is an outstanding Palaeozoic Fossil Lagerstätte, widely known for the exceptional preservation of a highly diverse fossil assemblage at the classical sites of Gemünden and Bundenbach. However, biostratigraphical marker fossils are rare and tectonic deformation in the Hunsrück is extremely complex. Therefore, the exact stratigraphic range of the Hunsrückschiefer Lagerstätte and its facies equivalents is still not well understood. Palynological evidence has thus far been very limited because of poor preservation and high thermal alteration. The sediments of the Hunsrückschiefer type (here Zerf Formation) from the newly described Siesbach section have now yielded a rather diverse and reasonably well preserved assemblage of spores and, for the first time, of marine phytoplankton and scolecodonts. Spore assemblages are composed of morphologically simple cryptospores and typical Lower Devonian trilete spores such as *Retusotriletes, Apiculiretusispora, Emphanisporites* and *Streelispora*. Phytoplankton assemblages include prasinophytes (*Tasmanites, Dictyotidium*, *Cymatosphaera*, *Lophosphaeridium*) and various acritarchs (*Veryhachium, Micrylhystridium, Multiplicisphaeridium, Gorgonisphaeridium*). An upper Pragian to lower Emsian (late Siegen) age is suggested for the studied section based on known stratigraphic ranges of the identified spore taxa. Thus, the Zerf Formation appears to be older than the Hunsrückschiefer Lagerstätte at Gemünden and Bundenbach, in which typical Emsian marker species have been observed. The environmental significance of the proportion of marine and terrestrial palynomorphs is briefly discussed. • Key words: Phytoplankton, miospores, Siesbach, Hunsrück, Lower Emsian, Zerf Formation, stratigraphy, facies.

Rainer Brocke, Senckenberg Forschungsinstitut und Naturmuseum Frankfurt, Senckenberganlage 25, 60325 Frankfurt am Main; Rainer.Brocke@senckenberg.de • Volker Kneidl, Nikolaus Lenau-Straße 22, 55543 Bad Kreuznach. • Volker Wilde, Senckenberg Forschungsinstitut und Naturmuseum Frankfurt, Senckenberganlage 25, 60325 Frankfurt am Main; Volker.Wilde@senckenberg.de • Walter Riegel, Senckenberg Forschungsinstitut und Naturmuseum Frankfurt, Senckenberganlage 25, 60325 Frankfurt am Main; Walter.Riegel@senckenberg.de

The Lower Devonian Hunsrückschiefer (Hunsrück Slate) is worldwide known for exceptionally well preserved pyritized fossils, partly exhibiting soft tissue preservation. The fossils are mainly of marine origin and predominantly found in roof slates (Bartels & Brassel 1990, Bartels et al. 1998, Jahnke & Bartels 2000). However, the Hunsrückschiefer has repeatedly been characterized and used in a wider sense on the basis of lithologic criteria as a shale dominated facies between the massive quartzitic sandstones of the so-called Taunusquarzit below and some distinct volcanioclastic intercalations (“porphyroids”) above (e.g. Fuchs 1907; Solle 1950; Mittmeyer 1980; Meyer & Stets 1996; Stets & Schäfer 2009, 2011). This type of facies is not only found in the type area of the central Hunsrück itself, but extends eastward into the Westerwald-Taunus area and northward into the southern Eifel-Mosel area. However, stratigraphic position and regional extent of strata regarded as belonging to the Hunsrückschiefer depend on different opinions and interpretations of lithology, facies and palaeontology. They have been intensely debated for a long time (e.g. Nöring 1939, Engels 1956, Meyer & Stets 1980, Mittmeyer 1980, Gad 2006, Anderle 2008). To cover the needs for a formal lithostratigraphic terminology the term Hunsrückschiefer Group was proposed for the regions of Hunsrück and Taunus by Gad (2006) and has been recently adopted in the new stratigraphic table of Germany – STG 2016 (Menning & Hendrich 2016). However, the situation remains complicated for field geologists and stratigraphers due to intense tectonic deformation of the area and only scattered localities...
yielding a biostratigraphically relevant fauna (e.g. Oncken 1988, Knautz 1992, Wildberger 1992, Dittmar 1996). The famous fossiliferous sites in the Hunsrück at Bundenbach and Gemünden have now formally been assigned to the middle Kaub Formation which is of Lower Emsian age in the traditional German sense or Zlichovian of the Bohemian stratigraphy (Schindler et al. 2002; Kaufmann et al. 2005; Mittmeyer 2008; De Baets et al. 2013a, b). The lateral and vertical transition from the Tau- nusquarzit to the Hunsrückschiefer in the study area (SW
Hunsrück) is characterized by the increase of shale finally leading towards shales with subordinate intercalations of quartzitic layers (e.g. Knautz 1992, Meyer & Nagel 2008). These mixed and transitional strata have been regionally assigned to two units, the Dhrontal Formation and the Zerf Formation, which are difficult to separate from each other. The Dhronthal Formation is characterized by a predominance of quartzites and includes a Siegenian fauna. Therefore, these beds are regarded as lateral equivalents of the Taunusquarzit (e.g. Nöring 1939, Stets 1962, Meyer & Stets 1980). With a decrease of quartzitic intercalations, the sediments grade into the indistinctly delimited Zerf Formation, which yielded only scattered fossils indicating a transitional Siegen/Ems age in the traditional sense (e.g. Nöring 1939, Solle 1950, Wildberger 1992), which is equivalent to the Lower Emsian in the global sense.
In the recent STG 2016 (Menning & Hendrich 2016) the traditional regional Rhenish stages (Gedinne, Siegen, Ems) have been retained and correlated to the global stratigraphic scheme. We follow this view because of the continued widespread use of these regional stages and for comparison with much of the existing literature.

There are only few palynological studies of the Hunsrückschiefere. Following the first note by Holtz (1969) on the occurrence of spores in the Wispertal north of the Taunus, Karathanasopoulos (1974) studied samples from several roof-slate mines in the Hunsrück area. He described a rich microflora almost exclusively composed of spores and stated a maximum age of lower Ems but emphasized that the individual samples may represent different ages, possibly including Siegen (~ Pragian). However, there is no reference to exact localities for the material. The presence of miospores has also been recorded in three sedimentologically and structurally oriented unpublished diploma theses carried out at the University of Göttingen (Ecke 1981, Hoffmann 1981, Ludewig 1981). A Gedinne (~ Lochkovian) to Siegen (~ Pragian) age has been suggested for spores in the Hunsrückschiefere facies of the southern Eifel by Gad (2005) which has later been separated as Wied Group from the Hunsrückschiefere Group by Elkholy & Gad (2006). A few pyritized casts of spores and acritarchs have been figured from the Eschenbach Member of the Kaub Formation at Bundenbach by Tibbs et al. (2003).

For the present study, a recently exposed 370 m long forest road section at Siesbach, which includes sediments of the Hunsrückschiefere type, was measured in detail and sampled for palynology. No macrofossils have been discovered so far, but some samples yielded diverse associations of marine and non-marine palynomorphs. In spite of the high degree of thermal maturation, the studied material is surprisingly well preserved. Coalification rank of the late Siegen beds in the nearby Hahnenbach Valley ranges between 6 and 7% R_{max}, (Ecke et al. 1985).

Geological situation

The Hunsrück area consists of a series of major synclinal and anticlinal structures (from NW to SE: Mosel-Syncline, Horath Antcline, Berglicht Syncline, Osburg-Hochwald Antcline, Thalfang Syncline, Idarwald Antcline, Hermeskeil-Kempfeld Syncline, Züsch Antcline, Leisel Syncline, Soonwald Antcline). Most of the anticlines are morphologically prominent due to the resistant quartzitic sandstones of the Taunusquarzit and its lateral equivalents (Nöring 1939, Stets 1962).

The area of the Siesbach section has been mapped as belonging to the Hunsrückschiefere of the Leisel Syncline (Leisel-Mulde of Nöring 1939). The tectonic situation is extremely complicated (Knautz 1992) and frequently obscured by the lack of outcrops and facies transitions. Therefore, existing maps are simplified with respect to detail (Dreyer et al. 1983, Dittrich et al. 2003). However, intense fieldwork by one of the authors (VK) recently revealed an additional anticlinal structure (Siesbach Antcline) to which the section belongs. Forming the southwestern continuation of the prominent Soonwald Antcline it intersects the former Leisel Syncline sensu Nöring (1939) and separates the Leisel Syncline sensu stricto in the northwest from the newly recognized Hahnenbach Syncline to the southeast (Fig. 1; Kneidl 2016).

The Siesbach section is composed of an alternation of quartzitic sandstones and siltstones with shales, however thicker quartzitic beds are only found near the base and shales are dominating towards the top. Magmatic intercalations are mainly present in the basal part (Fig. 2). The proportion of quartzites, siltstones and shales represents a transitional facies, which fits the description of the Zerf Formation (Spies & Stets 2004; Landesamt für Geologie und Bergbau Rheinland Pfalz 2005) for the area; the separation of a similar transitional facies (“Idarbach-Schichten”) for the southwestern-most tectonic unit (which includes the Siesbach section) by Knautz (1992) appears arbitrary. Previously, there were no biostratigraphical data available for the Zerf Formation around the Siesbach section. However, it has been regarded as transitional between Siegen and Ems by Spies & Stets (2004) according to regional lithostratigraphic and biostratigraphic data (Nöring 1939, Solle 1950, Stets 1962).

Material and methods

The studied material was collected from a 370 m long forest road section near Siesbach (Map sheet TK 6209 Idar-Oberstein:1:25.000 between coordinates R 25 89 280 / H 59 11 460 and R 25 89 180 / H 59 11 780). The section has been measured and described in detail in the field while nine palynological samples were taken for the entire section with respect to lithology (Fig. 2).

The samples were prepared by applying standard
palynological treatment with HCl and HF (e.g. Traverse 2007). Organic residues were sieved through a 10 μm mesh sieve. Permanent strew mounts for conventional light and infrared microscopy (IR) were prepared with glycerol gelatine. For Scanning Electron Microscopy (SEM) studies putative palynomorphs were handpicked from uncovered spreads of the residue and, for better visibility, mounted on pieces of white plastic foil which was then fixed to aluminimum stubs and coated with gold. All of the palynomorphs appeared barely transparent or completely opaque and in most cases did not show any diagnostic characters by conventional light microscopy. By applying IR they became slightly transparent to some degree, but even then details could not be recognized sufficiently. SEM finally revealed good preservation of morphological details in many specimens.

Karathanasopoulos (1974) in his study of classical Hunrückenschiefer sites, such as Gemünden and adjacent roof slate sites applied Schulze solution (Schulze 1855) as a strong oxidant to clear nearly opaque sporomorphs with remarkable success. We preferred non-destructive techniques such as IR and SEM to visualize diagnostic morphologic characters. Since transparency via IR was limited and restricted to thinner walled specimens, our identifications rely, therefore, primarily on SEM images. Because original diagnoses are traditionally based on transmitted light, our identifications are, consequently, subject to some uncertainties. On the other hand, minute surface features, which are much better resolved by SEM, are often considered taxonomically significant (Tappan & Loeblich 1971).

Slides, stubs and residues are housed in the palynological collections of the Senckenberg Forschungsinstitut und Naturmuseum in Frankfurt am Main under inventory numbers PMP 658–660; 686; 692–695.

Results

Cryptospores and smooth-walled obligate tetrads

Cryptospores are common and represented by monads and tetrads, whereas dyads have not been observed, so far. Monads are mainly of the Gneudnaspora type, e.g. G. divellomedia (Chibrikova) Burgess & Richardson, characterized by a thin hilum and a distinct equatorial crassitude (Fig. 3A, B). A possible cryptospore with ruptured proximal contact areas but lacking an equatorial crassitude is shown in Figure 3C. Several types of cryptospore tetrads have been encountered, e.g. Tetrahedraletes medinensis (Strother & Traverse) Wellman & Richardson (Fig. 3F). The partial separation of spores in the figured specimen is considered to be secondary due to extreme compaction rather than primary partial separation as diagnostic for Rimostotetra Burgess. Tetrads not showing the diagnostic equatorial crassitude of cryptospores may simply be regarded as obligate tetrads of retusoid miospores (Fig. 3D, G). Tetrads with an apiculate to granular surface ornamentation (Fig. 3E) are very rare. Since they appear to have an equatorial crassitude, they are also considered to be cryptospores, similar to Acontotetras inconspicuus Richardson.

Trilete spores

Maceration residues of all samples include numerous rounded triangular opaque particles of various sizes. They can only be recognized as miospores in SEM studies, when the proximal side with trilete mark or distinctive sculpture at the outline are visible.

Smooth forms with and without curvaturae are numerous and represented by a wide range of sizes and preservation limiting closer taxonomic assignment. Those without apparent curvaturae and a thin, often folded or ruptured exine with a distinct but not prominent trilete mark may be referred to the genus Calamospora Schopf et al. (Fig. 3L). Other specimens with a rounded triangular outline and a more rigid possibly equatorially thickened exine can be assigned to the genus Ambitiousporites Hoffmeister (Fig. 3K). Totally smooth retusoid forms with curvaturae fully extending to the equator and showing a circular outline may be assigned to Retusotriletes Naumova (e.g. Fig. 4A). Those with clearly smaller contact areas correspond well with Retusotriletes dittonensis Richardson & Lister (Fig. 4B).

Spores referable to the genus Apiculiretusisspora (Streel) Streel are rather common and diverse. The specimen shown in Figure 3J is somewhat distorted but with respect to the type of sculpture and all over size it falls within the broad range of A. brandtii Strother. The very subtle sculpture (“rough surface”) of further specimens (e.g. Fig. 4C) suggests identification with A. plicata (Allen) Streel, however, comparison of our SEM micrograph to previous light micrographs are limited. Other specimens, e.g. Figure 4F, appear transitional between Apiculiretusisspora and Dibolisporites Richardson. Nevertheless, they clearly differ from the late Emsian to Middle Devonian species of Dibolisporites by their small size and relatively low sculpture.

In the highly compressed and often distorted state of preservation, triapillate taxa are not easily recognized except for Retusotriletes maculatus McGregor & Camfield (Fig. 4D). The specimen shown in Figure 4K has the proximal papillae less clearly visible, but in all other morphological respects it closely corresponds to Streelispora newportensis (Chalon & Streel) Richardson & Lister (compare with Richardson 1996, pl. 4, fig. 3; Richardson &
Figure 4. SEM images of miospores from the Siesbach section (Zerf Formation), Rheinisches Schiefergebirge, Germany. • A – *Retusotriletes rotundus*, sample Hs 106g. • B – *Retusotriletes dittonensis*, sample Hs 106a. • C – *Apiculiretusispora plicata*, sample Hs 106d. • D – *Retusotriletes maculatus*, sample Hs 106a. • E – ?*Aneurospora richardsonii*, sample Hs 106h. • F – trilete spore indetermined, sample Hs 106d. • G – *Cymbosporites* sp., sample Hs 106d. • H – *Emphanisporites cf. rotatus*, sample Hs 106a. • I – *Emphanisporites rotatus*, sample Hs 106a. • J – *Cymbosporites aff. echinatus*, sample Hs 106d. • K – *Streelispora newportensis*, sample Hs 106a. • L – zonate trilete spore indet, sample Hs 106d.
The presence of a diverse phytoplankton association consisting of prasinophytes and acritarchs is new to the Hunrückschiefere. In the sample Hs 106d, phytoplankton makes up more than half of the total assemblage. Other samples of the Siesbach section also include some phytoplankton but very subordinate to the land plant derived spores.

Large superficially smooth circular bodies (up to 80 μm in diameter) with a small indentation on one side are interpreted as *Tasmanites* type prasinophyte phycomata (e.g., Fig. 5A). The lack of the typical pore canals in the wall may be attributed to the high thermal alteration. Sculptured prasinophytes are represented by *Lophosphaeridium* sp. (Fig. 5B) and by various species of *Dictyotidium* Eisenack differing in the mesh size of the reticulum. The specimen assigned to *Dictyotidium* cf. *cavernulosum* (Fig. 5C) is distinguished from *D. cavernulosum* Playford only by a slightly wider mesh of the reticulum.

A particularly interesting element is a species of *Cynmatiosphaera* Wetzel with thick prominent crenulated crests, which, to our knowledge, has not been figured or described from the Devonian. Specimens morphologically similar to some degree have been described from the Ordovician of Estonia (Uutela & Tynni 1991, pl. 9, figs 90–95). Several specimens of *Cynmatiosphaera* in our material perhaps represent even more than a single species with individual species differing in the width of lumina and in the thickness of the crests (Fig. 5J–M).

Acritharch assemblages are dominated by polygono- morph and acanthomorph species. All specimens of *Veryhachium trispinosum* (Eisenack) Stockmans & Willière are very small, thin-walled and fragile and, therefore, turned out to be unsuitable for SEM preparations, but could be figured as IR images from permanent strew mounts (Fig. 6A–C). Other species of *Veryhachium* Deunff have not been observed. All forms with a more or less polygonal vesicle and long spines with flaring bases are included within the genus *Micryhystridium* Deflandre, which traditionally has a wide circumscription. There is considerable variation in the number and length of spines in the specimens from the Siesbach section (Fig. 5G; Fig. 6D, E). The figured specimens are tentatively assigned to *M. stellatum* Deflandre. Similar spiny forms with

Figure 5. SEM images of prasinophytes and acritarchs from the Siesbach section (Zerf Formation), Rheinisches Schiefergebirge, Germany. • A – *Tasmanites* sp., sample Hs 106d. • B – *Lophosphaeridium* sp., sample Hs 106d. • C – *Dictyotidium* cf. *cavernulosum*, sample Hs 106d. • D – *Gorgonisphaeridium* sp., sample Hs 106d. • E ?*Gorgonisphaeridium* sp., sample Hs 106d. • F – *Gorgonisphaeridium* sp., sample Hs 106d.

Lister 1969, pl. 41, fig. 6). *Cymbosporites* may be represented by several specimens showing more or less prominent spinose sculpture in the outline of proximal views and an equatorial thickening that may extend into a patina on the distal side (Fig. 4G, J). The specimen in Figure 4J is somewhat similar to *C. echinatus* Richardson & Lister because of a distinct equatorial thickening and prominent simple conical spines, which are visible along the spore outline.

The genus *Emphanisporites* McGregor is represented by several morphotypes. Most specimens of *Emphanisporites* are assignable to *E. rotatus* McGregor (Fig. 4I). The specimen designated as *E. cf. rotatus* on Figure 4H differs from *E. rotatus* in having broad laesurae accompanying the trilete mark and only few but strong radial ribs. In that, it is similar to *Emphanizonosporites radiatus* Schulz from the Klerf-Formation of the Eifel area, which, unlike our specimen, is larger and described as being cingulate (Schulz 1968). Several specimens with very faint proximal radial ribs resembling *Emphanisporites multicosatus* (sensu Rodriguez 1983) have also been observed. Rare specimens with incipient proximal ribs confined to the subequatorial region are comparable with *E. protophanus* Richardson & Ioannides except for size (55 μm vs. 32–48 μm in the original description).

A single, well-preserved specimen of a zonate spore with a distinct equatorial thickening around the central body and a prominent trilete mark can not presently be assigned to a distinct genus (Fig. 4L). It differs from *Camptozonotriletes* Staplin in showing small spines in the outer perimeter probably indicating a corresponding distal sculpture and from *Breconisporites* Richardson et al. by lacking a bizonate cingulum. The cincgulum of *Densoisporites* (Berry) Butterworth et al. in Staplin & Jansonius is generally more wedge-shaped and tapering in cross-section, while *Samarisporites* Richardson never develops a pronounced thickening around the central body. More specimens in various orientations are needed for precise identification.

Several distal surfaces of specimens with subcircular to subtriangular outline and a sculpture of loosely distributed slender coni have been encountered. They resemble those of *Aneurospora richardsonii* figured in Richardson et al. (2001, pl. 4, figs1–3) also showing a slightly granular proximal surface. Unfortunately, in the highly compressed state could be figured as IR images from permanent strew mounts (Fig. 6A–C).
• G – *Micrystridium* sp., sample Hs 106d. • H – *Baltisphaeridium* sp., sample Hs 106d. • I – *Gorgonisphaeridium* sp., sample Hs 106d.
• J – *Cymatiosphaera* sp.1, sample Hs 106d. • K – *Cymatiosphaera* sp.2, sample Hs 106d. • L – same specimen as in K, detail of sculpture. • M – *Cymatiosphaera* sp.1, sample Hs 106d.
a distinctly spherical vesicle and an angular juncture with the spines may be related to the genus Baltisphaeridium Eisenack, when broken spines proved to be hollow (Fig. 5H).

Multiplicisphaeridium sp. with short stout appendages (Fig. 5F) is similar to M. albanegum Cramer et al., but broken specimens with long delicately branched appendages (M. ramusculosum type) have occasionally been observed.

Several specimens have been recorded with relatively short spines, which are broadened or bifurcate to multifurcate at the tip (Fig. 5D, I). Variants of this type may represent more than one species included in the genus Gorgonisphaeridium Staplin et al. The specimen depicted in Figure 5E, for instance, is characterized by a distinct foveolate to finely reticulate sculpture on the central body and is tentatively assigned to Gorgonisphaeridium. Specimens with spherical to sub-spherical, relatively thick-walled vesicle with dense ornamentation of short, irregularly shaped tubercles are attributed to the genus Lophosphaeridium (Timofeev) Lister (Fig. 5B).

In addition, two specimens of scolecodonts (not figured) have been recorded in sample 106a.

Discussion

Being located at the southeastern limb of the Siesbach Anticline the Siesbach section is, thus far, the most southern site in the Hunsrück area from which palynomorphs have been isolated and determined (Appendix Table 1). Broad outcrops of sediments of the Hunsrückschiefer type (here Zerf Formation) in this region have, thus far, not provided any faunal evidence for biostatigraphic correlation with the Hunsrückschiefer of the classical sites, which has recently been dated as early Emsian (Middle Kaub Formation) by ammonoids (De Baets et al. 2013b). The recent discovery of palynomorph assemblages at Siesbach now holds promises for closer assessment of age relations among sediments of the Hunsrückschiefer type and in particular to those of the type area at Bundenbach and Gemünden.

Palynomorphs have been isolated from most of the sampled levels in the Siesbach section with decreasing abundance, diversity and quality of preservation down-section. Terrestrial miospores are best represented in the sample Hs 106a. The sample Hs 106d stands out, since it includes a rather diverse phytoplankton assemblage along with miospores, while all other samples have yielded only rare specimens of Veryhachium. Aside from this, vertical changes in assemblage composition are difficult to assess because of the paucity of spores in the lower part of the section.

Figure 8 shows the known stratigraphic ranges of some of the more reliably determined spore taxa. Most of them have a fairly wide range through much of the Lower Devonian. In the zonation scheme of Richardson & McGregor (1986) for the Silurian and Devonian of the Old Red Continent and adjacent regions, the Siesbach assemblages do not have a close counterpart, but correspond best with the Emphanisporites micrornatus–Streelispora newportensis Assemblage Zone designated as Lochkovian (~ Gedinnian, except earliest Gedinnian) in age. However, the upper part of this zone is not well documented and spore zones of Richardson and McGregor (1986) are generally set up based on first appearances. Except for Streelispora newportensis none of the nominal species for the concurrent range (Oppel zones) and interval zones in the scheme of Streel et al. (1987) has yet been identified in the Siesbach section.

The closest age constraint is provided by Retusotritistes ditonensis and Streelispora newportensis. According to Steemans (1989) both species first appear in the “Gedinnian” (~ Lochkovian) developing their acme in the “Gedinnian” and “Siegenian” but extend into the early Emsian according to Moreau-Benoit & Boureau (1989). Palynological analysis of marine sections from the northern Eifel region, which are well dated by marine faunas (Fuchs 1974), has shown that Emsian spore assemblages are much more diverse, including more complex species of Emphanisporites, e.g. E. annulatus and E. foveolatus (Riegel & Karathanasopoulos 1982). Both species are missing in the studied interval. The very characteristic distal surfaces of these two species would be diagnostic for species identification, even when the proximal radial ribs cannot be seen in SEM micrographs. In addition, verruciretusispora dubia (Eisenack) Richardson & Rasul and the first typical species of Dibolisporites, e.g. D. echinaceus (Eisenack) Richardson emend. McGregor, are missing from sections of the Herdorf Group (Siegen) of

• – M Emphanisporites rotatus, sample Siesbach P 106a-4, E.F. Y 40-2, PMP 658.
the Eifel area as well as from Siesbach. In addition, the Silurian to Lochkovian (~ Gedinne) species Emphanisporites protophanus has also been recorded in the Kürrenberg Formation (Herdorf Group) of the Eifel area (Riegel & Karathanasopoulos 1982). Apparently, last occurrences of Lower Devonian spore taxa are not very well defined. On the other hand, stratigraphic marker taxa on which Gad (2005) based a “Gedinian” (~ Lochkovian) age for sediments of the Hunsrückschiefer type (Mayen Formation) of the Eifel/Westerwald region have not been found at Siesbach. Consequently, in the absence of taxa restricted either to the Silurian to Lochkovian on one side or Emsian on the other side; a Pragian to lowermost Emsian (most probably late Siegen) age can be assigned to the Siesbach section. This would also correspond quite well with the lithologic transition between the Taunusquarzit and the Hunsrückschiefer as well as the tectonic position on the southeastern limb of the Siesbach Anticline with Taunusquarzit in its core.

Nevertheless, in view of the common occurrence of cryptospores and miospores with a late Silurian to earliest Devonian acme as well as the possible correlation with the E. micrornatus–S. newportensis Assemblage Zone, re-working of part of the Siesbach assemblages from an older source cannot be excluded. This consideration is in accordance with locally included turbiditic sequences in the Siesbach section (personal observation, VK). However, the variegated shales and sandstones of the adjacent Lochkovian (Gedinne) outcrops (Bunte Schiefer/Züsch Schiefer) and the Pragian (early Siegen) Hermeskeil Formation have never produced any plant remains and are, therefore, unlikely sources for the Siesbach miospores.

The new evidence of a rather diverse marine phytoplankton assemblage along with rare scolecodons in the upper part of the Siesbach section is quite remarkable, since marine palynomorphs (e.g. acritarchs and prasinophytes) have been observed very rarely in the Hunsrückschiefer to date (Karathanasopoulos 1974, Tibbs et al. 2003). This indicates, at least, varying degrees of marine influence at Siesbach, which is possibly due to a general deepening trend from the late Pragian to the early Emsian in the Rheinisches Schiefergebrige (Jansen 2016). This also contrasts to the Hunsrückschiefer Lagerstätte and other Hunsrückschiefer sites where the near lack of phytoplankton, especially acritarchs, suggests water column stratification.
Despite the complex tectonic deformation and a high thermal alteration, surprisingly well preserved and diverse palynomorph assemblages (cryptospores, miospores, prasinophytes, acritarchs) have been isolated from sediments of the Hunsrückschiefer type in the southwestern Hunsrück area near Siesbach. This allows new insights into age relations between the Hunsrückschiefer Lagerstätte and its facies equivalents and reveals significant variations in the environment of deposition.

At this stage of our study, a Siegen (late Pragian to earliest Emsian) age seems to be most likely for the Hunsrückschiefer type as exposed in the Siesbach section (Zerf Formation) since all species listed range through the Siegen while typical guide species for higher parts of the lower Emsian in the well studied Eifel area, such as Emphanisporites annulatus (Singhofen beds), E. foveolatus and Verruciret Dustin Por dubia (Klerf Formation) are missing (Riegel & Karathanasopoulos 1982). This indicates that the Zerf Formation exposed in the Siesbach section is older than the Hunsrückschiefer roof slates of the middle Kaub Formation from the classical sites near Bundenbach (Rhaunen) and Gmünden, where these typically late lower Emsian index species have been recorded (Karathanasopoulos 1974). It postdates, however, the sediments of the Hunsrückschiefer type sediments from the Eifel/Westerwald area (Wied Group; Elkholy & Gad 2006).

The discovery of a diverse acritarch assemblage in parts of the section suggests that marine influence was intermittently more pronounced in the Zerf Formation of the southwestern Hunsrück than at the classical sites of the Hunsrückschiefer in which phytoplankton has very rarely been observed thus far (Tibbs et al. 2003; personal observations WR). This is in sharp contrast to the presence of a rich marine fauna there and its complete lack in the Siesbach section, possibly due to variable salinities in the photic zone.

In general, our study serves as an example that palynology can be applied successfully by means of SEM in stratigraphic correlation and environmental interpretation of otherwise unfossiliferous strata even when they are highly tectonized and thermally altered. However, in order to confirm SEM-based identifications of palynomorph taxa with traditional diagnoses based on transmitted light microscopy, comparisons by both techniques from suitable material would be useful.

Conclusions

Acknowledgements

Sincere thanks are expressed to the technical assistants of the Senckenberg Research Institute Frankfurt, Jutta Oelkers-Schaefer and Gunnar Riedel, who processed the palynological samples. We are grateful to Oldřich Fatka (Charles University, Prague) for critical and useful remarks, which helped to improve the paper.

Appendix

Table 1. Palynomorphs identified in the Siesbach section (Zerf Formation).

Cryptospores
cf. *Acontotetras inconspicuis* Richardson
Gneudhaspora divellomedia (Chibrikova) Burgess & Richardson
Tetrahedraletes medinensis (Strother & Traverse) emend. Wellman & Richardson

Trilete spores
Ambitissporites sp.
?*Aneurospora cf. richardsonii* (Rodriguez) Richardson et al.
Apiculirutisispera brandii Streel
Apiculiretisispera plicata (Allen) Streel
Apiculiretisispera sp.
Calamospora sp.
Cymbosporites aff. *echinatus* Richardson & Lister
Cymbosporites sp.
Dibolisporites sp.
Dictyotriletes cf. *subgranifer* McGregor
Dictyotriletes sp.
Emphanisporites rotatus (McGregor) McGregor
Emphanisporites cf. *rotatus*
Emphanisporites cf. *protophanus* Richardson & Ioannides
Emphanisporites cf. *multicostatus* Rodriguez
Leiotriletes sp.
Retusotriletes dittonensis Richardson & Lister
Retusotriletes maculatus McGregor & Camfield

Retusotriletes rotundus (Streel)
Retusotriletes, small tetrads

Streelispora newportensis (Chaloner & Streel) Richardson & Lister
Streelispora sp.
Zonate trilete spore indet.

Prasinophytes
Cymatosphaera sp.1
Cymatosphaera sp.2
Dictyotidium cf. *cavernulosum* Playford
Taeanites sp.
Prasinophyte indet.

Acritarchs
Baltisphaeridium spp.
Gorgonisphaeridium spp.
Lophosphaeridium sp.
Micrhystridium stellatum Deflandre
Micrhystridium spp.
Multiplicisphaeridium cf. *albanegum* Cramer et al.
Multiplicisphaeridium cf. *ramusculosum* (Deflandre) emend. Lister
Multiplicisphaeridium sp.
Veryhachium trispinosum (Eisenack) Stockmans & Willière