High resolution δ^{13} C stratigraphy of the Homerian (Wenlock) of the English Midlands and Wenlock Edge

CARLY MARSHALL, ALAN T. THOMAS, IAN BOOMER & DAVID C. RAY

High resolution $\delta^{13}C_{carb}$ data are presented for two composite sections in England covering much of the Homerian Stage. Micrite samples collected at ~0.5 m intervals from outcrop and core in the Dudley area, West Midlands, span the uppermost Coalbrookdale, Much Wenlock Limestone and basal Lower Elton formations. Deposition there occurred in a mid-shelf setting. A similar suite of samples from the Wenlock type area, Wenlock Edge, Shropshire, represents a coeval sequence deposited closer to the shelf-basin margin. The successions concerned extend from the upper lundgreni to nilssoni graptolite biozones and provide a detailed record of variation in stable carbon isotope ratios across the well-known double-peaked Homerian positive excursion (Mulde Excursion), a time of significant global biological and chemical perturbation. In the West Midlands, this excursion occurs in the Much Wenlock Limestone Formation. The lower peak (Lower Quarried Limestone Member) has $\delta^{13}C_{carb}$ values rising to +5.5% VPDB. Values fall to +0.8% VPDB higher in the section before rising again to +4.1% VPDB (Nodular Beds Member). Analysis of lithofacies variation in this interval indicates two transgressive-regressive cycles, the two positive peaks of the excursion correlating with relative sea-level lows and the intervening dip with a relative sea-level high, the local expression of Johnson's (2006) Highstand 5A. The double-peaked nature of the excursion at Dudley resembles that previously recorded for the area; however, our $\delta^{13}C_{carb}$ values are consistently 2% higher, and accord more closely with values published for sections elsewhere. The lower of the two peaks found in the West Midlands cannot be identified on Wenlock Edge, where $\delta^{13}C_{carb}$ values fluctuate somewhat around +2% VPDB. The upper peak, though less distinct, can be identified on Wenlock Edge with values rising to +3.8% VPDB. Correlations based on biostratigraphy, sequence stratigraphy and bentonite geochemistry suggest that not all changes in $\delta^{13}C_{carb}$ occurred synchronously in the two areas studied, despite their close proximity. • Key words: Silurian, Wenlock, Homerian, δ^{13} C stratigraphy, Mulde Excursion, English Midlands.

MARSHALL, C., THOMAS, A.T., BOOMER, I. & RAY, D.C. 2012. High resolution δ^{13} C stratigraphy of the Homerian (Wenlock) of the English Midlands and Wenlock Edge. *Bulletin of Geosciences* 87(4), 669–679 (2 figures, 2 appendices). Czech Geological Survey, Prague. ISSN 1214-1119. Manuscript received July 31, 2011; accepted in revised form May 30, 2012; published online October 17, 2012; issued October 17, 2012.

Carly Marshall (corresponding author), Alan T. Thomas & Ian Boomer, Geosystems Research Group, School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK, present address: VNG Norge AS. Postboks 720 Sentrum, NO-4003 Stavanger, Norway; Carly.Marshall@vng.no • Alan T. Thomas & Ian Boomer, Geosystems Research Group, School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK • David C. Ray, Neftex Petroleum Consultants Ltd, 97 Milton Park, Abingdon, Oxfordshire, OX14 4RY, UK

Traditionally viewed as a period of stable greenhouse climates, the Silurian is now recognised as a time of significant environmental variation (Calner 2008, Munnecke *et al.* 2010), associated with pronounced atmospheric, biotic and oceanic change, in part linked to Gondwanan glaciations (Grahn & Caputo 1992, Johnson 2006, Melchin & Holmden 2006, Calner 2008). Analysis of the inorganic carbon isotopic composition of Silurian limestones ($\delta^{13}C_{carb}$) provides data that contribute to identifying and understanding these variations, although the causal mechanisms linking atmospheric, biotic, oceanic and $\delta^{13}C$ changes remain controversial (Calner 2008). Temporal variations in carbon isotope composition have potential as a tool for international correlation also, although our data reveal some inconsistencies when detailed correlations using carbon isotopes, biostratigraphy, sequence stratigraphy and geochemical data from bentonites are compared. Excellent outcrops of well-preserved limestones spanning much of the upper Wenlock Homerian Stage occur widely in the English Midlands and Welsh borderlands (see Fig. 1 for localities and palaeogeography). This paper presents high resolution $\delta^{13}C_{carb}$ data from two composite sections spanning much of the stage, including the Homerian type area, and discusses inconsistencies that arise in detailed correlation.

Bulletin of Geosciences • Vol. 87, 4, 2012

Figure 1. Map of England and adjacent parts of Wales showing key elements of palaeogeography in late Wenlock times; the positions of Wenlock Edge and the West Midlands are shown. Dark grey areas represent Wenlock outcrop; broken lines represent the major elements of the Welsh Borderland Fault System that controlled the local basin/shelf boundary. Brick-like ornament represents outcrop area of the Much Wenlock Limestone Formation and diagonal ornamentation denotes land.

Methods

Micrite samples from the uppermost Coalbrookdale, Much Wenlock Limestone and basal Lower Elton formations (for lithostratigraphy see Fig. 2) were collected at approximately 0.5 m intervals from a limestone mine, a borehole core and surface outcrops in the Dudley area, West Midlands (Stepshaft Mine, Mons Hill core and Wren's Nest Inlier). A near coeval set of samples was collected from outcrops along Wenlock Edge, Shropshire (Lower Hill Farm Track, Acklands Coppice, Farley Road Cutting, Harley Hill, Lea South Quarry). Both sections are considered to span the upper *lundgreni* to *nilissoni* biozones, but are associated with mid-shelf and shelf–basin-margin settings respectively (Fig. 1; Ratcliffe & Thomas 1999).

The stable carbon and oxygen isotope compositions of nearly 300 samples were determined. Micrite samples (200 µg) were powdered, placed into 4 ml glass vials and sealed by a lid and pierceable septum. The vials were put in a heated sample rack (90 °C) where the vial head space was replaced by pure helium via an automated needle system as part of a GV Instruments Multiflow preparation system. Samples were then manually injected with approximately 100 µl of phosphoric acid and left to react for 1 hour before the head space gas was automatically sampled by needle and introduced into a continuous-flow GV Isoprime mass-spectrometer. Samples were calibrated using IAEA standards CO-1 and CO-8. Analytical precision based on duplicate analyses is generally better than 0.1% for both δ^{13} C and δ^{18} O. A complete listing of the isotope results is provided in the appendix.

Stratigraphical framework

The Much Wenlock Limestone Formation is internationally renowned for its prolific and diverse skeletal biota, particularly in the West Midlands (see Thomas 1978; Ratcliffe 1991, 1999; Aldridge et al. 2000; Ray & Thomas 2007 for summary reviews). It has been the subject of extensive sedimentological and palaeoenvironmental study also (Scoffin 1971, Ratcliffe & Thomas 1999). Some aspects of the formation's stratigraphy have remained contentious however, in particular the exact details of the correlation between the West Midlands and Wenlock Edge and the extent to which the lower and upper boundaries of the formation may be diachronous (Bassett 1974, 1976; Hurst 1975; Dorning & Bell 1987; Corfield et al. 1992; Ratcliffe & Thomas 1999). This is largely due to the lateral facies variations between the two areas, their positions on the Midland Platform, and the relatively limited biostratigraphical control provided by graptolites. Detailed local correlation of the formation across the Midland Platform now involves integrated studies of sequence stratigraphy (Ray & Thomas 2007, Ray & Butcher 2010, Ray et al. 2010), bentonite geochemical fingerprinting (Ray et al. 2011) and biostratigraphy, as summarized below (see Ray et al. 2010 for further details).

The Much Wenlock Limestone Formation of the West Midlands consists of two shallow water limestones (Lower Quarried Limestone and Upper Quarried Limestone members), separated by a deeper water nodular limestone and silty mudstone-rich interval (Nodular Beds Member). On the basis of specimens of Monograptus flemingii collected 2.4 m above the base of the Lower Quarried Limestone Member (Butler 1939), an age no younger than the lundgreni Biozone has been inferred (Bassett 1974) for that part of the sequence. No precisely located graptolites have been recovered from the remainder of the formation or the overlying Lower Elton Formation. However, graptolite specimens that are presumed to have originated from the exposed basal 13.2 m of the Lower Elton Formation at Dudley suggest a Neodiversograptus nilssoni to Lobograptus scanicus biozone age (Bassett 1976). It therefore seems likely that the Much Wenlock Limestone Formation of the West Midlands spans the upper *lundgreni* through to ludensis biozones.

On Wenlock Edge a sequence spanning the *lundgreni* to *nilssoni* biozones is represented in the uppermost Apedale Member and Farley Member (Coalbrookdale Formation), Much Wenlock Limestone Formation and basal Lower Elton Formation. The Wenlock Series in the type area yields age-diagnostic graptolites; however, these are

restricted to a small number of key sections within the off-reef tract (a shelf-basin-margin setting developed below the water depth required for reef growth; see Bassett 1989). Although these sections are approximately 10 to 15 km southwest of those sampled here, correlations based on sequence stratigraphy and lithostratigraphy can be made (Ray & Butcher 2010, Ray *et al.* 2010). The Lower Hill Farm Track is the stratigraphically oldest of the sections sampled and exposes 21 m of the uppermost Apedale Member. The contact with the overlying Farley Member cannot be seen; however, it is estimated to occur 5 to 25 m above the top of the section (Dorning & Harvey 1999, Ray & Butcher 2010).

Within the off-reef tract the Eaton Track section contains the stratotype for the base of the (upper) Gleedon Chronozone of the Homerian Stage (Bassett *et al.* 1975) and the Apedale/Farley Member boundary. There the LAD of *Monograptus flemingii* marks the *lundgreni/nassa* biozone boundary and occurs 9.5 m below the first limestone bands that mark the base of the Farley Member. Based upon an approximate synchronicity of the Apedale/Farley Member boundary along Wenlock Edge, the *lundgreni* Biozone should therefore occupy at the very least the majority of the Lower Hill Farm Track section, and according to Ray *et al.* (2010) the upper boundary of the *lundgreni* Biozone may well occur in the overlying basal Farley Member.

The boundary between the Farley Member and the Much Wenlock Limestone Formation is diachronous along Wenlock Edge, with the base of the Much Wenlock Limestone Formation being slightly older (three additional parasequences) within the reef tract (a shelf-basin-margin setting where reef development is common) succession (Ray et al. 2010). The boundary between the Farley Member and the Much Wenlock Limestone Formation in the off-reef tract is exposed in the Longville-Stanway road cutting (Ray et al. 2010). Monograptus ludensis and Pristiograptus jaegeri recorded from 0.9 m below the top of the Farley Member, and *M. ludensis* and other graptolites from 0.6, 3.9 and 5.7 m above the base of the Much Wenlock Limestone Formation, indicate that the formation's lower boundary lies within the ludensis Biozone (Bassett et al. 1975) within the off-reef tract and potentially within the nassa Biozone within the reef tract. Age-diagnostic graptolites have not been collected from the upper part of the Much Wenlock Limestone Formation; however, the geochemical fingerprinting and correlation of a bentonite along Wenlock Edge and eastwards to Dudley (Ray et al. 2011) argues for synchronicity. The Lower Elton Formation along Wenlock Edge also contains age-diagnostic graptolites: Monograptus uncinatus orbatus (White 1974) and Colonograptus colonus (Loydell & Fone 1998) indicate that the basal Lower Elton Formation is at or near the base of the lowest Ludlow nilssoni Biozone, as is the case for the West Midlands.

A sequence stratigraphical interpretation consistent with the available biostratigraphical data forms the basis for the correlation shown in Fig. 2. Ray & Thomas (2007) established a framework for the Much Wenlock Limestone Formation in the West Midlands, identifying thirteen parasequences between the base of the unit and the lowest part of the Lower Elton Formation. Although differences do exist - due to differences in water depth and position relative to the platform margin - the same number of parasequences can be recognised on Wenlock Edge (Ray et al. 2010). While lithofacies patterns suggest that some degree of westerly younging remains likely at the top of the formation, it must have been less than Bassett (1974) and Ratcliffe & Thomas (1999) considered it to be; that is the degree of diachronism cannot be greater than the time taken to have deposited Parasequence 11 (Ray et al. 2010). The variations in carbon isotope ratios found in our samples are initially discussed on the assumption that this stratigraphical framework is correct, with alternative possibilities discussed subsequently.

Results

The carbon isotope results are summarized in Fig. 2. Although differences between the two data sets are apparent, they feature one or two large positive carbon isotope peaks with smaller-scale, shorter-term variations superimposed. In the West Midlands composite section, δ^{13} C values rise from near zero at the top of the Coalbrookdale Formation to +5.5% VPDB in the Lower Quarried Limestone Member (lower part of nassa Biozone; Ray et al. 2010). Near the base of the Nodular Beds Member (higher part of nassa Biozone) values fall to +0.8% VPDB. A second stratigraphically longer positive peak then occurs in the upper part of the Nodular Beds Member (*ludensis* Biozone) with $\delta^{13}C$ values rising to +4.1% VPDB. Overall values then decline through the upper part of the Nodular Beds Member and Upper Quarried Limestone, averaging +0.3% VPDB in the overlying Lower Elton Formation, near the Wenlock/Ludlow boundary. The two positive peaks in this section are punctuated by a number of short-lived negative events in which δ^{13} C values fall to -0.1% VPDB. Although not shown (see Appendices) δ^{18} O also fall sharply during these times; however, in other parts of the section δ^{13} C and δ^{18} O values are not strongly correlated.

In the lower part of the succession from Wenlock Edge, the uppermost Apedale and Farley members (of the Coalbrookdale Formation) have relatively constant δ^{13} C values around +2.0% VPDB. Higher in the Much Wenlock Limestone Formation, values do rise to +3.8% VPDB and, although less distinct, this corresponds with the younger positive peak found in the West Midlands. In both sections, the base of this positive excursion event lies within Parasequence 9 and its peak occurs within Parasequence 10 (Ray & Thomas 2007, Ray *et al.* 2010; see Fig. 2). However, above this and towards the top of the Much Wenlock Limestone Formation, the curves and absolute isotopic values differ. The West Midlands section shows a relatively rapid decline from a +3.9% VPDB peak low in Parasequence 10 to +0.3% VPDB in the middle of Parasequence 11, below the Lower Elton–Much Wenlock Limestone Formation boundary. Above this, values are near constant around +0.6% VPDB. A more gradual decline in δ^{13} C values occurs on Wenlock Edge, with values of +3.8% VPDB in Parasequence 10, +2.5% VPDB at the Lower Elton–Much Wenlock Limestone Formation boundary (top of Parasequence 11), above which values decline to ~ +1.0% VPDB within Parasequence 14.

Discussion and comparisons

The section sampled in the West Midlands covers a somewhat thicker stratigraphical interval than that documented previously (Corfield *et al.* 1992). The overall doublepeaked δ^{13} C curve obtained from the West Midlands is generally similar. Our δ^{13} C values are consistently some +2‰ VPDB heavier, although Corfield *et al.* (1992) did not state the standards used in their analyses. Although differences between the Wenlock Edge and West Midlands sections are apparent, our values generally correspond better with those obtained elsewhere, that is peak δ^{13} C values of +4.6‰ from the East Baltic (Kaljo *et al.* 1997), 3.8‰ from Gotland (Calner *et al.* 2006), +2.5‰ from Nevada (Cramer *et al.* 2006) and +2.8‰ from Tennessee (Cramer *et al.* 2006); for review, see Calner (2008).

Both sections feature one or two large positive carbon isotope peaks with smaller-scale, shorter-term variations superimposed. This Homerian positive excursion (Mulde) is one of three that have been recognised widely in Llandovery and Wenlock rocks (Saltzman 2001, Calner 2008). In arctic Canada and Gotland (Loydell 2007), the excursion is double-peaked, and the two peaks appear approximately synchronous with those in the English Midlands, within the limits of biostratigraphical resolution. A double peak has been identified in the Homerian of Podolia (Ukraine) too, however both peaks occur in the ludensis Biozone there (Kaljo et al. 2007). Kaljo et al. (1997) identified a single excursion in the nassa Biozone of the East Baltic. To what extent some of these regional differences are real, perhaps reflecting variations in geological setting relative to the local basin margin, as opposed to uncertainties in detailed correlation or matters relating to sampling, remains to be established. Further understanding of these issues will enhance the value of the isotopic variations for increasing confidence in international correlation at the stage level and below. This would be particularly valuable in sections that are barren of graptolites and/or conodonts, and between sections that contain these fossils and others that do not.

Given that variations in $\delta^{13}C_{carb}$ ratios ultimately reflects carbon cycling in the oceans, it is surprising that some significant contrasts should exist between two composite sections separated by only approximately 40 km. An alternative possibility is that our understanding of the correlation of the Much Wenlock Limestone Formation in the area requires significant revision. Correlation along Wenlock Edge between the reef tract (study area) and the graptolite-bearing off-reef tract, indicates that the base of the Farley Member (Coalbrookdale Formation) corresponds approximately to the top of the lundgreni Biozone, correlating with the base of the Lower Quarried Limestone Member (Much Wenlock Limestone Formation) in the West Midlands (see Ray et al. 2010). Based on comparison between the parasequences of Ray & Thomas (2007) and the carbon isotopic values for the West Midlands, Parasequences 3 to 7 correspond to the low values found within the Mulde Excursion. This interval (Parasequences 3 to 7) represents a relatively condensed interval on Wenlock Edge (Ray et al. 2010) and has consequently been sampled at ~20 cm intervals in order to attempt to identify these reduced values. At present no such low in values can be recognised on Wenlock Edge. Throughout the uppermost Apedale, Farley Member and lower Much Wenlock Limestone Formation, δ^{13} C values remain relatively constant at around +2.0% VPDB. A possible explanation for the apparent lack of the lower positive event on Wenlock Edge would be that the interval of ~2% VPDB values recorded there is actually an extended record of the low-point between the two positive peaks found in the West Midlands. This would not only be completely inconsistent with the sequence stratigraphy however, but also with the biostratigraphy: the lower peak on Wenlock Edge would then have to occur below the part of the section sampled, and lie within the lundgreni Biozone rather than in the nassa Biozone.

Correlation of the upper Mulde peak shows that maximum δ^{13} C values correspond to the middle of Parasequence 10 (Ray *et al.* 2010) at both locations; an interval additionally constrained by the correlation of bentonites (Ray *et al.* 2011). Absolute δ^{13} C values are also very similar, +3.8% and +3.9 VPDB% at Wenlock Edge and Dudley respectively. However the decline in values is relatively rapid in the West Midlands with the declining limb being contained within the upper Much Wenlock Limestone Formation (Parasequence 10 and Parasequence 11). A similar pattern is recorded at the platform margin, Pitch Coppice (Ludlow) and within a mid-platform location at Gurney's Quarry (Malvern Hills) (Corfield *et al.* 1992). The decline from peak δ^{13} C values on Wenlock Edge ap-

Carly Marshall et al. • High resolution δ C stratigraphy of the Homerian (Wenlock) of the English Midlands and Wenlock Edge

pears more gradual than in the West Midlands section, with elevated values observed some 6 m into the Lower Elton Formation. This is unusual when compared with other Midland Platform sections from a variety of depositional settings and may reflect the local response of the carbonate system to transgression towards the end of Wenlock time. In all sections, excluding an area known as Hill Top (an area where reefs are most abundant within the reef tract) on Wenlock Edge, the onset of transgression (Parasequence 11) is marked by a basinal shift in facies with only local grainstone shoals (such as at Wren's Nest Hill, Dudley) and occasional small reefs developed. Above Parasequence 11, limestones are much less common and silty-mudstones dominate, marking the drowning of the carbonate system. However, around Hill Top, Wenlock Edge (Lea South Quarry sample area) the barrier-like reef complex continued to keep up with sea-level rise within Parasequence 11, remaining a sea-floor high until at least Parasequence 13, as evidenced by the development of nodular limestones (Ray et al. 2010). The anomalous decline in δ^{13} C values at Wenlock Edge could therefore be associated with the shallowest marine facies developed on the Midland Platform at that time, or reflect processes taking place close to the shelf-basin margin, such as upwelling.

The top of the upper excursion in the West Midlands lies in the middle of Parasequence 11, within the Upper Quarried Limestone Member, whereas on Wenlock Edge the upper excursion extends into Parasequence 13, well within the Lower Elton Formation. The carbon isotope data thus suggest diachronism at the base of the Lower Elton Formation, whose base would have to be significantly older on Wenlock Edge, not younger as some authors have argued previously. Again this possibility is inconsistent not only with the sequence stratigraphical framework and regional lithofacies patterns, but also with biostratigraphy. Although graptolite data from the lower part of the Lower Elton Formation are limited, its basal boundary on Wenlock Edge lies at or very close to the base of the nilssoni Biozone (Bassett 1989). Only 13.2 m of the Lower Elton Formation are exposed in the Wren's Nest Inlier of the West Midlands. Saetograptus and Monograptus species are recorded from this interval (Bassett 1976, Siveter in Aldridge et al. 2000), including S. chimaera, which does not occur below the nilssoni Biozone. These biostratigraphical data preclude diachronism of the extent required.

Acknowledgements

We thank Axel Munnecke, Pat McLaughlin and an anonymous referee for their constructively critical comments on an earlier version of the manuscript. We thank also Dudley Museum and Bardon Aggregates for access to sections. West Midlands sedimentary log and sequence stratigraphy are after Ray & Thomas (2007), reproduced with the permission of the Palaeontological Association. Wenlock Edge sequence stratigraphy, sedimentary log and sea-level curve after Ray *et al.* (2010) from the *Geological Magazine* are reproduced with the permission of Cambridge University Press.

References

- ALDRIDGE, R.J., SIVETER, DAVID J., SIVETER, DEREK, J., LANE, P.D., PALMER, D.C. & WOODCOCK, N.H. 2000. *British Silurian stratigraphy*. xvii + 542 pp. Geological Conservation Review Series, Joint Nature Conservation Committee, Peterborough.
- BASSETT, M.G. 1974. Review of the stratigraphy of the Wenlock Series in the Welsh Borderland and South Wales. *Palaeontol*ogy 17, 145–177.
- BASSETT, M.G. 1976. A critique of diachronism, community distribution and correlation of the Wenlock–Ludlow boundary. *Lethaia* 9, 201–218.
- BASSETT, M.G. 1989. The Wenlock Series in the Wenlock area, 51–73. In BASSETT, M.G. & HOLLAND, C.H. (eds) A global standard for the Silurian System. National Museum of Wales, Geological Series 9.
- BASSETT, M.G., COCKS, L.R.M., HOLLAND, C.H., RICKARDS, R.B. & WARREN, P.T. 1975. The type Wenlock Series. *Institute of Geological Sciences Report 75/13*, 1–19.
- BUTLER, A.J. 1939. The stratigraphy of the Wenlock Limestone at Dudley. *Quarterly Journal of the Geological Society of London* 95, 34–74. DOI 10.1144/GSL.JGS.1939.065.01-04.04
- CALNER, M. 2008. Silurian global events at the tipping point of climate change, 21–57. *In* ELEWA, A.M.T. (ed.) *Mass extinctions*. Springer, Berlin & Heidelberg. DOI 10.1007/978-3-540-75916-4_4
- CALNER, M., KOZŁOWSKA, A., MASIAK, M. & SCHMITZ, B. 2006. A shoreline to deep basin correlation chart for the middle Silurian coupled extinction-stable isotopic event. *GFF* 128, 79–84. DOI 10.1080/11035890601282079
- CORFIELD, R.M., SIVETER, DEREK, J., CARTLIDGE, J.E. & MCKERROW, W.S. 1992. Carbon isotope excursions near the Wenlock–Ludlow (Silurian) boundary in the Anglo-Welsh area. *Geology* 20, 371–374.

DOI 10.1130/0091-7613(1992)020<0371:CIENTW>2.3.CO;2

- CRAMER, B.D., KLEFFNER, M.A. & SALTZMAN, M.R. 2006. The Late Wenlock Mulde positive carbon isotope ($\delta^{13}C_{carb}$) excursion in North America. *GFF 128*, 85–90. DOI 10.1080/11035890601282085
- DORNING, K.J. & BELL, D.G. 1987. The Silurian shelf microfacies: acritarch distribution in the Much Wenlock Limestone Formation, 266–287. *In* HART, M.B. (ed.) *Micropalaeontology of carbonate environments*. Ellis Horwood, Chichester.
- DORNING, K.J. & HARVEY, C. 1999. Wenlock cyclicity, palynology, and stratigraphy in the Buildwas, Coalbrookdale, and Much Wenlock Limestone formations, Shropshire, England. *Bollettino della Società Paleontologica Italiana 38*, 155–166.
- GRAHN, Y. & CAPUTO, M.V. 1992. Early Silurian glaciations in Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology 99, 9–15. DOI 10.1016/0031-0182(92)90003-N

Carly Marshall et al. • High resolution &C stratigraphy of the Homerian (Wenlock) of the English Midlands and Wenlock Edge

HURST, J.M. 1975. The diachronism of the Wenlock Limestone. *Lethaia* 8, 301–314. DOI 10.1111/j.1502-3931.1975.tb00935.x

JOHNSON, M.A. 2006. Relationship of Silurian sea-level fluctuations to oceanic episodes and events. *GFF 128*, 115–121. DOI 10.1080/11035890601282115

- KALJO, D., GRYTSENKO, V., MARTMA, T. & MÕTUS, M.-A. 2007. Three global carbon isotope shifts in the Silurian of Podolia (Ukraine): stratigraphical implications. *Estonian Journal of Earth Sciences* 56, 205–220. DOI 10.3176/earth.2007.02
- KALJO, D., KIIPLI, T. & MARTMA, T. 1997. Carbon isotope event markers through the Wenlock–Přídolí sequence at Ohesaare (Estonia) and Priekule (Latvia). *Palaeogeography, Palaeoclimatology, Palaeoecology* 132, 211–223. DOI 10.1016/S0031-0182(97)00065-5
- LOYDELL, D.K. 2007. Early Silurian positive δ^{13} C excursions and their relationship to glaciations, sea-level changes and extinction events. *Geological Journal* 42, 531–546. DOI 10.1002/gj.1090
- LOYDELL, D.K. & FONE, W. 1998. Graptolites from the Lower Elton Formation (Ludlow) of Shadwell Rock Quarry, Shropshire. *Geological Journal 33*, 147–148. DOI 10.1002/(SICI)1099-1034(199807/09)33:3<147::AID-GJ785>3.0.CO;2-W
- MELCHIN, M.J. & HOLMDEN, C. 2006. Carbon isotope chemostratigraphy of the Llandovery in Arctic Canada: implications for global correlation and sea level change. *GFF* 128, 173–180. DOI 10.1080/11035890601282173
- MUNNECKE, A., CALNER, M., HARPER, D.A.T. & SERVAIS, T. 2010. Ordovician and Silurian sea-water chemistry, sea level, and climate: a synopsis. *Palaeogeography, Palaeoclimatology, Palaeoecology 296*, 389–413. DOI 10.1016/j.palaeo.2010.08.001
- RATCLIFFE, K.T. 1991. Palaeoecology, taphonomy and distribution of brachiopod assemblages from the Much Wenlock Limestone Formation of England and Wales. *Palaeogeography, Palaeoclimatology, Palaeoecology 83*, 265–293. DOI 10.1016/0031-0182(91)90056-W
- RATCLIFFE, K.T. 1999. Brachiopod assemblages from the Much Wenlock Limestone Formation of England and Wales, 592–637. In BOUCOT, A.J. & LAWSON, J.D. (eds) Paleocommunities – a case study from the Silurian and Lower Devonian. Cambridge University Press, Cambridge.

- RATCLIFFE, K.T. & THOMAS, A.T. 1999. Carbonate depositional environments in the late Wenlock of England and Wales. *Geological Magazine 136*, 189–204. DOI 10.1017/S0016756899002538
- RAY, D.C. 2007. The correlation of lower Wenlock Series (Silurian) bentonites from the Lower Hill Farm and Eastnor Park boreholes, Midland Platform, England. *Proceedings of the Geologists' Association 118*, 175–185.
- RAY, D.C., BRETT, C.E., THOMAS, A.T. & COLLINGS, A.V.J. 2010. Late Wenlock sequence stratigraphy in central England. *Geological Magazine 147*, 123–144. DOI 10.1017/S0016756809990197
- RAY, D.C., COLLINGS, A.V.J., WORTON, G.J. & JONES, G. 2011. Upper Wenlock bentonites from Wren's nest Hill, Dudley: comparisions with prominent bentonites along Wenlock Edge, Shropshire, England. *Geological Magazine 148*, 670–681. DOI 10.1017/S0016756811000288
- RAY, D.C. & BUTCHER, A. 2010. Sequence stratigraphy of the type Wenlock area (Silurian), England. *Bollettino della Società Paleontologica Italiana 49*, 47–54.
- RAY, D.C. & THOMAS, A.T. 2007. Carbonate depositional environments, sequence stratigraphy and exceptional skeletal preservation in the Much Wenlock Limestone Formation (Silurian) of Dudley, England. *Palaeontology 50*, 197–222. DOI 10.1111/j.1475-4983.2006.00607.x
- SALTZMANN, M.R. 2001. Silurian δ^{13} C stratigraphy: a view from North America. *Geology* 29, 671–674.
 - DOI 10.1130/0091-7613(2001)029<0671:SCSAVF>2.0.CO;2
- SCOFFIN, T.P. 1971. The conditions of growth of the Wenlock reefs of Shropshire. *Sedimentology* 17, 173–219. DOI 10.1111/j.1365-3091.1971.tb01774.x
- THOMAS, A.T. 1978. British Wenlock trilobites. Part 1. Monograph of the Palaeontographical Society 132(552), 1–56.
- THOMAS, A.T., MARSHALL, C. & RAY, D.C. 2011. Reef and inter-reef facies in the Much Wenlock Limestone Formation and overlying Lower Elton Formation, Lea Quarry South, Wenlock Edge, 114–121. In RAY, R.C. (ed.) Siluria revisited: a field guide. International Subcommission on Silurian Stratigraphy, Field Meeting 2011. 170 pp. MPG Books, Bodmin.
- WHITE, D.E. 1974. The boundary between the Wenlock and Ludlow Series. *Geological Magazine 111*, 448–449. DOI 10.1017/S0016756800040048

Appendix 1

Lab Code Depth on composite section B ¹³ C B ¹³ C B ¹³ C Cl Lab Code Locality Depth of section CLY198 SS3 -0.5 0.58 -6.37 CLY018 MHC10 -1 CLY190 SS3 -2.5 -0.13 -6.49 CLY003 WN1 C4 -1 CLY201 SS3 -5.5 0.77 -6.15 CLY003 WN1 C4 -1 CLY203 SS3 -7.0 0.89 -7.26 CLY003 WN1 C4 -1 CLY204 SS3 -7.10 0.89 -7.26 CLY004 WN1 C5 -1 CLY205 SS3 -7.3 0.36 -6.19 CLY003 WN1 C4 -1 CRLY105 SS1 -8.1 0.36 -6.19 CLY004 WN1 C9 -1 CRLY170 SS2 -10.5 0.42 -5.40 CLY020 MHC14 -1 CRLY171 SS3 -10.6 0.42 -5.89 CLY148 SS20 -										
CLY198 S53 -0.5 0.58 -6.37 CLY199 S53 -1.5 0.62 -5.85 CLY201 S53 -2.5 -0.13 -6.49 0.35 -2 CLY201 S53 -5.5 0.77 -6.15 CLY004 WN1 C3 -25.4 0.16 CLY204 S53 -7.0 0.88 -7.02 CLY004 WN1 C4 -25.1 0.36 CLY204 S53 -7.0 0.88 -7.02 CLY004 WN1 C5 -25.4 0.39 -25.1 0.30 -61.5 CLY204 S53 -7.0 0.88 -7.27 CLY004 WN1 C3 -25.0 3.83 -26.1 3.27 -26.1 3.27 -26.1 3.27 -26.1 3.27 -26.1 3.27 -26.1 3.27 -26.1 3.27 -26.1 3.27 -26.1 3.27 -26.1 3.27 -26.1 3.27 -26.1 3.27 -26.1 3.27 -26.1 3.27 -27.1	Lab Code	Locality Code	Depth on composite section	$\delta^{13}C$	$\delta^{18}O$	Lab Code	Locality Code	Depth on composite section	$\delta^{13}C$	δ1
CLY199 S53 -1.5 0.62 -5.85 CLY005 WN1 C6 -24.9 0.35 4 CLY200 S53 -2.5 -0.13 -6.49 CLY002 WN1 C6 -24.9 0.35 4 CLY202 S53 -5.3 0.87 -7.12 CRLY186 S518 -25.4 1.55 4 CLY204 S53 -7.3 0.89 -7.26 CLY004 WN1 C5 -25.9 3.92 -2.6 CLY205 S53 -7.3 0.36 -7.27 CLY006 WN1 C1 -25.9 3.92 -2.4 - CLY205 S53 -7.3 0.36 -7.27 CLY006 WN1 C3 -25.9 3.24 -4 CLY206 S53 -8.5 0.39 -5.47 CLY007 WN1 C3 -26.1 3.33 -2 CLY207 S53 -8.5 0.30 -6.15 CLY001 WN1 C3 -26.1 3.34 -2 CLY1717 S52 -10.6	CLY198	SS3	-0.5	0.58	-6.37	CLY018	MHC10	-24.9	3.50	-5
CLY200 S33 -2.5 -0.13 -6.49 CLY002 WN I C3 -2.5.1 2.08 -4 CLY201 S53 -3.0 0.84 -7.02 CLY003 WN I C4 -25.1 1.05 -4 CLY202 S53 -5.5 0.77 -6.15 CLY003 WN I C4 -25.1 1.55 -4 CLY204 S53 -7.0 0.89 -7.26 CLY004 WN I C7 -2.59 2.92 2.2 -4 CLY205 S53 -7.0 0.30 -5.7 CLY006 WN I C7 -2.59 2.42 -4 CLY205 S53 -7.0 0.30 -5.47 CLY006 WN I C7 -2.59 2.42 -4 CLY205 S53 -10.5 0.42 -6.15 CLY007 WN I C8 -2.6.1 1.41 -2 CLY206 S53 -10.5 0.42 -6.27 CLY008 WN I C9 -2.6.3 2.47 -2 CLY171 S53 -11.6 0.38 -6.88 CLY008 WN I C1 -2.6.9 3.8 -2 CLY170 S53 -12.6 0.41 -6.51 CLY008 WN I C1 -2.6.9 3.8 -2	CLY199	SS3	-1.5	0.62	-5.85	CLY005	WN1 C6	-24.9	0.35	-8
CLY201 SS3 3.0 0.84 -7.02 CRLY186 SS18 -2.5.1 2.36 -4.6 CLY204 SS3 -5.5 0.77 -6.15 CLY003 WN1 C4 -2.5.1 1.5.5 -4.6 CLY204 SS3 -7.0 0.89 -7.26 CLY010 WN1 C4 -2.5.9 2.42 -4 CLY206 SS3 -7.0 0.36 -7.27 CLY010 MHC1 -2.5.9 2.42 -4 CLY206 SS3 -8.0 0.38 -8.26 CLY007 WN1 C8 -2.6.1 3.83 -2 CLY207 SS3 -8.5 0.39 -5.47 CRLY187 SS19 -2.6.1 3.27 -4 CLY207 SS3 -10.5 0.42 -6.20 CLY007 WN1 C9 -2.6.3 2.47 -7 CLY108 SS1 -11.8 0.42 -5.27 CLY021 MHC13 -2.6.9 3.83 -4 CLY1135 SC1 -12.6	CLY200	SS3	-2.5	-0.13	-6.49	CLY002	WN1 C3	-25.1	2.08	-6
CLY202 SS3 -5.3 0.87 -7.31 CLY03 WN 1C4 -25.1 1.55 4.615 CLY204 SS3 -5.5 0.77 -6.15 CLY04W WN 1C5 -25.4 2.51 -4.615 CLY205 SS3 -7.3 0.36 -7.27 CLY006 WN 1C5 -25.9 2.42 -4.615 CLY206 SS3 -8.0 0.38 -8.26 CLY006 WN 1C8 -26.1 1.41 -4.7 CLY207 SS3 -8.5 0.39 -5.47 CLY007 WN 1C8 -26.1 1.41 -4.7 CLY207 SS3 -10.5 0.42 -6.20 CLY018 WN 1C9 -26.3 2.47 -7 CLY1718 SS4 -11.6 0.42 -5.80 CLY021 MHC13 -26.9 3.88 -4 CLY1714 SC1 -11.8 0.42 -5.80 CLY022 MHC14 -27.9 3.68 -2 CLY1713 SS5 -12.6 <td>CLY201</td> <td>SS3</td> <td>-3.0</td> <td>0.84</td> <td>-7.02</td> <td>CRLY186</td> <td>SS18</td> <td>-25.1</td> <td>2.36</td> <td>-6</td>	CLY201	SS3	-3.0	0.84	-7.02	CRLY186	SS18	-25.1	2.36	-6
CLY203 SS3 5.5 0.77 -6.15 CLY204 WN1 C5 2.54 2.51 4 CLY204 SS3 7.0 0.89 7.26 CLY010 MHC11 2.59 3.99 4 CLY205 SS3 8.0 0.38 -8.26 CLY000 MHC11 2.60 3.83 4.7 4.1 .	CLY202	SS3	-5.3	0.87	-7.31	CLY003	WN1 C4	-25.1	1.55	-6
CLY204 S3 -7.0 0.89 -7.26 CLY019 MHC11 -25.9 3.99 -2 CLY206 S3 -7.3 0.36 -7.27 CLY006 WN1 C7 -25.9 2.42 -4 CLY207 S3 -8.1 0.38 -8.26 CLY007 WN1 C8 -26.1 1.41 CLY207 S3 -8.5 0.39 -5.47 CLY007 WN1 C8 -26.1 3.27 -4 CLY108 S32 -10.3 0.30 -6.15 CLY008 WN1 C9 -26.3 2.47 CLY118 S53 -10.6 0.42 -6.27 CRLY188 S520 -2.7.1 3.74 CRLY172 S4 -11.6 0.38 -6.88 CLY028 MHC14 -27.9 3.78 CLY145 SC2 -12.2 0.61 -6.57 CRLY188 SS20 -2.8.1 1.93 -2 CLY135 S7 -14.6 1.02 -5.11 CRLY19 SS24 -30.1 3.76 -2 CLY	CLY203	SS3	-5.5	0.77	-6.15	CLY004	WN1 C5	-25.4	2.51	_(
CLY205 SS3 -7.3 0.36 -7.27 CLY205 SS3 -8.0 0.38 -8.26 CRLV169 SS1 -8.1 0.36 -6.19 CLY207 SS3 -8.5 0.30 -6.19 CRLV110 SS2 -10.3 0.30 -6.19 CRLV117 SS3 -10.5 0.42 -6.20 CRLV117 SS3 -10.6 0.12 -6.27 CRLV117 SS4 -11.6 0.38 -6.81 CLY009 MHC1 -12.0 0.61 -6.17 CLY134 2C1 -11.8 0.42 -5.80 CLY010 MHC1 -12.0 0.61 -6.17 CLY135 2C2 -12.2 0.55 -5.22 CLY136 2C3 -12.7 -1.13 -8.42 CLY117 SS5 -12.6 0.41 -6.53 CLY1175 SS7 -14.6 1.02 -5.11 CLY1174 SS6 -13.6 0.43 -7.93 CRLY1175 SS1 -12.6	CLY204	SS3	-7.0	0.89	-7.26	CLY019	MHC11	-25.9	3.99	-4
CLY206 S3 -8.0 0.38 -8.26 CLY020 MHC12 -2.6.0 3.83 -2.6.1 CLY207 S53 -8.5 0.39 -5.47 CRUY107 SS19 -2.6.1 1.41 CLY208 S52 -10.3 0.30 -6.15 CLY008 WN1 C8 -2.6.1 3.27 -4 CLY208 S52 -10.5 0.42 -6.20 CRUY187 SS19 -2.6.3 2.47 CLY208 S33 -10.6 0.12 -6.27 CRUY188 SS20 -2.7.1 3.74 CLY104 MHC1 -12.0 0.61 -6.17 CRUY189 SS21 -2.7.9 3.63 -4 CLY135 SC2 -12.2 0.55 -5.22 CLV022 MHC14 -2.7.9 3.78 CLY135 SS5 -12.6 0.41 -6.53 CLY022 MHC15 -2.8.3 3.06 -4 CLY137 SS6 -13.6 0.43 -7.93 CRUY18 SS13 -3.06 3.13 -2 <tr< td=""><td>CLY205</td><td>SS3</td><td>-7.3</td><td>0.36</td><td>-7.27</td><td>CLY006</td><td>WN1 C7</td><td>-25.9</td><td>2.42</td><td>-6</td></tr<>	CLY205	SS3	-7.3	0.36	-7.27	CLY006	WN1 C7	-25.9	2.42	-6
CRL Y169 SS1 8.1 0.36 -6.19 CLY007 WN 1C8 26.1 1.41	CLY206	SS3	-8.0	0.38	-8.26	CLY020	MHC12	-26.0	3.83	-4
CLY207 SS3 8.5 0.39 -5.47 CRLY187 SS19 26.1 3.27 -4 CRLY170 SS2 -10.3 0.30 -6.15 CLV008 WNI C9 -26.3 2.47 -7 CRLY171 SS3 -10.6 0.42 -6.20 CLV011 MHC13 -26.9 3.38 -4 CRLY171 SS4 -11.6 0.38 -6.68 CLY011 MHC13 -26.9 3.38 -4 CLY1715 SS4 -11.6 0.38 -6.68 CLY018 SS21 -27.1 3.74 -2 CLY134 2C1 -11.8 0.42 -5.80 CLY022 MHC14 -27.9 3.78 -4 CLY035 MHC1 -12.0 0.61 -6.17 CLY023 MHC16 -29.1 2.43 -6 CLY135 SS -12.6 0.41 -6.53 CLY023 MHC16 -29.9 2.99 -2 CLY116 SS6 -13.6 0.43 -7.93 CHY191 SS25 -30.6 3.13 -2	CRLY169	SS1	-8.1	0.36	-6.19	CLY007	WN1 C8	-26.1	1.41	-4
CRL Y170 SS2 -10.3 0.30 -6.15 CL Y008 WN1 C9 -26.3 2.47 - CLY208 SS3 -10.5 0.42 -6.20 CL Y021 MHC13 -26.9 3.38 - CRLY171 SS4 -11.6 0.38 -6.86 CR Y188 SS20 -27.1 3.74 - CRLY171 SS4 -11.6 0.38 -6.86 CR Y188 SS21 -27.1 3.74 - CLY134 C1 -11.8 0.42 -5.80 CR Y179 SS21 -27.1 3.76 - CLY009 MHC1 -12.0 0.61 -6.17 CR Y190 SS22 -28.1 1.93 - CLY135 C2 -12.5 -0.62 -7.95 CL Y024 MHC16 -29.1 2.43 - CRLY173 SS5 -12.6 0.41 -6.51 CLY025 MHC17 -29.9 2.99 -3.66 3.13 -2 CRLY175 SS7 -14.6 1.02 -5.11 CRLY193 SS25 -30.6 3.13	CLY207	SS3	-8.5	0.39	-5.47	CRLY187	SS19	-26.1	3.27	-6
CLY208 SS3 -10.5 0.42 -6.20 CRLY171 SS3 -10.6 0.12 -6.27 CRLY184 SS20 -27.1 3.74 -5 CLY134 2C1 -11.8 0.42 -5.80 CRLY189 SS21 -27.6 3.63 -6 CLY009 MHC1 -12.0 0.61 -6.17 CRLY189 SS21 -27.6 3.63 -6 CLY013 2C2 -12.2 0.55 -5.22 CLV02 MHC16 -29.1 2.43 -6 CLY135 2C3 -12.5 -0.62 -7.95 CLV024 MHC16 -29.1 2.43 -6 CLY174 SS6 -13.6 0.43 -7.93 CRLY191 SS23 -29.7 3.69 -5 CLY014 MHC2 -15.3 1.03 -7.99 CRLY192 SS24 -30.1 3.76 -4 CLY175 SS7 -14.6 1.02 -5.11 CRLY183 S10 -17.1 2.23 -8.48 CRLY192 SS25 -30.6 3.13 -5 -5	CRLY170	SS2	-10.3	0.30	-6.15	CLY008	WN1 C9	-26.3	2.47	-7
CRLY171 S33 -10.6 0.12 -6.27 CRLY188 S20 -27.1 3.74 -4 CRLY172 SS4 -11.6 0.38 -6.88 CRLY189 SS21 -27.6 3.63 -6 CLY014 2C1 -11.8 0.42 -5.80 CRLY189 SS21 -27.6 3.63 -6 CLY015 2C2 -12.2 0.55 -5.22 CRLY189 SS21 -28.1 1.93 -6 CLY135 2C3 -12.6 0.41 -6.53 CRLY190 SS23 -29.7 3.69 -4 CRLY174 SS6 -13.6 0.43 -7.93 CRLY191 SS23 -29.7 3.69 -4 CRLY175 SS7 -14.6 1.02 -5.11 CRLY192 SS24 -30.1 3.76 -4 CRLY175 SS8 -14.7 1.55 -7.04 CRLY193 SS25 -30.6 3.13 -3 CRLY178 S10 -17.1 2.23 -8.48 CRLY194 SS26 -31.1 1.54 -4	CLY208	SS3	-10.5	0.42	-6.20	CLY021	MHC13	-26.9	3.38	-6
CRLY172 SS4 -11.6 0.38 -6.88 CRLY189 SS21 -27.6 3.63 -4 CLY134 2C1 -11.8 0.42 -5.80 CLY022 MHC14 -27.9 3.78 -4 CLY009 MHC1 -12.0 0.61 -6.17 CRLY189 SS22 -28.1 1.93 -4 CLY135 2C2 -12.2 0.55 -5.22 CRLY190 SS22 -28.1 1.93 -4 CLY135 2C3 -12.5 -0.62 -7.95 CRLY191 SS23 -29.7 3.69 -4 CRLY174 SS6 -13.6 0.43 -7.93 CRLY191 SS23 -29.7 3.69 -4 CRLY174 SS6 -13.6 0.43 -7.93 CRLY191 SS25 -30.6 3.13 -4 CRLY175 SS7 -14.6 1.02 -5.11 CRLY192 SS24 -31.0 3.12 -5 CLY011 MHC3 -15.3 1.03 -7.99 CLY026 MHC18 -31.0 3.12 -5	CRLY171	SS3	-10.6	0.12	-6.27	CRLY188	SS20	-27.1	3.74	-4
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	CRLY172	SS4	-11.6	0.38	-6.88	CRLY189	SS21	-27.6	3.63	-6
CLY009 MHC1 -12.0 0.61 -6.17 CLY135 2C2 -12.2 0.55 -5.22 CLY136 2C3 -12.5 -0.62 -7.95 CRLY173 SS5 -12.6 0.41 -6.53 CLY010 MHC2 -12.7 -1.13 -8.42 CRLY17 SS6 -13.6 0.43 -7.93 CRLY176 SS8 -14.6 1.02 -5.11 CRLY176 SS8 -14.7 1.55 -7.04 CRLY176 SS8 -14.7 1.55 -7.04 CRLY177 SS9 -16.1 0.79 -12.68 CRLY178 SS10 -17.1 2.23 -8.48 CRLY180 SS12 -19.3 2.36 -7.52 CRLY181 SS13 -20.2 2.54 -6.58 CLY013 MHC4 -20.9 2.90 -7.19 CRLY183 SS15 -21.4 1.61 -6.31 CLY013 MHC5 -21.5 2.85 -6.34 CLY013 MHC6 -	CLY134	2C1	-11.8	0.42	-5.80	CLY022	MHC14	-27.9	3.78	
CLY135 2C2 -12.2 0.55 -5.22 CLY023 MHC15 -28.3 3.06 -4 CLY136 2C3 -12.5 -0.62 -7.95 CLY024 MHC16 -29.1 2.43 -4 CRLY173 SS5 -12.6 0.41 -6.53 CLY024 MHC16 -29.1 2.43 -4 CRLY174 SS6 -13.6 0.43 -7.93 CLY025 MHC17 -29.9 2.99 -5 CRLY175 SS7 -14.6 1.02 -5.11 CRV193 SS25 -30.6 3.13 -5 CRLY175 SS7 -16.1 0.79 CRV193 SS25 -30.6 3.13 -5 CRV1717 SS9 -16.1 0.79 -12.68 CRV194 SS26 -31.1 1.54 -4 CRLY178 SS10 -17.1 2.23 -8.48 CLY027 MHC19 -31.3 3.28 -5 CRLY18 SS13 -20.2 2.54 -6.58 CLY028 MHC20 -31.5 1.95 -7 CRLY183	CLY009	MHC1	-12.0	0.61	-6.17	CRLY190	SS22	-28.1	1.93	-1
CLY136 2C3 -12.5 -0.62 -7.95 CLY024 MHC16 -29.1 2.43 -4 CRLY173 SS5 -12.6 0.41 -6.53 CRLY191 SS23 -29.7 3.69 -4 CLY010 MHC2 -12.7 -1.13 -8.42 CLY025 MHC17 -29.9 2.99 -4 CRLY174 SS6 -13.6 0.43 -7.93 CLY026 MHC17 -29.9 2.99 -4 CRLY175 SS7 -14.6 1.02 -5.11 CRLY193 SS25 -30.6 3.13 -5 CLY011 MHC3 -15.3 1.03 -7.99 CLY026 MHC18 -31.0 3.12 -4 CLY173 SS9 -16.1 0.79 -12.68 CLY027 MHC19 -31.3 3.28 -4 CRLY180 SS12 -19.3 2.36 -7.52 CLY029 MHC21 -32.7 2.08 -4 CRLY181 SS13 -20.2 2.54 -6.58 CLY029 MHC21 -32.7 2.08 -4 <t< td=""><td>CLY135</td><td>2C2</td><td>-12.2</td><td>0.55</td><td>-5.22</td><td>CLY023</td><td>MHC15</td><td>-28.3</td><td>3.06</td><td>-6</td></t<>	CLY135	2C2	-12.2	0.55	-5.22	CLY023	MHC15	-28.3	3.06	-6
CRLY173 SS5 -12.6 0.41 -6.53 CLY010 MHC2 -12.7 -1.13 -8.42 CRLY174 SS6 -13.6 0.43 -7.93 CRLY175 SS7 -14.6 1.02 -5.11 CRLY176 SS8 -14.7 1.55 -7.04 CLY011 MHC3 -15.3 1.03 -7.99 CLY177 SS9 -16.1 0.79 -12.68 CRLY178 SS10 -17.1 2.23 -8.48 CRLY180 SS12 -19.3 2.36 -7.52 CRLY181 SS13 -20.2 2.54 -6.58 CLY012 MHC4 -20.9 2.90 -7.19 CRLY183 SS15 -21.4 1.61 -6.31 CLY013 MHC5 -21.5 2.85 -6.34 CLY014 MHC6 -22.3 3.22 -5.93 CLY015 MHC7 -23.4 3.02 -5.87 CLY014 MHC6 -23.4 3.02 -5.87 CLY015 MHC7	CLY136	2C3	-12.5	-0.62	-7.95	CLY024	MHC16	-29.1	2.43	-6
CLY010 MHC2 -12.7 -1.13 -8.42 CRLY174 SS6 -13.6 0.43 -7.93 CRLY175 SS7 -14.6 1.02 -5.11 CRLY175 SS7 -14.6 1.02 -5.11 CRLY192 SS24 -30.1 3.76 -4 CRLY176 SS8 -14.7 1.55 -7.04 CLY026 MHC18 -31.0 3.12 -5 CLY137 2C4 -15.6 1.61 -6.10 CLY027 MHC19 -31.3 3.28 -5 CRLY178 SS10 -17.1 2.23 -8.48 CLY027 MHC19 -31.3 3.28 -5 CRLY180 SS12 -19.3 2.36 -7.52 CLY029 MHC21 -32.7 2.08 -4 CRLY181 SS13 -20.2 2.54 -6.58 CLY030 MHC23 -34.0 2.45 -4 CRLY182 S14 -21.1 2.28 -8.19 CLY033 MHC24 -34.2 2.63 -6 CLY013 MHC5 -21.5 2.85 -6.34 CL	CRLY173	SS5	-12.6	0.41	-6.53	CRLY191	SS23	-29.7	3.69	-4
CRLY174 \$S6 -13.6 0.43 -7.93 CRLY175 \$S7 -14.6 1.02 -5.11 CRLY176 \$S8 -14.7 1.55 -7.04 CLY011 MHC3 -15.3 1.03 -7.99 CLY177 \$S9 -16.1 0.79 -12.68 CRLY178 \$S10 -17.1 2.23 -8.48 CRLY180 \$S12 -19.3 2.36 -7.52 CRLY181 \$S13 -20.2 2.54 -6.58 CLY012 MHC4 -20.9 2.90 -7.19 CRLY183 \$S15 -21.4 1.61 -6.31 CLY013 MHC5 -21.5 2.85 -6.34 CLY014 MHC6 -22.3 3.22 -5.93 CLY015 MHC7 -23.1 3.65 -5.56 CLY014 MHC8 -23.9 3.72 -6.00 CLY035 MHC29 -38.7 2.27 -4.60 CLY016 MHC8 -23.9 3.72 -6.00 CLY036 MHC29 -39.2 <	CLY010	MHC2	-12.7	-1.13	-8.42	CLY025	MHC17	-29.9	2.99	-4
CRLY175 SS7 -14.6 1.02 -5.11 CRLY176 SS8 -14.7 1.55 -7.04 CLY011 MHC3 -15.3 1.03 -7.99 CLY137 2C4 -15.6 1.61 -6.10 CRLY178 SS10 -17.1 2.23 -8.48 CRLY180 SS12 -19.3 2.36 -7.52 CRLY181 SS13 -20.2 2.54 -6.58 CLY012 MHC4 -20.9 2.90 -7.19 CRLY183 SS15 -21.4 1.61 -6.31 CLY013 MHC5 -21.5 2.85 -6.34 CLY014 MHC6 -22.3 3.22 -5.93 CLY015 MHC7 -23.1 3.65 -5.56 CLY014 MHC6 -23.4 3.02 -5.87 CLY016 MHC8 -23.9 3.72 -6.00 CLY016 MHC9 -24.3 3.25 -5.44	CRLY174	SS6	-13.6	0.43	-7.93	CRLY192	SS24	-30.1	3.76	-4
CRLY176 SS8 -14.7 1.55 -7.04 CLY011 MHC3 -15.3 1.03 -7.99 CLY137 2C4 -15.6 1.61 -6.10 CRLY177 SS9 -16.1 0.79 -12.68 CRLY188 SS10 -17.1 2.23 -8.48 CRLY180 SS12 -19.3 2.36 -7.52 CRLY181 SS13 -20.2 2.54 -6.58 CLY012 MHC4 -20.9 2.90 -7.19 CRLY182 SS14 -21.1 2.28 -8.19 CRLY183 SS15 -21.4 1.61 -6.31 CLY013 MHC5 -21.5 2.85 -6.34 CLY014 MHC6 -22.3 3.22 -5.93 CLY015 MHC7 -23.1 3.65 -5.56 CRLY184 SS16 -23.4 3.02 -5.87 CLY016 MHC8 -23.9 3.72 -6.00 CRLY185a SS17 -24.1 2.68 -6.21 CLY017 MHC9 <	CRLY175	SS7	-14.6	1.02	-5.11	CRLY193	SS25	-30.6	3.13	-4
CLY011 MHC3 -15.3 1.03 -7.99 CLY137 2C4 -15.6 1.61 -6.10 CRLY177 SS9 -16.1 0.79 -12.68 CRLY178 SS10 -17.1 2.23 -8.48 CRLY179 SS11 -18.2 2.40 -8.51 CRLY180 SS12 -19.3 2.36 -7.52 CRLY181 SS13 -20.2 2.54 -6.58 CLY012 MHC4 -20.9 2.90 -7.19 CRLY182 S14 -21.1 2.28 -8.19 CRLY183 SS15 -21.4 1.61 -6.31 CLY013 MHC5 -21.5 2.85 -6.34 CLY014 MHC6 -22.3 3.22 -5.93 CLY015 MHC7 -23.1 3.65 -5.56 CRLY184 SS16 -23.4 3.02 -5.87 CLY016 MHC8 -23.9 3.72 -6.00 CLY016 MHC9 -3.23 -3.25 -5.44 CLY017 MHC9 <t< td=""><td>CRLY176</td><td>SS8</td><td>-14.7</td><td>1.55</td><td>-7.04</td><td>CLY026</td><td>MHC18</td><td>-31.0</td><td>3.12</td><td>-4</td></t<>	CRLY176	SS8	-14.7	1.55	-7.04	CLY026	MHC18	-31.0	3.12	-4
CLY137 2C4 -15.6 1.61 -6.10 CRLY177 SS9 -16.1 0.79 -12.68 CRLY178 SS10 -17.1 2.23 -8.48 CRLY179 SS11 -18.2 2.40 -8.51 CRLY180 SS12 -19.3 2.36 -7.52 CRLY181 SS13 -20.2 2.54 -6.58 CLY012 MHC4 -20.9 2.90 -7.19 CRLY183 SS15 -21.4 1.61 -6.31 CLY013 MHC5 -21.5 2.85 -6.34 CLY014 MHC6 -22.3 3.22 -5.93 CLY015 MHC7 -23.1 3.65 -5.56 CRLY184 SS16 -23.4 3.02 -5.87 CLY001 WN1 C1 -23.5 0.17 -7.63 CLY016 MHC8 -23.9 3.72 -6.00 CLY037 MHC30 -39.9 2.44 -4 CLY037 MHC30 -39.9 2.44 -4	CLY011	МНС3	-15.3	1.03	-7.99	CRLY194	SS26	-31.1	1.54	-8
CRLY177 SS9 -16.1 0.79 -12.68 CLY028 MHC20 -31.5 1.95	CLY137	2C4	-15.6	1.61	-6.10	CLY027	MHC19	-31.3	3.28	-4
CRLY178 SS10 -17.1 2.23 -8.48 CRLY179 SS11 -18.2 2.40 -8.51 CRLY180 SS12 -19.3 2.36 -7.52 CRLY181 SS13 -20.2 2.54 -6.58 CLY012 MHC4 -20.9 2.90 -7.19 CRLY182 SS14 -21.1 2.28 -8.19 CRLY183 SS15 -21.4 1.61 -6.31 CLY013 MHC5 -21.5 2.85 -6.34 CLY014 MHC6 -22.3 3.22 -5.93 CRLY184 SS16 -23.4 3.02 -5.87 CLY001 WN1 C1 -23.5 0.17 -7.63 CLY016 MHC8 -23.9 3.72 -6.00 CLY036 MHC29 -39.2 1.66 -4 CLY037 MHC30 -39.9 2.44 -4	CRLY177	SS9	-16.1	0.79	-12.68	CLY028	MHC20	-31.5	1.95	-7
CRLY179 SS11 -18.2 2.40 -8.51 CRLY180 SS12 -19.3 2.36 -7.52 CRLY181 SS13 -20.2 2.54 -6.58 CLY012 MHC4 -20.9 2.90 -7.19 CRLY182 SS14 -21.1 2.28 -8.19 CRLY183 SS15 -21.4 1.61 -6.31 CLY013 MHC5 -21.5 2.85 -6.34 CLY014 MHC6 -22.3 3.22 -5.93 CLY015 MHC7 -23.1 3.65 -5.56 CRLY184 SS16 -23.4 3.02 -5.87 CLY016 MHC8 -23.9 3.72 -6.00 CRLY185a SS17 -24.1 2.68 -6.21 CLY017 MHC9 -24.3 3.25 -5.44	CRLY178	SS10	-17.1	2.23	-8.48	CRLY195	SS27	-32.1	2.79	-5
CRLY180 SS12 -19.3 2.36 -7.52 CRLY181 SS13 -20.2 2.54 -6.58 CLY012 MHC4 -20.9 2.90 -7.19 CRLY182 SS14 -21.1 2.28 -8.19 CRLY183 SS15 -21.4 1.61 -6.31 CLY013 MHC5 -21.5 2.85 -6.34 CLY014 MHC6 -22.3 3.22 -5.93 CLY015 MHC7 -23.1 3.65 -5.56 CRLY184 SS16 -23.4 3.02 -5.87 CLY001 WN1 C1 -23.5 0.17 -7.63 CLY036 MHC29 -38.0 2.13 -4.5 CLY016 MHC8 -23.9 3.72 -6.00 CLY036 MHC29 -39.2 1.66 -4.5 CLY037 MHC30 -39.6 2.43 -4.5 -4.5 -4.5 -4.5 CLY017 MHC9 -24.3 3.25 -5.44 CLY030 MHC28 -38.7 2.27 -4.5 CLY036	CRLY179	SS11	-18.2	2.40	-8.51	CLY029	MHC21	-32.7	2.08	-8
CRLY181 SS13 20.2 2.54 -6.58 CLY012 MHC4 -20.9 2.90 -7.19 CRLY182 SS14 -21.1 2.28 -8.19 CRLY183 SS15 -21.4 1.61 -6.31 CLY013 MHC5 -21.5 2.85 -6.34 CLY014 MHC6 -22.3 3.22 -5.93 CLY015 MHC7 -23.1 3.65 -5.56 CLY014 WHC8 -23.9 3.72 -6.00 CLY016 MHC8 -23.9 3.72 -6.00 CLY037 MHC30 -39.9 2.44 -5	CRLY180	SS12	-19.3	2.36	-7.52	CLY030	MHC22	-33.6	2.89	
CLY012 MHC4 20.9 2.90 -7.19 CRLY182 SS14 -21.1 2.28 -8.19 CRLY183 SS15 -21.4 1.61 -6.31 CLY013 MHC5 -21.5 2.85 -6.34 CLY014 MHC6 -22.3 3.22 -5.93 CLY015 MHC7 -23.1 3.65 -5.56 CLY001 WN1 C1 -23.5 0.17 -7.63 CLY016 MHC8 -23.9 3.72 -6.00 CLY017 MHC9 -24.3 3.25 -5.44	CRLY181	SS13	-20.2	2.54	-6.58	CLY031	MHC23	-34.0	2.45	-5
CRLY182 SS14 21.1 2.28 -8.19 CRLY183 SS15 -21.4 1.61 -6.31 CLY013 MHC5 -21.5 2.85 -6.34 CLY014 MHC6 -22.3 3.22 -5.93 CLY015 MHC7 -23.1 3.65 -5.56 CRLY184 SS16 -23.4 3.02 -5.87 CLY001 WN1 C1 -23.5 0.17 -7.63 CLY016 MHC8 -23.9 3.72 -6.00 CRLY185a SS17 -24.1 2.68 -6.21 CLY017 MHC9 -24.3 3.25 -5.44	CLY012	MHC4	-20.9	2.90	-7.19	CLY032	MHC24	-34.2	2.63	-6
CRLY183 SS15 21.4 1.61 -6.31 CLY013 MHC5 -21.5 2.85 -6.34 CLY014 MHC6 -22.3 3.22 -5.93 CLY015 MHC7 -23.1 3.65 -5.56 CRLY184 SS16 -23.4 3.02 -5.87 CLY001 WN1 C1 -23.5 0.17 -7.63 CLY016 MHC8 -23.9 3.72 -6.00 CRLY185a SS17 -24.1 2.68 -6.21 CLY017 MHC9 -24.3 3.25 -5.44	CRLY182	SS14	-21.1	2.28	-8.19	CLY033	MHC25	-35.3	2.53	-5
CLY013 MHC5 21.5 2.85 -6.34 CLY014 MHC6 22.3 3.22 -5.93 CLY015 MHC7 -23.1 3.65 -5.56 CRLY184 SS16 23.4 3.02 -5.87 CLY001 WN1 C1 -23.5 0.17 -7.63 CLY016 MHC8 -23.9 3.72 -6.00 CRLY185a SS17 -24.1 2.68 -6.21 CLY017 MHC9 -24.3 3.25 -5.44	CRLY183	SS15	-21.4	1.61	-6.31	CRLY196	SS28	-35.4	2.02	-4
CLY014 MHC6 22.3 3.22 -5.93 CLY015 MHC7 23.1 3.65 -5.56 CRLY184 SS16 23.4 3.02 -5.87 CLY001 WN1 C1 -23.5 0.17 -7.63 CLY016 MHC8 -23.9 3.72 -6.00 CRLY185a SS17 -24.1 2.68 -6.21 CLY017 MHC9 -24.3 3.25 -5.44	CLY013	MHC5	-21.5	2.85	-6.34	CLY034	MHC26	-36.2	1.87	-6
CLY015 MHC7 -23.1 3.65 -5.56 CRLY184 SS16 -23.4 3.02 -5.87 CLY001 WN1 C1 -23.5 0.17 -7.63 CLY016 MHC8 -23.9 3.72 -6.00 CRLY185a SS17 -24.1 2.68 -6.21 CLY017 MHC9 -24.3 3.25 -5.44	CLY014	MHC6	-22.3	3.22	-5.93	CRLY197	SS29	-36.6	1.82	-4
CRLY184 SS16 -23.4 3.02 -5.87 CLY001 WN1 C1 -23.5 0.17 -7.63 CLY016 MHC8 -23.9 3.72 -6.00 CRLY185a SS17 -24.1 2.68 -6.21 CLY017 MHC9 -24.3 3.25 -5.44	CLY015	MHC7	-23.1	3.65	-5.56	CRLY198	SS30	-38.0	2.13	-4
CLY001 WN1 C1 -23.5 0.17 -7.63 CLY016 MHC8 -23.9 3.72 -6.00 CRLY185a SS17 -24.1 2.68 -6.21 CLY017 MHC9 -24.3 3.25 -5.44	CRLY184	SS16	-23.4	3.02	-5.87	CLY035	MHC28	-38.7	2.27	-4
CLY016 MHC8 -23.9 3.72 -6.00 CLY036 MHC29 -39.2 1.66 -4 CRLY185a SS17 -24.1 2.68 -6.21 CLY037 MHC30 -39.6 2.43 -4 CLY017 MHC9 -24.3 3.25 -5.44 CLY248 SS3 -39.9 2.44 -4	CLY001	WN1 C1	-23.5	0.17	-7.63	CLY249	SS3	-38.9	1.92	-8
CRLY185a SS17 -24.1 2.68 -6.21 CLY037 MHC30 -39.6 2.43 -4 CLY017 MHC9 -24.3 3.25 -5.44 CLY248 SS3 -39.9 2.44 -4	CLY016	MHC8	-23.9	3.72	-6.00	CLY036	MHC29	-39.2	1.66	-4
CLY017 MHC9 -24.3 3.25 -5.44 CLY248 SS3 -39.9 2.44 -3	CRLY185a	SS17	-24.1	2.68	-6.21	CLY037	MHC30	-39.6	2.43	-4
	CLY017	МНС9	-24.3	3.25	-5.44	CLY248	SS3	-39.9	2.44	-4

 $\delta^{13}C_{carb} \text{ and } \delta^{18}O \text{ data from the West Midlands and Wenlock Edge. Key to locality codes as follows:} West Midlands – WN1. WN2: Wrens Nest (SO 938 921). MHC. 2C: Mons Hill Core (SO 938 923). SS: Step Shaft Mine (SO 939 918).$

Carly Marshall et al.	 High resolution δ 	C stratigraphy of t	the Homerian (Wenlock)) of the English Midlands	and Wenlock Edge
-----------------------	---------------------------------------	---------------------	------------------------	---------------------------	------------------

Lab Code	Locality Code	Depth on composite section	$\delta^{13}C$	δ ¹⁸ Ο	Lab Code	Locality Code	Depth on composite section	$\delta^{13}C$	δ ¹⁸ Ο
CLY247	SS3	-40.6	1.32	-6.27	CLY141	2C8	-60.3	3.04	-7.30
CLY038	MHC31	-40.6	1.23	-7.51	CLY051	MHC46	-60.5	-0.14	-8.95
CLY246	SS3	-40.9	2.00	-6.92	CLY142	2C9	-60.5	2.53	-7.29
CLY245	SS3	-41.1	1.59	-8.34	CLY143	2C10	-60.8	3.77	-6.39
CLY244	SS3	-41.4	1.75	-8.02	CLY144	2C11	-61.1	4.15	-6.82
CLY243	SS3	-41.6	2.00	-6.93	CLY052	MHC47	-61.3	4.61	-5.47
CLY242	SS3	-42.1	1.60	-9.25	CLY145	2C12	-61.3	4.63	-5.21
CLY039	MHC32	-43.1	0.83	-5.59	CLY072	WN2 C10	-61.4	4.72	-6.84
CLY241	SS3	-43.4	1.45	-9.22	CLY073	WN2 C9	-62.2	4.15	-8.23
CLY240	SS3	-43.4	1.80	-7.71	CLY053	MHC49	-62.8	4.42	-6.57
CLY040a	MHC33	-43.9	0.90	-6.03	CLY074	WN2 C8	-63.8	4.27	-6.44
CLY239	SS3	-45.1	1.64	-5.30	CLY054	MHC50	-64.3	3.67	-6.75
CLY041	MHC34	-45.2	1.27	-7.55	CLY075	WN2 C7	-64.8	3.83	-7.76
CLY238	SS3	-46.1	2.37	-6.28	CLY055	MHC51	-65.2	2.57	-5.77
CLY237	SS3	-46.6	2.86	-4.81	CLY056	MHC54	-65.7	2.20	-5.78
CLY042	MHC35	-46.8	2.23	-8.15	CLY076	WN2 C6	-65.8	3.73	-5.83
CLY236	SS3	-48.1	-0.76	-8.53	CLY077	WN2 C5	-66.5	3.43	-7.72
CLY043	MHC36	-49.0	2.61	-6.64	CLY057	MHC55	-66.6	0.66	-7.14
CLY235	SS3	-49.4	-2.62	-8.21	CLY078	WN2 C4	-67.2	2.64	-9.53
CLY044	MHC37	-50.3	3.07	-5.51	CLY058	MHC56	-67.7	0.01	-5.52
CLY234	SS3	-50.4	1.60	-7.95	CLY079	WN2 C3	-67.8	3.32	-5.69
CLY233	SS3	-51.1	1.33	-9.04	CLY081	WN2 C1	-69.4	2.89	-4.85
CLY045	MHC38	-51.3	2.26	-7.87	CLY059	MHC60	-71.0	-0.17	-8.08
CLY232	SS3	-51.6	0.50	-5.32	CLY060	MHC61	-71.7	0.77	-6.37
CLY231	SS3	-52.4	1.56	-8.47	CLY061	MHC62	-73.6	-0.45	-6.51
CLY046	MHC39	-52.8	3.23	-8.51	CLY062	MHC64	-74.1	-0.19	-6.46
CLY230	SS3	-53.1	1.65	-5.02	CLY063	MHC65	-74.5	-0.56	-6.44
CLY229	SS3	-53.6	1.75	-8.55	CLY064	MHC66	-74.7	-0.35	-7.06
CLY067	WN2 C15	-53.7	5.15	-6.07	CLY065	MHC67	-75.1	0.24	-7.69
CLY047	MHC40	-53.8	2.22	-8.00	CLY209	SS3	-75.5	0.04	-8.27
CLY228	SS3	-54.1	1.84	-7.56	CLY066	MHC68	-75.6	-0.10	-7.59
CLY068	WN2 C14	-54.3	5.20	-6.19	CLY210	SS3	-76.5	0.33	-7.21
CLY227	SS3	-54.4	1.84	-7.85	CLY211	SS3	-78.5	0.45	-6.19
CLY226	SS3	-54.6	1.44	-9.05	CLY212	SS3	-80.0	-0.15	-6.69
CLY225	SS3	-54.9	1.94	-8.98	CLY213	SS3	-81.0	0.02	-7.35
CLY069	WN2 C13	-55.2	5.36	-6.42	CLY214	SS3	-81.6	0.32	-6.75
CLY224	SS3	-55.6	1.28	-8.36	CLY215	SS3	-82.0	-0.21	-6.30
CLY048	MHC43	-56.0	4.30	-7.18	CLY216	SS3	-83.0	0.22	-8.32
CLY070	WN2 C12	-56.8	5.48	-6.36	CLY217	SS3	-84.0	0.65	-6.36
CLY049	MHC44	-57.0	5.11	-6.70	CLY218	SS3	-87.0	-1.69	-6.09
CLY050	MHC45	-58.1	5.52	-6.16	CLY219	SS3	-89.0	-0.10	-6.84
CLY138	2C5	-58.1	5.54	-5.26	CLY220	SS3	-90.0	-1.66	-6.86
CLY071	WN2 C11	-59.6	3.15	-5.19	CLY221	SS 3	-94.0	0.39	-6.23
CLY139	2C6	-59.9	5.06	-6.25	CLY222	SS3	-96.5	0.37	-6.86
CLY140	2C7	-60.0	5.05	-6.33	CLY223	SS3	-97.0	0.12	-6.26
					-				

Appendix 2

Wenlock Edge – LQ: Lea Quarry South (SO 594 982). HH: Harley Hill (SJ 609 004). FR: Farley Road Cutting and Acklands Coppice (SJ 637 026). Lower Hill Farm Track (SO 579 974).

Lab Code	Locality Code	Depth on composite section	$\delta^{13}C$	δ ¹⁸ Ο	Lab Code	Locality Code	Depth on compose section	site
CLY082	LQ C36	3.59	0.85	-7.88	CRLY158	HH13	35.12	
CLY083	LQ C34	4.17	0.86	-5.32	CLY113	FR C21	35.33	
CLY084	LQ C33	4.67	0.79	-5.29	CRLY159	HH14	35.39	
CLY086	LQ C30	5.63	1.09	-5.01	CLY114	FR C20	35.62	
CLY087	LQ C27	6.53	1.09	-7.00	CRLY160	HH15	35.79	
CLY088	LQ C26	7.45	0.84	-5.64	CLY115	FR C19	36.02	
CLY089	LQ C25	7.96	1.08	-5.79	CRLY161	HH16	36.34	
CLY090	LQ C24	8.89	1.21	-6.10	CLY116	FR C18	36.56	
CLY091	LQ C23	9.85	2.29	-5.75	CRLY162	HH17	36.71	
CLY092	LQ C22	10.54	1.51	-8.05	CRLY163	HH18	36.80	
CLY093	LQ C20	11.16	2.11	-6.56	CRLY164	HH19	37.14	
CLY094	LQ C19	12.20	2.15	-5.55	CLY118	FR C16	37.30	
CLY095	LQ C18	13.07	2.71	-7.56	CRLY165a	HH20	37.36	
CLY096	LQ C17	13.69	2.58	-8.03	CLY119	FR C15	37.49	
CLY097	LQ C16	14.41	2.79	-5.53	CRLY166	HH21	37.86	
CLY098	LQ C15	14.92	2.80	-6.55	CLY120	FR C14	38.03	
CLY099	LQ C14	15.35	2.69	-7.29	CLY117	FR C17	38.13	
CLY100	LQ C13	15.88	3.16	-5.55	CRLY167	HH22	38.29	
CLY101	LQ C12	16.33	3.32	-4.88	CLY121	FR C13	38.37	
CLY102	LQ C11	17.06	2.87	-6.21	CRLY168	HH23	38.46	
CLY103	LQ C10	17.39	3.53	-5.58	CLY251	FR01	38.57	
CLY104	LQ C9	17.76	3.28	-5.72	CLY252	FR02	38.74	
CLY105	LQ C8	18.66	3.40	-6.03	CLY253	FR03	38.74	
CLY106	LQ C7	19.18	3.46	-4.56	CLY254	FR04	38.89	
CLY107	LQ C6	20.44	3.31	-5.16	CLY255	FR05	38.93	
CLY108	LQ C5	20.67	3.58	-5.34	CLY256	FR06	38.96	
CLY109	LQ C4	21.66	3.50	-5.24	CLY257	FR07	39.03	
CLY110	LQ C3	22.13	3.78	-5.52	CLY258	FR08	39.12	
CLY111	LQ C2	22.94	3.59	-5.40	CLY259	FR09	39.23	
CLY112	LQ C1	23.74	3.38	-6.19	CLY260	FR10	39.30	
CRLY146	HH1	25.58	2.12	-6.52	CLY261	FR11	39.34	
CRLY147	HH2	25.98	2.13	-5.83	CLY262	FR12	39.62	
CRLY148	НН3	26.67	2.31	-5.44	CLY263	FR13	39.75	
CRLY149	HH4	27.84	2.31	-5.77	CLY264	FR14	39.88	
CRLY150	НН5	29.10	1.92	-6.36	CLY265	FR15	40.18	
CRLY151	HH6	29.86	2.19	-6.73	CLY266	FR16	40.22	
CRLY152	HH7	30.85	2.16	-6.03	CLY267	FR17	40.42	
CRLY153	HH8	32.21	2.30	-7.39	CLY268	FR18	40.51	
CRLY154	HH9	33.50	2.16	-6.72	CLY269	FR19	40.52	
CRLY155	HH10	34.91	2.23	-6.40	CLY270	FR20A	40.62	
CRLY156	HH11	34.96	2.34	-6.39	CLY271	FR20B	40.73	
CRLY157	HH12	34.96	2.31	-5.86	CLY272	FR21	40.91	
L	1	1		1	L	1	1	

Lab Code Locality Code		Depth on composite section	$\delta^{13}C$	$\delta^{18}O$
CLY273	FR22	41.11	2.05	-5.81
CLY274	FR23	41.29	2.57	-5.17
CLY275	FR24	41.31	2.45	-5.16
CLY276	FR25	41.72	2.43	-5.25
CLY277	FR26	41.73	2.17	-5.32
CLY278	FR27	42.05	1.50	-4.95
CLY279	FR28	42.26	1.80	-6.92
CLY280	FR29	42.38	2.24	-5.54
CLY281	AC01	42.42	2.15	-6.00
CLY282	AC02	42.47	2.42	-6.50
CLY283	AC03	43.03	2.39	-5.80
CLY122	FR C12	43.44	2.25	-5.98
CLY123	FR C11	44.47	1.53	-6.29
CLY124	FR C10	45.49	2.32	-6.03
CLY125	FR C9	46.61	2.13	-7.06
CLY126	FR C8	47.21	2.37	-5.78
CLY127	FR C7	48.20	2.31	-6.03
CLY128	FR C6	49.19	2.40	-5.63
CLY129	FR C5	50.81	2.34	-5.91
CLY130	FR C4	51.83	2.62	-5.68
CLY131	FR C3	52.85	2.11	-6.19
CLY132	FR C2	53.88	2.34	-6.23
CLY133	FR C1	55.16	2.24	-6.93
CLY321	ACOP106	55.73	2.17	-7.49
CLY322	ACOP107	56.16	2.39	-5.71
CLY323	ACOP108	56.43	2.28	-6.88
CLY324	ACOP109	56.56	1.94	-6.76
CLY325	ACOP110	56.79	2.26	-6.05
CLY326	ACOP111	56.96	2.28	-5.86
CLY327	ACOP112	57.12	1.66	-6.64
CLY328	ACOP113	57.31	1.94	-6.34
CLY329	ACOP114	57.48	1.29	-6.75
CLY330	ACOP115	57.65	2.28	-6.02
CLY331	ACOP116	57.81	2.20	-6.12
CLY332	ACOP117	58.05	1.83	-7.14
CLY333	ACOP118	58.28	2.29	-6.09

Lab Code Locality Code		Depth on composite section	$\delta^{13}C$	δ ¹⁸ Ο	
CLY334	ACOP119	58.65	2.21	-5.50	
CLY335	ACOP120	58.97	1.89	-7.12	
CLY336	ACOP121	59.33	2.26	-6.19	
CLY337	ACOP122	59.68	2.14	-6.35	
CLY338	ACOP123	60.02	2.07	-6.09	
CLY339	ACOP124	60.38	2.14	-6.04	
CLY287	LHF101	66.81	1.63	-6.03	
CLY288	LHF102	67.32	1.61	-6.75	
CLY289	LHF103	67.51	2.58	-5.35	
CLY290	LHF104	67.74	2.58	-5.35	
CLY291	LHF105	67.96	2.54	-4.93	
CLY292	LHF106	68.94	2.54	-5.02	
CLY293	LHF201	69.16	1.68	-7.28	
CLY294	LHF202	69.45	1.20	-6.36	
CLY295	LHF203	69.72	2.55	-5.04	
CLY296	LHF204	70.16	2.03	-6.98	
CLY297	LHF205	72.01	1.97	-5.64	
CLY298	LHF301	72.30	1.91	-5.46	
CLY299	LHF303	72.60	1.96	-5.27	
CLY300	LHF304	72.91	1.09	-6.32	
CLY301	LHF305	73.25	1.58	-6.31	
CLY302	LHF306	73.73	1.15	-6.76	
CLY303	LHF307	74.00	1.09	-6.64	
CLY304	LHF308	74.27	2.13	-6.30	
CLY305	LHF401	76.88	2.38	-5.43	
CLY306	LHF402	77.17	2.35	-7.11	
CLY307	LHF501	78.57	2.39	-6.14	
CLY308	LHF502	78.92	2.39	-6.35	
CLY309	LHF503	79.12	2.20	-6.50	
CLY310	LHF601	80.50	2.11	-6.56	
CLY311	LHF602	80.84	1.74	-7.22	
CLY312	LHF603	81.03	2.27	-6.44	
CLY313	LHF604	81.30	2.15	-6.23	
CLY314	LHF605	81.69	2.21	-6.19	
CLY315	LHF606	82.05	1.70	-7.31	