Detailed trilobite biostratigraphy across the proposed GSSP for Stage 5 (“Middle Cambrian” boundary) at the Wuliu-Zengjiayan section, Guizhou, China

FREDERICK A. SUNDBERG, YUANLONG ZHAO, JINLIANG YUAN & JIHPAI LIN

Quarrying across a potential GSSP of the base of Cambrian Stage 5/Series 3 at the Wuliu-Zengjiayan section in south China indicates a significant change in trilobite and brachiopod faunas. The Wuliu Quarry spans approximately 4.5 m across the potential boundary, which is the FAD of *Oryctocephalus indicus* (Reed, 1910) in the Wuliu-Zengjiayan section of the Kaili Formation. Trilobite taxa found consist of one *Pagetia*, one *Redlichia*, one *Burlingia*, two *Olenoides*, eleven oryctocephalid, and seven ptychopariid species. Non-trilobite taxa found in the Wuliu Quarry, but not described in this publication, include tubular shells, inarticulate and articulate brachiopods, molluscs, echinoderm plates, sponges, algae, acritarchs, and trace fossils. Collected specimens display both flattening, secondary calcite preservation, and tectonic distortion. Many of the species have previously been based on length to width ratios. Given the range of morphologies demonstrated in these collections, several previously named species have been synonymized. Detailed collections from the Wuliu Quarry show that the faunas of the *Ovatoryctocara* cf. *granulata*-Bathyonotus holopygus and the *O. indicus* zones changed in a 20 cm, relatively barren interval. This faunal turnover does not coincide with a lithologic change and suggests that the section would be a good location for the GSSP of the base of Cambrian Stage 5/Series 3.

- Key words: Cambrian, trilobites, Kaili Formation, South China.

Frederick A. Sundberg (corresponding author), Show Low High School, 500 W. Old Linden Rd., Show Low, AZ 85901, USA; freddeb85@cableone.net • Yuanlong Zhao, College of Resource and Environment Engineering, Guizhou University, Guiyang 550003, China; zhaoyuanlong@126.com • Jinliang Yuan, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, No. 39 East Beijing Road Nanjing, 210008, China; yuanjl403@sohu.com • Jihpai Lin, State Key Laboratory of Paleobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 E. Beijing Road, Nanjing, 210008, China; jplin@nigpas.ac.cn

The lower boundary of Stage 5 of the Cambrian has yet to be determined. Recent work (Sundberg 2009, McCollum & Sundberg 2010) by the “Lower-Middle” Cambrian Boundary Working Group has narrowed down the biohorizon possibilities that should be considered for defining this boundary. The first candidate is the first appearance datum (FAD) of *Oryctocephalus indicus* (Reed, 1910), the second candidate is the FAD of *Ovatoryctocara granulata* Tchernysheva, 1962. A potential GSSP for this boundary using *O. indicus* has been proposed by Zhao et al. (2005a, see for further references) and is located at the Wuliu-Zengjiayan section near Balang, Guizhou Province, China (Fig. 1). This paper reports on the trilobites of a quarry excavated next to the proposed GSSP at the Wuliu-Zengjiayan section (Fig. 2). This quarry is here referred to as the “Wuliu Quarry”. The intent of this study is to provide detailed stratigraphic and biostratigraphic information for approximately 4.5 m of section that transects the FAD of *O. indicus*. A preliminary report on this quarry was published by Sundberg et al. (2010b). This report contained a stratigraphic range chart (Sundberg et al. 2010b, fig. 1); however some taxonomic nomenclature has been changed. These changes are mentioned below in the systematic section.

The general depositional environment of the Kaili Formation has been discussed by Zhou et al. (1980), Zhao et al. (1994a), Zhang et al. (1996), Zhu et al. (1999) and Lin (2008, 2009). The Kaili Formation occurs in the Jiangnan Slope Belt between the shallow water Yangtze Platform and the deeper water Jiangnan Basin (Lu et al. 1974b; Zhou et al. 1980; Zhao 1990; Zhang et al. 1996; Yuan et al. 2002; Lin 2008, 2009). The claystones of the Kaili Formation have an absence of siliciclastic silt and sand, common mm scale lamina and common layers of concentrated trilobite...
sclerites suggest that the sediments were deposited below storm-wave base by turbid suspension gravity flows (Gaines et al. in press), but probably within the lower limit of the photic zone based on potentially in situ algal flora (Lin 2009). The presence of truncation surfaces and small scale slumping next to or in the Wuliu Quarry (Fig. 3) suggests failure close to the sediment water interface (Gaines 2011, personal communication), indicating a paleoslope. The Kaili Formation is interpreted to be a 3rd order cycle with the maximum flooding surface located at or near the FAD of O. indicus (Wang et al. 2006, Lin 2009, Gaines et al. in press). In addition, a negative carbon isotopic excursion occurs within 4 m below the FAD of O. indicus (Yang et al. 2003; Guo et al. 2005, 2010; Lin 2009, 2010, 2011).

Methods

Wuliu Quarry. – The quarry (Figs 2, 4) was selected adjacent to the proposed GSSP at the Wuliu-Zengjiayan section, near the town of Balang, Jianhe County, Guizhou Province, China (26° 44.846' N, 108° 24.830' E, elevation 803 ± 11 m; UTM N 242789.9, E 2961075.3, Zone 49; Fig. 1). The upper third of the quarry was 1.2 m below the 56 m mark of the proposed GSSP section and less than 1 m away. The lower two thirds of the quarry were moved 2 to 3 m away from the proposed section to insure that no damage was done to the established section. Excavation of the quarry involved the removal of layers (levels) of strata in approximately 0.25 to 0.5 m² to a depth of 10 cm (10.0 ± 2.1 cm). Based on the measured width, length and depth of each level, the volume of rock excavated for each level averaged 0.036 ± 0.014 m³ (Fig. 5). The total volume of rock excavated was approximately 1.6 m³. Levels of strata were removed parallel to their dip that ranged from 12° to 21°. The base of each level was excavated along bedding planes, but some levels produced irregular bottoms due to fractures and/or poorly splitting layers. The most irregular surfaces were in the middle portion of the quarry (levels FZX11–30, Figs 4, 5).

Stratigraphic logging was done after the quarry was finished. The total depth excavated was 452 cm, which was determined by adding individual level depths together. Correcting for the dip, the total depth was 434 cm, a 5.3% difference. Once the quarrying was finished, the location of each level marker was done again, correcting for the additive errors resulting from the individual level measurements and stratigraphic dip. This measurement indicated a stratigraphic thickness of 428 cm, which is only a 1.4% difference from the calculated thickness corrected for dip.

Bulk material from each level was kept separate and placed on plastic sheets to avoid mixing during the search for specimens. Once the specimens were collected, the material was trimmed down and wrapped in newspaper labeled with the level number.
Figure 2. Outcrop photograph of the proposed GSSP for the Cambrian Stage 5 in the Wuliu-Zengjiayan section (white marble markers, arrow points to the proposed GSSP) and the Wuliu Quarry studied in this paper (black gabbro markers). The top of the Wuliu Quarry is not visible in photograph, but is located nearly a metre from the proposed GSSP section. Rock hammer (circled) for scale. Photograph by Yuning Yang.

Figure 3. Sedimentary features indicating a depositional paleoslope of the Kaili Formation near and in the Wuliu Quarry. • A – outcrop exposure of truncation surfaces in the mudstones. • B – small scale folding indicating slumping.
Trilobite identifications. – Identification of the ptychopariid trilobites and to a lesser extent the other trilobites was complicated primarily as the result of: 1) tectonic distortion; 2) compaction; 3) glabella similarity of several genera; 4) the lack of pygidium for generic identification; 5) over splitting of species/genera based on distorted specimens; and 6) specimens missing or having calcite replaced exoskeletons. Large collections of specimens of a species were needed to determine the effects of distortion. The figured specimens illustrate the range of distortions and ontogenetic stages. Several features were used for identification, but the comparison of width vs. length ratios were avoided because these features are strongly affected by tectonic distortion (Fig. 6). Features such as the length (sag., exsag.) of the glabella, cranidium, palpebral lobes, posterior area of the fixigena, preglabellar field, and anterior border were commonly compared. Widths (tr.) of the fixigena, glabella, posterior area of the fixigena, and anterior and posterior glabellar were also compared. Pygidial features include the length and width of the axis relative to the entire pygidium, number of axial rings, depth of pleural/interpleural furrows, marginal border, and relative changes in the doublure from the anterior to the posterior margin.

Due to tectonic and compressional distortion of the specimens from the Wuliu Quarry and Wuliu-Zengjiayan section in general, emended diagnoses for the taxa are also presented to provide a guide for the criteria used to identify the different species. Suggested synonymies are presented below; but without a detailed taxonomic/taphonomic study of each species, these synonymies are still questionable. Specimens from the nearby Miaobangpo section (Yuan et al. 2002) appear to be less distorted and would be a better database for a taxonomic revision. A detailed morphometric study is out of the scope of this paper.

Abundance. – The minimum numbers of individuals are illustrated in Figs 5 and 7. All late meraspids and holaspides of each species were counted. The identification of late meraspids were based on having growth sequences of several of the taxa and that only one species of Pagetia Walcott, 1916, was identified. Specimens were recorded as cranidia or pygidia, either positives or negatives. Over 15,000 cranidia and pygidia were counted, however the minimum number of individuals is based on the highest count of either positive or negative of either cranidia or pygidia for each species for each excavated level. For example, if 20
positive cranidia, 13 negative cranidia, 7 positive pygidia, and 10 negative pygidia of a particular species were from a particular excavated level, the minimum number of individuals for that species for that level is 20. Occasionally other sclerites were used to document the number of specimens if the species did not have either cranidia or pygidia present in a level. Specimens of questionable taxonomic assignment were assigned to the closest and/or most abundant species in the surrounding levels. Levels that contain only questionably assigned species are marked with a question mark next to the abundance curves.

The minimum number of individuals differs from the total number of specimens listed under Materials in the systematic section. This number is the sum of each level’s maximum number of cranidia (positive or negative), pygidia (positive or negative), and partial or complete shields (positive or negative) for the entire quarry. Using the example given above, this would give a total of 20 cranidia and 10 pygidia for a particular species from a particular excavated level; a total of 30 specimens from that level, not the minimum number of individuals of 20 as given above.

Brachiopods were counted as either positives or negatives. No distinction was made between brachial and pedicle valves due to the difficulty of identifying the differences between the two valves given the molds and casts and poor preservation of some of the material. Because of the lack of distinction between the two valves, abundances of brachiopods were divided in half to provide a minimum number of individuals.

Results

Lithology. – The Wuliu Quarry section is predominately composed of olive-green to medium-grey claystone (Fig. 4). The stratigraphic package is divided into three units. The upper and lower units are well-bedded claystones with 5 to 15 mm thick beds, internally laminated. The lower unit is 1.55 m thick and contains several secondary calcite flakes and layers. One 5 cm thick micrite nodule occurs at about 1 m from the bottom of the section. The upper unit is 1.1 m thick with minor lenticular carbonate layers 2 to 3 mm thick, grey in color with rust colored rims (altered pyrite; Gaines et al. in press).

The middle unit, which contains the FAD of O. indicus, is 1.8 m thick and composed of irregular bedded claystones with few well-bedded horizons. Beds range from 5 to
slab showing the nearly 90° orientation of specimen A and B (boxes); arcingrenensis Xingrenaspis gittally elongated, partially exfoliated cranidium of preserved as isolated specimens or in the current concentrated layers. Most specimens are disarticulated, although articulated or partially articulated specimens are found in both the claystones and in the current concentrated layers. Specimen size ranges from small meraspids (~1 mm) to 1 cm or larger in nearly all horizons. Almost all specimens are molds and casts, few have exoskeletons preserved. Calcite layers separating the mold and cast are common. This calcite is clearly secondary because of the extension of the material into the surrounding bedding plane and its crystalline appearance (also see Zhu et al. 1999).

Trilobite specimens are commonly compressed and cracked due to compaction of the sediments and tectonically distorted. Shear planes cutting through the section and tectonic lineation further document the distortion of the specimens.

Preservation. – Trilobite specimens within the quarry are preserved as isolated specimens or in the current concentrated deposits. Most specimens are disarticulated, although articulated or partially articulated specimens are found in both the claystones and in the current concentrated layers. Specimen size ranges from small meraspids (~1 mm) to 1 cm or larger in nearly all horizons. Almost all specimens are molds and casts, few have exoskeletons preserved. Calcite layers separating the mold and cast are common. This calcite is clearly secondary because of the extension of the material into the surrounding bedding plane and its crystalline appearance (also see Zhu et al. 1999).

Trilobite specimens are commonly compressed and cracked due to compaction of the sediments and tectonically distorted. Shear planes cutting through the section and tectonic lineation further document the distortion of the specimens.

Taxonomic distributions. – A total of one Pagetia, two Olenoides Meek, 1877, one Redlichia Cossmann, 1902, eleven oryctocephalid, and seven ptychopariid species were identified from the quarry. The total of 22 trilobite species is less than previously reported (see discussion below) as a result of the more conservative taxonomic approach due to preservation. Only one species of articulate brachiopod and one of inarticulate brachiopod were identified from the quarry.

Detailed collecting throughout the quarry shows considerable variation in the minimum number of individuals found in each level (Fig. 5). The polymereoids average 22 ± 17 minimum number of individuals per excavated level. Correcting for average volume of each excavated level, the average density of the polymereoid minimum number of individuals is about 625 individuals per cubic meter. In contrast, specimens of Pagetia taijiangensis Yuan & Zhao in Yuan et al., 1997, are much more abundant when they occur (FZX1–29). The average minimum number of Pagetia individuals in these levels is 145 ± 192 (skewed distribution produces a large variance) and about 4000 individuals per cubic meter. Brachiopod minimum number of individuals differs below and above the FAD of O. indicus. Below the FAD, Eoconcha sp. (Leonid Popov 2010, personal communication; = Nisusia sp. in Huang et al. 1994) averages 2 ± 1 individuals in each excavated level were they occur. Above the FAD, Linnarssonia cf. constans Koneva in Gorjansky & Koneva, 1983 (Leonid Popov 2010, personal communication = L. agyreakensis Koneva, 1979 of Huang et al. 1994) are more abundant, with the minimum number of individuals averaging 19 ± 13 per excavated level.

There are several levels that have very low specimen counts; the most significant are FZX26 to 28 where very few fossil specimens are found despite additional collections made from these levels (Fig. 5, FZX26+27, grey rectangle). This relatively barren zone is 20.5 cm thick within the middle unit of the lithologic section, but does not mark a distinct change in lithology. This barren zone, however, marks the boundary between two distinct assemblages that represent the Ovatoryctocara cf. granulata-Baythyonotus holopygus Zone and the overlying Oryctocephalus indicus Zone (see below).

Non-trilobite fossils found in the Wuliu Quarry, but not discussed further in this publication, range from very rare to abundant. Sponges are represented by rare isolated spicules of Chancelloria (FZX39, 46) and Chota (FZX39). The brachiopods are Linnarssonia cf. constans (FZX1–25, 29–31) and Eoconcha (FZX3, 9, 15, 30, 31, 33, 35, 39–41, 44, 46). The tubular shelly fossil is represented by Cambrovitus balangensis Mao et al., 1992 (FZX32, 34, 35, 39, 40). The molluscs are Scenella radians Babcock & Robison, 1988 (= Scenella taijiangensis Huang & Dai, 1998) (FZX16, 31, 34, 41, 43, 45, 46); Helcionella terraustralis Runnegar & Jell, 1976 in Mao et al. (1993) (FZX9, 12, 14); Latouchella taijiangensis Mao et al., 1993 (FZX5, 13, 14); an unidentified hyolithid (FZX1, 4, 8, 9, 10).
and isolated sclerites of Wiwaxia taijiangensis Zhao et al., 1994b (FZX2, 7, 14, 15, 18–20, 24, 32, 39, 43, 45). Isolated echinoderm plates probably represent eocrinoids (FZX1, 6–12, 14, 15, 21, 25). The algae are Bosworthia simulans Walcott, 1919, in Mao et al. (1994) (FZX42, 45, 46). The trace fossils are dominated by Trichophycus pedum (Seilacher, 1955) in Lin et al. (2010) (FZX2, 5, 10, 11, 20, 21). The acritarchs from the Kaili Formation and from the Wuliu Quarry have been published by Yin et al. (2010, see for further references).

Biostratigraphy. –The quarry crosses through the boundaries of the regional Qiadongian-Wulingian series, Duyanian-Taijiangian stages and the Ovatoryctocara cf. granulata-Bathynotus holopygus Zone and the Oryctocephalus indicus zones (Zhao et al. 2005a). The Wulingian Series, Taijiangian Stage and Oryctocephalus indicus Zone are defined by the first occurrence of O. indicus. In the Wuliu Quarry, the first occurrence of O. indicus is in level FZX25 (Figs 5, 7), approximately 2 m above the base of the quarry and approximately 52.5 m above the base of the Kaili Formation.

The Ovatoryctocara cf. granulata-Bathynotus holopygus Zone is the same as the Ovatoryctocara granulata-Bathynotus holopygus Zone (Yuan et al. 2001, 2002; Zhao et al. 2005a, 2007), but specimens of the index fossil “Ovatoryctocara granulata” were misidentified and is here referred to as the Ovatoryctocara cf. granulata. In addition, this zone has also been referred to as the Bathynotus-Nangaops Zone (Zhao et al. 2001a, b), Bathynotus holopygus-Ovatoryctocara granulata Zone (Zhao et al. 2007), Bathynotus holopygus-Ovatoryctocara cf. granulata Zone (Yuan et al. 2011, Zhao et al. 2011), Ovatoryctocara granulate [sic] Zone (Zhao et al. 2010) and Bathynotus-Redlichia Zone (Lin 2009).

Figure 7. Distribution of the polymeroid trilobites and their relative abundances for each level in the Wuliu Quarry. Relative abundance based on minimal number of individuals and exclusive of Pagetia and brachiopods. The thin dashed lines at the top or bottom of taxa ranges indicate potential range extinctions of taxa near the FAD of O. indicus. See text for discussion.
Common taxa in the lower 2 m of the quarry (Fig. 7; Ovatoryctocara cf. granulata-Bathyotus holopygus Zone) are the ptychopariids Balangunaspis subcylindricalus Yuan & Zhao in Yuan et al., 1997, Nangaops danzhaiensis (Zhou in Lu et al., 1974a), and Probowmmania nankingensis Lin, 1965, and the oryctocephalid Protoryctocephalus wuxiensis Zhou in Lu et al., 1974b. Rarer species include the corynexichid Olenoides hubeiensis (Sun, 1984); the oryctocephalids Oryctocephalops guizhouensis Zhao & Yuan in Yuan et al., 2002, Ovatoryctocara cf. granulata and Protoryctocephalus balangensis Zhao & Yuan in Yuan et al., 2002; the redlichiid Redlichia (Redlichia) takoensis longspina Guo & Zhao, 1998, and the articulate brachiopod Eoconcha sp. Pagetia taijiangensis and Xingrenaspis xingrenensis Yuan & Zhou in Zhang et al., 1980, are also rare, but are limited to 40 cm below the FAD of *O. indicus*.

Common taxa in the upper 2.35 m of the quarry (Figs 5, 7; Oryctocephalus indicus Zone) are the ptychopariids Miabanpoia angustilimbata (Yuan in Zhang et al., 1980) and Xingrenaspis xingrenensis; the corynexichid Olenoides paraparatus Zhao et al., 1994c; the eodiscoid Pagetia taijiangensis, which is the numerically dominate taxon, and the inarticulate brachiopod Linnarssonia cf. constans. Rarer species include the ptychopariids Danzhaiaspis quadratus Yuan & Zhou in Zhang et al., 1980 and Nangaoia (Shilengshuia) conica Yuan & Zhao in Yuan et al., 2002; and the oryctocephalids Curvoryctocephalus taijiangensis Zhao & Yuan in Yuan et al., 2002, Euarthrocephalus taijiangensis Yuan & Zhou in Yuan et al., 2002, Metabalangia yupingsensis Qian & Yuan in Zhang et al., 1980, Metarthrocephalus spinosus Zhao & Yuan in Yuan et al., 2002, and Oryctocephalus indicus.

Regional index fossils are relatively rare in the quarry. The “lower Cambrian” taxon Redlichia is represented by just 12 specimens (10 minimum individuals) from eight levels, including meraspids, librigena, or crania too incomplete to allow specific identification. The “lower Cambrian” taxon Ovatoryctocora cf. granulata is more common, but is still known from only 12 specimens (10 minimum individuals) from eight levels. The last appearance datum (LAD) of both taxa is in level FZX29, approximately 20 cm below level FZX25 that contains the FAD of *O. indicus*. The “middle Cambrian” taxon Oryctocephalus indicus is more common, but individual levels contain one to three minimum numbers of individuals. Seventy-seven specimens (minimum 60 individuals) of *O. indicus* have been identified from the quarry. Nearly every level from FZX25 to FZX1 (top of section) contains one or more specimens of *O. indicus*.

Analysis of the taxa ranges at or near the FAD of *O. indicus* indicate that the faunal changes illustrated in figure 7 are relatively accurate and not the result of small sample sizes. The probability of each species occurring in an adjacent level(s) to its last or first occurrence was determined. Using the binomial distribution, this analysis evaluate the probability of the minimum number of individuals of that species found in that adjacent level (0), the expected minimum number to be found (mean • sample size), and the sample size (n = minimum number of individuals from that level). The sample size increased as the next level up (if the LAD of the species is below the FAD of *O. indicus*) or down (if the FAD of the species is near the FAD of *O. indicus*) is added to the analysis. The sample size would be the increased and the probability is recalculated. The thin dashed lines in figure 7 show the potential extention of taxa ranges based on this analysis (p > 0.05). Most extensions range through the relatively barren zone FZX26 to 28. Those potentially ranging upwards from this barren zone include *Olenoides hebeiensis* into FZX24 and Redlichia takoensis, Ovatoryctocora cf. granulata, Oryctocephalops guizhouensis, and Burlingia ovata Zhou & Yuan (in Zhang et al., 1980) into FZX25. Those potentially ranging downwards from this barren zone include Oryctocephalus indicus, and Olenoides paraparatus into FZX29; Nangaoia (Schilengshuia) conica to FZX30 and Euarthrocephalus taijiangensis into FZX33. Analyses were not done on Nangaoia sp., Metabalangia yupingsensis, Curvoryctocephalus taijiangensis, Metarthrocephalus spinosus or Oryctocephalus elongatus (Zhao et al., 1997) based on their overall rarity and stratigraphic distance away from the FAD of *O. indicus*.

Discussion

Comparison to previous work. – Zhao et al. (2005a, fig. 7) provided a detailed range chart from a 4 m section across the proposed boundary located about 10 m away from the proposed GSSP. The taxa reported here are less diverse than that reported in that preliminary report. Differences in the reported taxa result from this study’s more conservative approach to specific identification due to tectonic distortion, mold and cast preservation, and compaction of specimens, which resulted in the over-splitting of taxa. For example, Zhao et al. (2005a) identify Nangaops brevicus [sic = brevis] Yuan & Sun in Zhang et al., 1980, N. danzhaiensis, N. elongatus Yuan & Sun in Zhang et al., 1980, N. latilimbatus Yuan in Zhang et al., 1980, and N. nankingensis Yuan in Zhang et al., 1980, from below the boundary interval. This study recognizes that the differences between these species are the result of tectonic distortion and compaction of specimens and placed all five species into *N. danzhaiensis*. Most other differences in trilobite identification are probably the result of the two different approaches to identification procedures. Assignment of taxonomic names was done without reference to previously published taxonomic stratigraphic ranges.
Another inconsistency in the taxon range above and below the FAD of *O. indicus* include *Euarthricocephalus* Ju, 1983, which was not seen in the quarry section below the FAD. However, the range analysis discussed above indicates that its absence may be due to the taxon’s rarity in the section. Genera reported by Zhao *et al.* (2005a) and not identified in this study include: *Arthricocephalus* Bergeron, 1899, *Bathynotus* Hall, 1860, *Chitidilla* King, 1941, *Eokaotaia* Yuan & Zhao, 1994, *Kootenia* Walcott, 1889, *Oryctocephalites* Resser, 1939, *Paramgaspis* Yuan & Zhao *et al.*, 1997, *Parashuiyuella*, *Qiannanagraulos* Yuan & Zhao *in Yuan* *et al.*, 1997, and *Yueh-sienszella* Zhang, 1957. These inconsistencies may be the result of the number of specimens collected, larger stratigraphic section collected (40 m above and below the FAD of *O. indicus*), preservation, tectonic distortion, and/or oversplitting of taxa.

FAD of Oryctocephalus indicus. – The first occurrence of *Oryctocephalus indicus* is presently being considered as the biohorizon to mark the base of the Cambrian Stage 5 (see Zhao *et al.*, 2005a, Sundberg 2009, McCollum & Sundberg 2010). This study demonstrates that this biohorizon (level FZX25) marks a significant change in trilobite faunas in southwestern China. The occurrence of oryctocephalids and other polymeroids above and below the FAD and the lack of lithologic changes at the FAD suggest that the appearance of *O. indicus* is not environmentally controlled. However, the carbon excursion (Lin 2011) just below the FAD and the abundant occurrence of *Pagetia taijiangensis* and *Linnarssonia cf. constans* beginning at this horizon does suggest that some aspect of the regional environment had changed. The presence of *Linnarssonia constans* in the lower Cambrian *Redlichia chinensis-Kootenia gimmelfarbi* Zone of Malyi Karatau in Kazakhstan (Holt *et al.*, 2001, Leonid Popov 2010, personal communication) suggests that the lineage migrated into South China due to some change in the environmental conditions.

The 20.5 cm relatively barren zone below the FAD of *O. indicus* (levels FZX 26–28) suggests that level FZX25 may not document the lowest occurrence of *O. indicus*. However, the lack of *O. indicus* below the relatively barren zone and the presence of other oryctocephalids suggest that if the FAD of *O. indicus* is not in level FZX25, then this level is considerably close to the actual FAD in the Kaili Formation. Analysis of range extensions suggests that *O. indicus* could potentially extend down to FZX29, approximately 30 cm below the FAD of *O. indicus* in the Wuliu Quarry.

The results from here study confirm previously works (Yuan *et al.*, 1997; Sundberg *et al.*, 1999, 2010; Zhao *et al.*, 2001a, 2001b, 2004, 2005a, 2007) that the FAD of *O. indicus* at Wuliu-Zengjiayan section is appropriate candidate for the GSSP of the Cambrian Stage 5 or Series 3.

Systematic paleontology

All illustrated specimens are from the Wuliu Quarry and are deposited in the Museum of College of Resource and Environment Engineering, Guizhou University (GK). Photographed specimens were coated with colloidal graphite or India ink (latex casts) and ammonium chloride sublimate. Material counts presented below are based on the number of positives or negatives, whichever is higher, of cranidia and pygidia counted as described above in the methods.

Suborder Eodiscina Kobayashi, 1939

Family Eodiscidae Raymond, 1913

Genus Pagetia Walcott, 1916

Type species. – *Pagetia bootes* Walcott, 1916.

Pagetia taijiangensis Yuan & Zhao (in Yuan *et al.*, 1997)

Figure 8A–Y

1997 *Pagetia taijiangensis* Yuan & Zhao (in Yuan *et al.*); p. 499, pl. 1, figs 1–4.

2001a *Pagetia* sp. – Zhao *et al.*, pl. 1, fig. 4.

2001b *Pagetia taijiangensis* Yuan & Zhao (in Yuan *et al.*, 1997). – Zhao *et al.*, pl. 6, fig. 7.

2002 *Pagetia significans* Etheridge, 1902. – Yuan *et al.*, pp. 80, 230, pl. 4, figs 3–10, pl. 5, figs 1, 6–11, pl. 57, figs 1–2.

2005a *Pagetia taijiangensis* Yuan & Zhao (in Yuan *et al.*, 1997). – Zhao *et al.*, pl. 6, fig. 7.

2009 *Pagetia* cf. *P. significans* Etheridge, 1902. – Lin & Yuan, fig. 2.

Material. – 4096 cranidia, 4871 pygidia, 26 complete or partial shields.

Emended diagnosis. – *Pagetia* with cranidia with poorly defined anterior border, shallow scrobicules, smooth surface, weak ocular ridges, and tapered glabella with occipital spine and shallow glabellar furrows. Pygidium elongated with anterior lateral corners occurring 1/2 pleural field with to axis and flexing about 30° posterio-laterally, shallow pleural furrows, axis with 4–5 axial rings, weak axial nodes, sharply rounded terminal piece, and thin terminal spine; and smooth surface.

431
Remarks. – Pagetia taijiangensis is the most common trilobite in the upper half of the quarry. Both P. taijiangensis and P. significans have been identified from this portion of the Kaili Formation (Yuan et al. 2002). Pagetia significans specimens from Australia (Jell 1975) are very similar to P. taijiangensis from the Kaili Formation. Pagetia taijiangensis differs from P. significans (based on specimens illustrated by Jell 1975) in the cranidia having a poorly defined anterior border (except internal molds, Fig. 8W), shallower scrobicules, smooth surface, and stronger ocular ridges. The pygidia differ in having the anterior lateral corners occurring closer to the axis and flexing at about 30° instead of 45°, shallow pleural furrows, and smooth surface.

A few pygidia from the Kaili Formation have a very thin terminal spine (Fig. 8T, U), but this feature is commonly broken leaving only a small bump on the terminal segment of the pygidial axis. The third thoracic segment also has a very thin spine (Fig. 8V, Y), which is rarely preserved.

Pagetia taijiangensis differs from the type material of P. danzaiaensis Zhang in Zhang et al., 1980, the latter shows very few or absent (or preserved) scrobicules on the anterior border, a more rounded pygidium with granules and a rounded terminal piece (also see Yuan et al. 2002, pl. 3, figs 9, 10). Pagetia bilobata Lu & Chien in Yin & Lee, 1978, and P. salva Zhang in Zhang et al., 1980, differ from P. taijiangensis in a parallel sided glabella and rounded occipital “spine”. However, Zhang (in Zhang et al. 1980, pl. 13, figs 9, 10) and Yuan et al. (2002, pl. 5, fig. 4) illustrate specimens of P. bilobata with a sharp occipital spine. If these specimens are correctly assigned, then the presence and absence of the occipital spine may be a preservation difference as can be seen in some of the specimens of P. taijiangensis illustrated by Yuan et al. (2002). Without further detailed study, Pagetia bilobata and P. salva are not included into P. taijiangensis.

Pagetia miaobanpoensis Yuan & Huang (in Yuan et al., 2002) differs from P. taijiangensis in the glabella having a prominent furrow separating the frontal lobe from the remaining glabella and a pygidium with fewer axial rings and prominent axial ring nodes. A single specimen (Yuan et al. 2002, pl. 3, fig. 5) has a wide postaxial spine; other illustrated pygidia show breakage at the posterior lobe where a spine was attached, but not a large scar that would correspond to such a wide spine seen in the single specimen.

Occurrence. – Kaili Formation, Ovatoryctocara cf. granulata-Bathynotus holopygus and Oryctocephalus indicus zones: Wuliu Quarry level FZX1–29; Wuliu-Zengjiayan and Miaobanpo sections, China.

Order Redlichidae Richter, 1933
Suborder Redlichina Moore (in Harrington et al., 1959)
Superfamily Redlichiacea Poulsen, 1927
Family Redlichiidae Poulsen, 1927

Genus Redlichia (Redlichia) Cossmann, 1902

Type species. – Hoeferia noetlingi Redlich, 1899.

Redlichia (Redlichia) takooensis longspina Guo & Zhao, 1998

Figure 9A–C

1998 Redlichia (Redlichia) takooensis longspina Guo & Zhao; p. 52, pl. 1, figs 3, 3a.

1999 Redlichia (Redlichia) takooensis longspina Guo & Zhao, 1998. – Guo et al., pp. 159, 163, pl. 1, figs 1a, b, 2a, b, pl. 2, figs 3–7.

2001a Redlichia (Redlichia) takooensis longspina Guo & Zhao, 1998. – Zhao et al., pl. 1, fig. 11.

2002 Redlichia (Redlichia) takooensis longspina Guo & Zhao, 1998. – Yuan et al., pp. 83, 231, pl. 6, figs 1–6.

2007 Redlichia (Redlichia) takooensis longspina Guo & Zhao, 1998. – Zhao et al., pl. 4, fig. 4.

2010b Redlichia taijiangensis Guo & Zhao, 1998. – Sundberg et al., fig. 1.

Material. – 5 cranidia, 1 librigena, 6 partial shields.

Remarks. – Only a few specimens can be firmly established as this species. Diagnostic features include the presence of...
a prefrontal area, sharper acute angle between the anterior facial suture and the anterior border, and prominent spine on the thorax. The 12 specimens from the Wuliu Quarry have been assigned to this species, but most specimens are too incomplete or meraspids to allow specific identification. It is possible that some specimens may represent the co-occurring species *Redlichia (Redlichia) taijiangensis* Guo & Zhao, 1998 (Yuan et al. 2002).

Uncertain order
Family Burlingiidae Walcott, 1908

Genus Burlingia Walcott, 1908

Type species. – *Burlingia hectori* Walcott, 1908.

Burlingia ovata Zhou & Yuan (in Zhang et al., 1980)

Figure 9D

1980 *Burlingia ovata* Zhou & Yuan (in Zhang et al.); pp. 380, 381, pl. 110, fig. 1.
2001b *Burlingia ovata* Zhou & Yuan (in Zhang et al., 1980). – Zhao et al., pl. 7, fig. 4.
2005 *Burlingia ovata* Zhou & Yuan (in Zhang et al., 1980). – Lin et al., fig. 3b.
2005a *Burlingia ovata* Zhou & Yuan (in Zhang et al., 1980). – Zhao et al., pl. 7, fig. 4.
2005b *Burlingia ovata* Zhou & Yuan (in Zhang et al., 1980). – Zhao et al., pl. 3, fig. 11.

Material. – 1 pygidium, 4 complete shield.

Remarks. – The difference between *B. ovata* and *B. multisegmenta* Zhao et al. in Yuan et al., 2002, are the latter having longer palpebral lobes and 16 thoracic segments vs. 14 segments in *B. ovata*. Other differences mentioned by Yuan et al. (2002, p. 255) are based on the width of the shield, axial region, and glabella and strongly divergent anterior branches of facial sutures. These wider (tr.) features may be the result of tectonic deformation. The differences between *B. ovata* and *B. primitiva* Zhao et al. in Yuan et al., 2002 are the latter having shorter palpebral lobes, more conical glabella and 13–14 thoracic segments. Other differences mentioned by Yuan et al. (2002, p. 255) are based on the width (tr.) and shorter (sag.) shield and gently divergent anterior branches of facial sutures. These features also may be the result of tectonic deformation of the specimens. The stratigraphic ranges of *B. ovata* and *B. multisegmenta* overlap in the Miaobanpo section (Yuan et al. 2002).

Zhao et al. (2005a, p. 66, 2007, fig. 1) report the range of *B. ovata* as occurring only above the FAD of *O. indicus*. However in this study, *B. ovata* was found only below the FAD of *O. indicus*. This discrepancy in ranges is presently unexplained; it may be to the rarity of the species in the section.

Order Corynexochida Kobayashi, 1935

Family Dorypygidae Kobayashi, 1935

Genus Olenoides Meek, 1877

Type species. – *Paradoxides (?) nevadensis* Meek, 1870.
Olenoides hubeiensis (Sun, 1984)

Figures 10A–G

1984 *Fuchouia huberiensis* Sun; p. 350, pl. 134, fig. 13.
1984 *Kootenia* sp. 1 Sun, pl. 1, figs 5, 6.
1984 *Kootenia* sp. 2 Sun, pl. 1, fig. 7.
1997 *Mengzia* sp. Yuan et al., p. 503, pl. 1, fig. 7.
1997 *Olenoides octaspinus* Yuan & Zhao (in Yuan et al.), p. 502, pl. 1, figs 9, 10, pl. 2, fig. 10.
2002 *Olenoides hubeiensis* (Sun, 1984). – Yuan et al., pp. 92, 93, 233, pl. 10, figs 1–11.
2002 *Olenoides transversus* Zhao & Yuan (in Yuan et al.), pp. 93, 94, 233, pl. 11, figs 7, 8, not pl. 13, fig. 10 (= *Olenoides paraptus*).
2007 *Olenoides hubeiensis* (Sun, 1984). – Zhao et al., fig. 4D, E.

Material. – 4 cranidia, 16 pygidia.

Emended diagnosis. – *Olenoides* with cranidium with parallel sided glabella and prominent ocular ridges. Pygidium with six to seven axial rings, axial nodes, and seven to eight pairs of pleural spines.

Remarks. – The pygidia in the quarry samples have six to seven axial rings. It is very likely that *O. abnormis* Yuan & Zhao in Yuan et al., 1997, is the same species with transverse elongation due to tectonic distortion. The two illustrated pygidia of *Olenoides transversus* Zhao & Yuan in Yuan et al., 2002 (pl. 11, figs 7, 8; no holotype was designated for this species) are tectonically elongated (tr.) and have the same number of axial rings and pygidial spines as *O. hubeiensis* and are included in this species.

Olenoides paraptus Zhao, Ahlberg & Yuan, 1994c

Figure 11A–N

1994c *Olenoides paraptus* Zhao et al.; pp. 370, 371, 374, 375, pl. 1, figs 1–4, 6–9.
2001b *Olenoides jialaoensis* (Lu & Chien, 1978). – Zhao et al., pl. 6, fig. 6.
2002 *Olenoides paraptus* Zhao et al., 1994c. – Yuan et al., pp. 91, 92, 232, pl. 11, figs 1–6, pl. 12, figs 1–8, pl. 13, figs 1–6.
2002 *Olenoides transversus* Zhao & Yuan (in Yuan et al.), pp. 93, 94, 233, pl. 13, fig. 10, not pl. 11, figs 7, 8 (= *Olenoides hubeiensis*).
2005a *Olenoides jialaoensis* (Lu & Chien, 1978). – Zhao et al., pl. 6, fig. 6.
2005b *Olenoides paraptus* Zhao et al., 1994c. – Zhao et al., pl. 3, fig. 3.
2007 *Olenoides paraptus* Zhao et al., 1994c. – Lin, fig. 1A.
2010b *Olenoides transversus* Zhao & Yuan (in Yuan et al., 2002). – Sundberg et al., fig. 1.
Material. – 83 cranidia, 60 pygidia, 7 partial or complete shields.

Emended diagnosis. – Olenoides with cranidium with anteriorly expanding glabella and moderate strength to weak ocular ridges. Pygidium with five axial rings, axial nodes, six pairs of pleural spines.

Remarks. – Olenoides paraptus is best recognized by the five pygidial axial rings, five strong interpleural furrows, and six pairs of pygidial spines. Olenoides jialaoensis (Lu & Chien, 1978) in Yuan et al. (1997) differs in having a more rectangular shaped glabella but this could be the result of tectonic deformation. The type specimen of Kootenia jialaoensis Lu & Chien, 1978, is a partial cranidium and does not have the features to characterize a species of Olenoides. The cranidium of O. transversus (Yuan et al., pl. 13, fig. 10; no holotype was designated for this species) is most likely a tectonically distorted specimen of O. paraptus and is included into this species.

Parts composed of a thick exoskeleton with a granular surface similar to Olenoides paraptus are found at FZX20, 26, and 27. None of the fragments are large enough to allow specific identification. These occurrences are marked with question marks in Fig. 7. Zhao et al. (2007, fig. 1) report this taxon from the upper 8.5 m of the Ovatoryctocara cf. granulata-Bathyphorus holopygus Zone, but no specimens below FZX25 were identified in this study.

Family Oryctocephalidae Beecher, 1897

Remarks. – Most of the taxa assigned to this group are relatively easy to identify, although like the ptychopariids (see below), the identification can be questionable due to taphonomic problems, such as compression and tectonic deformation. In addition, the collapse of the frontal lobe due to the in situ hypostome obscures the presence and shape of the pits and furrows on the glabella.

Subfamily Oryctocephalinae Beecher, 1897

Genus Oryctocephalus Walcott, 1886

Type species. – Oryctocephalus primus Walcott, 1886.

Remarks. – Yuan et al. (2002) subdivided the genus into two subgenera, Oryctocephalus and Eoryctocephalus. The differences between the two subgenera are significant, but need to be tested with cladistic analysis. Eoryctocephalus has more primitive features than Oryctocephalus such as wider pleural lobes and fewer pygidial segments. These features may not be enough to separate the taxa.

Oryctocephalus indicus (Reed, 1910)

Figure 12A–L

1910 Zacanthoides indicus Reed; pp. 9, 10, pl. 1, fig. 15.
1910 Oryctocephalus cf. reynoldsii Reed, p. 12, pl. 1, figs 22, 23.
1934 Oryctocephalus orientalis Saito (in part), pp. 230, 231, pl. 25, fig. 21, not figs 17–20, 22 = O. orientalis Saito, 1934.
1934 Oryctocephalus kobayashii Saito, pp. 231, 232, pl. 25, figs 23–25.
1944 Oryctocephalus indicus (Reed, 1910). – Kobayashi, p. 33.
1967 Oryctocephalus indicus (Reed, 1910). – Kobayashi, p. 487, figs 7–11a, b.
1974b Oryctocephalus incurvus Lu & Chien (in Lu et al.), p. 101, pl. 39, fig. 8.
1983 Oryctocephalus tongrenensis Lu & Qian, p. 27, pl. 3, figs 4, 5.
1997 Oryctocephalus tongrenensis Lu & Qian, 1983. – Yuan et al., pl. 4, figs 8, 9.
1997 Oryctocephalus indicus (Reed, 1910). – Jell & Hughes, pp. 34, 35, figs 7a–c, pl. 5, figs 16–19.

Figure 12. Oryctocephalus indicus (Reed, 1910), all figures × 7 unless otherwise noted. • A – cranidium, exfoliated, GK B3 0051, × 10, FZX2. • B – cranidium, partially exfoliated, GK B3 0052, FZX12. • C – cranidium, exfoliated, GK B3 0053, FZX14. • D – cranidium, exfoliated, GK B3 0054, FZX19. • E – cranidium, mostly exfoliated, GK B3 0055, FZX8. • F – cranidium, partially exfoliated, GK B3 0056, FZX11. • G – cranidium, mostly exfoliated, with hypostome impression, GK B3 0057, FZX17. • H – cranidium, exfoliated, GK B3 0058, FZX8. • I – shield, not exfoliated, with hypostome impression, latex cast, GK B3 0059, FZX3. • J – cranidium, exfoliated, GK B3 0060, FZX25. • K – partial cranidium, exfoliated, GK B3 0061, FZX6. • L – nearly complete shield, exfoliated, GK B3 0064, × 5, FZX16. • M – thoracic segments, calcite coated, GK B3 0062, FZX13. • N – thoracic segments and pygidium, mostly exfoliated, GK B3 0063, FZX22.

1997 Oryctocephalus indicus (Reed, 1910). – Yuan et al., pl. 4, figs 1–6, 8, 9.
1999 Oryctocephalus indicus (Reed, 1910). – Sundberg et al., pl. 1, fig. 3.
1999 Oryctocephalus indicus (Reed, 1910). – Yuan et al., pl. 1, fig. 6.
1999 Oryctocephalus indicus (Reed, 1910). – Zhao et al., pl. 4, fig. 4.
2001 Oryctocephalus orientalis Saito, 1934. – Yuan et al., pl. 1, fig. 2.
2001 Oryctocephalus (O.) indicus (Reed, 1910). – Yuan et al., pl. 1, fig. 3.
2001a Oryctocephalus indicus (Reed, 1910). – Zhao et al., pl. 1, figs 2, 3.
2001b Oryctocephalus indicus (Reed, 1910). – Zhao et al., pl. 6, figs 1, 8.
2002 Oryctocephalus (Oryctocephalus) indicus indicus (Reed, 1910). – Yuan et al., pp. 100, 101, 237, pl. 17, figs 1–9, pl. 18, figs 1–8, pl. 19, figs 1–4, pl. 20, figs 4–9, pl. 21, fig. 7, pl. 22, fig. 5, pl. 23, figs 1–4, pl. 29, figs 6, 7.
2002 Oryctocephalus (Oryctocephalus) indicus latus (Reed, 1910). – Yuan et al., pp. 101, 102, 237, pl. 20, figs 2, 3, pl. 21, figs 1–3, 5, 6, pl. 22, fig. 2, 7, 8, pl. 28, figs 9, 10.
2002 Oryctocephalus (Oryctocephalus) orientalis Saito, 1934. – Yuan et al., pp. 103, 238, pl. 22, figs 3–6, 9, 10?, pl. 28, figs 6–8.
2003 *Oryctocephalus indicus* (Reed, 1910). – Sundberg & McCollum, pp. 960, 962, pl. 8, figs 9, 12, 13.
2005 *Oryctocephalus indicus* (Reed, 1910). – Lin et al., fig. 3a.
2005a *Oryctocephalus indicus* (Reed, 1910). – Zhao et al., pl. 6, fig. 1, 8.
2005b *Oryctocephalus indicus* (Reed, 1910). – Zhao et al., pl. 3, fig. 4.
2007 *Oryctocephalus indicus* (Reed, 1910). – Zhao et al., figs 5a–e.
2008 *Oryctocephalus indicus* (Reed, 1910). – Zhao et al., pl. 4, fig. 13.
2009 *Oryctocephalus indicus* (Reed). – Luo et al., pl. 9, figs 4–6a.

Material. – 53 cranidia, 6 pygidia, 18 partial or complete shields.

Diagnosis. – See Jell & Hughes (1997) and Sundberg & McCollum (1997).

Remarks. – The differences between *O. (O.) indicus* and *O. (O.) latus* are the result of tectonic distortion with the latter being transversely elongated. They also occur in the same horizons in the Wuliu-Zengjiayan and Miaobanpo sections (Yuan et al. 2002). Specimens of *O. orientalis* Saito, 1934, illustrated by Yuan et al. (2002) fall within the morphological range of *O. indicus*.

Zhao et al. (2006) redefined the morphological range of *O. indicus* based primarily on the material from the Kaili Formation. In this redefinition, *O. indicus* was given a range of 1 to 3 transglabellar furrows. This was probably the primary justification for adding *Oryctocephalus reticulatus* (Lermontova, 1940) to their synonymy list. Korovnikov (2001, personal communication 2010) has also suggested that *O. reticulatus* is synonymous with *O. indicus*. The type material of *Oryctocephalina reticulata* Lermontova, 1940, is unlike subsequent material illustrated as *Oryctocephalus reticulatus* (Lermontova) by Tchernysheva (1962) and Shabanov et al. (2008a, b). The type material has a strongly curved anterior border opposed to the slightly curved anterior border of later illustrated material. The specimens later illustrated as *Oryctocephalus reticulatus* are very similar to *O. indicus*, but differ in having only the S1 transglabellar furrow.

To determine if *O. indicus* and *O. reticulatus* are separate species, a limited study of *O. indicus* from the Kaili Formation and the Emigrant Formation, Nevada, and *O. reticulatus* from the Kuonamka Formation, Siberia was done. All specimens were photographed or viewed under a microscope with low angle light. None of the specimens were whitened due to the humidity while the material was studied at Guizhou University (ammonium chloride sublimate dissolves too quickly in high humidity). Thus the results are biased against observing shallow transglabellar furrows. The study of the *O. indicus* from the Miaobanpo section indicates that the number of transglabellar furrows varies in the specimens. Well-preserved specimens (n = 57) in the mudstone show transglabellar furrows 100% of the cases for the SO and S1 positions; 96% for the S2, and 77% for the S3. In comparison, specimens (n = 68) also preserved in mudstone from a 30 cm interval from Split Mountain section, Nevada (Sundberg & McCollum 2003) show transglabellar furrows 100% of the cases at the SO, S1, and S2 positions and 93% at the S3. Shale specimens (n = 100) from the same Split Mountain 30 cm interval illustrate that compaction has little influence on the number of transglabellar furrows with the furrows present 100% of the cases at the SO, S1, and S2 positions and 98% at the S3. *Oryctocephalus reticulatus* shale specimens (n = 93) from two horizons in the Molodo River section show that the transglabellar furrows are present 100% of the cases at the SO and S1, and 41% at the S2, and only 3% at the S3. Most of the specimens of *O. reticulatus* that show furrows at the S2 and S3 positions have glabellar lengths less than 2.5 mm. The disappearance of the furrows in larger specimens is probably an ontogenetic change. This indicates that *O. reticulatus* is not synonymous with *O. indicus*. Further study is being done on both taxa by Mark Webster (personal communication, 2010) using the material from this preliminary study and Elena Naimark (personal communication, 2010) using the large collections of *O. reticulatus* from Russia.

This variation in the number of transglabellar furrows in the Kaili specimens may be the result of: different species being present; morphological variation in the Chinese population (the same variation is seen in the coeval *O. nyensis* Palmer in Palmer & Halley, 1979 from Nevada – Sundberg & McCollum 1997) and/or tectonic distortion. Many of the specimens from the Kaili Formation are distorted. A specimen from FZX16 (Fig. 12L) is relatively large, and has perhaps only two transglabellar furrows, but the surface of the specimen is weathered. The lowest horizon (FZX25) has two well-preserved cranidia with all three transglabellar furrows (e.g., Fig. 12J).

Occurrence. – *Oryctocephalus indicus* Zone: Kaili Formation, Wuliu Quarry levels FZX1–4, 6–9, 11–25; Wuliu-Zengjiayan and Miaobanpo sections, China; Emigrant Formation, Split Mountain section, Nevada, USA; Monola Formation, California and Nevada, USA; Maozhuangian Stage, Spiti, India; Mansanri Formation, Korea.
Oryctocephalus elongatus? (Zhao, Ahlberg & Zhou, 1997)

Figure 13A

1996 Oryctocephalina yui Zhao et al.; pl. 2, fig. C.
1997 Oryctocephalina elongatus Zhao, Ahlberg & Zhou, pl. 1, figs 1, 5–7.
1997 Oryctocephalina elongatus guizhouensis Zhao, Ahlberg & Zhou, pl. 1, fig. 2.
2001b Oryctocephalina elongata Zhao, Ahlberg & Zhou, 1997, – Zhao et al., pl. 6, fig. 2.
2002 Oryctocephalina (Oryctocephalina) yui Zhao & Yuan (in Yuan et al.), pp. 104, 105, 239, 240, pl. 21, fig. 4, pl. 22, fig. 1, pl. 25, figs 1–8.
2005a Oryctocephalina (Oryctocephalina) yui Zhao & Yuan (in Yuan et al., 2002). – Zhao et al., pl. 6, fig. 2.
2005b Oryctocephalina (Oryctocephalina) yui Zhao & Yuan (in Yuan et al., 2002). – Zhao et al., pl. 3, fig. 7.
2010b Oryctocephalina yui Zhao & Yuan (in Yuan et al., 2002). – Sundberg et al., fig. 1.

Material. – 1 pygidium.

Remarks. – The type species is Oryctocephalina renticulata is presently assigned to Oryctocephalus (Tcherneysheva 1962, Savitsky et al. 1972, Shabanov et al. 2008a, b), thus Oryctocephalina elongatus guizhouensis Zhao, Ahlberg & Zhou, 1997, is transferred to Oryctocephalus.

A single pygidium from FZX4 is questionably assigned to this species due to the relatively flat pygidal spines. The first use of the name Oryctocephalina yui was by Zhao et al. (1996), however, the first description of O. yui was in Yuan et al. (2002). Oryctocephalina elongatus described in 1997 is the senior synonym.

It is possible that Oryctocephalus elongatus is tectonically elongated (sag.) where Oryctocephalus sinicus Zhao & Yuan in Yuan et al., 2002 is tectonically widened (tr.). These two species may represent a single species, but more detailed work is needed to synonymize them. Both species are found in the same horizons in the Wuliu-Zengjiayan section and adjacent horizons in the Miaobanpo section (Yuan et al. 2002).

Occurrence. – Kaili Formation, Oryctocephalus indicus Zone: Wuliu Quarry level FZX1–4, 11, 12, 14, 17; Wuliu-Zengjiayan and Miaobanpo sections, China.

Genus Curvoryctocephalus Lermontova, 1940

Type species. – Curvoryctocephalus frischenfeldi Lermontova, 1940.

Curvoryctocephalus taijiangensis Zhao & Yuan (in Yuan et al., 2002)

Figures 14A–H

2002 Curvoryctocephalus taijiangensis Zhao & Yuan (in Yuan et al.), pp. 112, 244, pl. 26, figs 2–9.
2002 Curvoryctocephalus sinensis Zhao & Yuan (in Yuan et al.), pp. 112, 113, 211, pl. 26, fig. 1.

Material. – 9 cranidia, 2 complete shields.

Remarks. – This species is distinctive with a relatively long (sag.) anterior border and parallel to slightly expanding glabellar with undulatory glabellar furrows (when not distorted by compaction). Only two species have been defined in this genus, C. taijiangensis and C. sinensis Zhao & Yuan in Yuan et al., 2002. Based on a limited number of samples from this study and those illustrated by Yuan et al. (2002), these two species are probably conspecific. Curvoryctocephalus sinensis longer (sag.) anterior border is probably due to its larger size specimen than those of C. taijiangensis. This increase in anterior border length is probably due to ontogenetic variation. Both C. taijiangensis and C. sinensis are reported from the same stratigraphic horizons in the Miaobanpo section (Yuan et al. 2002).

Occurrence. – Kaili Formation, Oryctocephalus indicus Zone: Wuliu Quarry levels FZX1–4, 11, 12, 14, 17; Wuliu-Zengjiayan and Miaobanpo sections, China.

Genus Curvoryctocephalus Zhao & Yuan (in Yuan et al., 2002)

Type species. – Curvoryctocephalus taijiangensis Zhao & Yuan (in Yuan et al., 2002).

1997 Oryctocephalus sp. Yuan et al.; pl. 3, fig. 5.
2001a Oryctocephalus guizhouensis Zhao & Yuan (in Yuan et al., 2002). – Zhao et al., pl. 1, figs 5, 6.
2002 Oryctocephalus guizhouensis Zhao & Yuan (in Yuan et al.); pp. 96, 235, pl. 15, figs 4–7, pl. 16, figs 2–7.
2007 Oryctocephalus guizhouensis Zhao & Yuan (in Yuan et al., 2002). – Zhao et al., figs 4A, B.

Material. – 9 cranidia, 1 pygidium, 1 complete shield.

Remarks. – Distortion causes difficulty in separating cranidia of Protoryctocephalus wuxunensis, Oryctocephalus guizhouensis and Oryctocephalites taijiangensis...
Zhao & Yuan in Yuan et al., 2002. The palpebral lobes of *Oryctocephalops guizhouensis* are relatively shorter than the other two species. The pygidia of the latter two species are better defined from the thorax and with pygidial and thoracic spines about half the length of *Oryctocephalites taijiangensis*. The status of *Oryctocephalops ellipsoidalis* Zhao & Yuan in Yuan et al., 2002, cannot be established due to only one specimen illustrated by Yuan et al. (2002, pl. 16, fig. 1) and the limited number of specimens of *O. guizhouensis* found during this study and illustrated by Yuan et al. (2002, pl. 15, figs 4–7, pl. 16, figs 2–7).

Occurrence. – Kaili Formation, Ovatoryctocara cf. granulata-Bathynotus holopygus Zone: Wuliu Quarry levels FZX32, 36; Wuliu-Zengjiayan section, China.

Genus Protoryctocephalus Zhou (in Lu et al., 1974b)

Type species. – *Protoryctocephalus wuxunensis* Zhou (in Lu et al., 1974b).

Protoryctocephalus wuxunensis Zhou (in Lu et al., 1974b)

Figure 13F–M

1974a Protoryctocephalus wuxunensis Zhou (in Lu et al.), p. 93, pl. 3, fig. 4.
1974b Protoryctocephalus wuxunensis Zhou (in Lu et al.), p. 95, pl. 36, fig. 11.
1978 Protoryctocephalus wuxunensis Zhou (in Lu et al.), p. 440, pl. 156, fig. 1.
1980 Protoryctocephalus wuxunensis Zhou (in Lu et al.), p. 270, pl. 91, fig. 1.
1997 Oryctocephalops sp. in Yuan et al., pl. 3, figs 1, 2.
2001 Protoryctocephalus wuxunensis Zhou (in Lu et al., 1974b), – Yuan et al., pl. 1, fig. 6.
2002 Protoryctocephalus wuxunensis Zhou (in Lu et al., 1974b), – Yuan et al., pp. 94, 95, 234, pl. 14, figs 1, 2.
2002 Protoryctocephalus elongatus Zhao & Yuan (in Yuan et al.), pp. 95, 96, 234, pl. 14, fig. 8, pl. 16, figs 8, 9.

Material. – 22 cranidia, 21 pygidia, 10 complete or partial shields.

Emended diagnosis. – Protoryctocephalus with cranidium with SO and S1 transglobellar furrow.

Remarks. – The biggest difficulty in the specific identification of this taxon is the compaction of the frontal lobe as the result of compression onto the hypostoma. *Protoryctocephalus wuxunensis* is probably the same species as *P. elongatus* Zhao & Yuan in Yuan et al., 2002, with the latter being tectonically stretched (Fig. 13K, L vs. Fig. 13G).

Protoryctocephalus balangensis Zhao & Yuan (in Yuan et al., 2002)

Figure 13N

2002 Protoryctocephalus balangensis Zhao & Yuan (in Yuan et al.); pp. 94, 95, 234, pl. 14, figs 3–7, pl. 15, figs 1, 2.

Material. – 1 complete shield.

Remarks. – The specimen from FZX45 clearly show three transglobellar furrows and is assigned to this species.

Occurrence. – Kaili Formation, Ovatoryctocara cf. granulata-Bathynotus holopygus Zone: Wuliu Quarry level FZX45; Wuliu-Zengjiayan and Miaobanpo sections, China.

Subfamily Oryctocarinae Hupé, 1953

Genus Euarthricocephalus Ju, 1983

Type species. – *Euarthricocephalus laterilobatus* Ju, 1983.

Euarthricocephalus taijiangensis Zhou & Yuan (in Yuan et al., 2002)

Figure 15F–L

1997 Euarthricocephalus sp. 1, Yuan et al., pl. 3, figs 9, 10.
1999 Microryctocara sp., Sundberg et al., pl. 1 fig. 2.
2001b Microryctocara sp., Zhao et al., pl. 6, figs 5.
2002 Euarthricocephalus (Euarthricocephalus) taijiangensis Zhao & Yuan (in Yuan et al.); pp. 118, 248, pl. 33, figs 2, 3, pl. 34, figs 2–9, pl. 35, figs 2, 3.
2005a Euarthricocephalus taijiangensis Zhao & Yuan (in Yuan et al., 2002). – Zhao et al., pl. 6, fig. 5.
2005b Euarthricocephalus taijiangensis Zhao & Yuan (in Yuan et al., 2002). – Zhao et al., pl. 3, fig. 10.

Material. – 11 cranidia, 6 pygidia, 8 partial or complete shields.

Remarks. – Euarthricocephalus taijiangensis specimens are better preserved and more numerous than the similar E. typicalis Zhao & Yuan in Yuan et al., 2002. The illustrated specimen of E. typicalis (Yuan et al. 2002, pl. 34, fig. 1) is distorted and relatively small and illustrates three transglabellar furrows and more slit shaped glabellar pits. The specimens of E. taijiangensis from the Wuliu Quarry do not have the slit shaped pits or three transglabellar furrows. In addition, E. typicalis occurs in the Ovatoryctocara cf. granulata-Bathynotus holopygus Zone in the Wuliu-Zengjiayan section (Yuan et al. 2002).

Euarthricocephalus (Microryctocara) similis Zhao & Yuan in Yuan et al., 2002 and Euarthricocephalus (Euarthricocephalus) ligulatus Zhao & Yuan in Yuan...
et al., 2002 differ from *E. taijiangensis* in having three transglabellar furrows and slit shaped glabellar pits.

Euarthricocephalus ligulatus has a more parallel sided glabella with stronger developed longitudinal furrows and probably represents a different species. This species co-occurs in the same horizons as *E. taijiangensis* in the Miaobanpo section (Yuan et al., 2002).

Occurrence. – Kaili Formation, *Oryctocephalus indicus* Zone: Wuliu Quarry levels FZX1–4, 7, 8, 11–14, 17, 18, 21; Wuliu-Zengjiayan and Miaobanpo sections, China.

Genus Metabalangia Qian & Yuan (in Zhang et al., 1980)

Type species. – *Metabalangia yupingensis* Qian & Yuan (in Zhang et al., 1980).

Metabalangia yupingensis Qian & Yuan (in Zhang et al., 1980)

Figure 13D, E

1980 *Metabalangia yupingensis* Qian & Yuan (in Zhang et al.); p. 283, pl. 96, figs 9, 10.

2002 *Metabalangia transversa* Zhao & Yuan (in Yuan et al.), pp. 128, 253, pl. 36, figs 1–12, pl. 38, figs 9, 10.

2005a *Metabalangia yupingensis* Qian & Yuan (in Zhang et al., 1980). – Zhao et al., pl. 7, fig. 1.

2005b *Metabalangia yupingensis* Qian & Yuan (in Zhang et al., 1980). – Zhao et al., pl. 3, fig. 6.

2010b *Oryctocephaloides convexus* Zhao & Yuan (in Yuan et al., 2002). – Sundberg et al., fig. 1.

Material. – 2 cranidia, 1 complete shield.

Diagnosis. – See the emended generic diagnosis of Yuan et al. (2002, p. 252). The only two species named for the genus are here synonymized.

Remarks. – The poorly preserved complete shield has only 3 to 4 thoracic segments. *Metabalangia transversa* Zhao & Yuan in Yuan et al., 2002 (Fig. 13D) is very similar to *M. yupingensis*, but differs in having 4 to 5 thoracic segments. The number of thoracic segments may be an ontogenetic change. The other differences cited by Yuan et al. (2002) do not appear to be consistent and may be the result of deformation. The two species occur together in the same
Occurrence. – Kaili Formation, Oryctocephalus indicus Zone: Wuliu Quarry level FZX10, 19, 22; Wuliu-Zengjiayan and Miaobanpo sections, China.

Material. – 1 cranidium.

Genus Metarthricocephalus Zhao & Yuan (in Yuan et al., 2002)

Type species. – Metarthricocephalus spinosus Zhao & Yuan (in Yuan et al., 2002).

Metarthricocephalus spinosus Zhao & Yuan (in Yuan et al., 2002)

Figure 13O

2001b Oryctocephalid in Zhao et al., pl. 6, fig. 3.
2002 Metarthricocephalus spinosus Zhao & Yuan (in Yuan et al.); pp. 115, 246, pl. 28, fig. 1, pl. 29, fig. 8, pl. 32, figs 1–9, pl. 33, fig. 1.
2005a Metarthricocephalus spinosus Zhao & Yuan (in Yuan et al., 2002). – Zhao et al., pl. 6, fig. 3.
2005b Metarthricocephalus spinosus Zhao & Yuan (in Yuan et al., 2002). – Zhao et al., pl. 3, fig. 8.

Material. – 1 cranidium.

Occurrence. – Kaili Formation, Oryctocephalus indicus Zone: Wuliu Quarry level FZX8; Wuliu-Zengjiayan and Jinyinshan sections, China.

Genus Ovatoryctocara Tchernysheva, 1962

Type species. – Ovatoryctocara ovata Tchernysheva, 1960.

Ovatoryctocara cf. granulata Tchernysheva, 1962

Figure 15A–E

2001a Ovatoryctocara granulata Tchernysheva, 1962. – Zhao et al., pl. 1, figs 8, 9.
2001 Ovatoryctocara granulata Tchernysheva, 1962. – Yuan et al., pl. 1, fig. 5.
2002 Ovatoryctocara granulata Tchernysheva, 1962. – Yuan et al., pp. 125, 252, pl. 29, figs 4, 5.
2002 ?Ovatoryctocara sp. Yuan et al., pp. 125, 252, pl. 31, figs 7, 8.
2002 Ovatoryctocara sp. Yuan et al., pp. 125, 252, pl. 31, fig. 9.
2002 not Ovatoryctocara granulata Tchernysheva, 1962. – Yuan et al., pp. 125, 252, pl. 31, figs 10–13 = Ovatoryctocara yaxiensis Yuan et al., 2009.
2007 Ovatoryctocara granulata Tchernysheva, 1962. – Zhao et al., fig. 4I.
2009 Ovatoryctocara granulata Tchernysheva, 1962. – Yuan et al., p. 216, figs 2a, b, 3c.

Material. – 1 cranidium, 3 pygidia, 8 complete shields.

Remarks. – Some specimens previously reported as Ovatoryctocara granulata Tchernysheva, 1962 from the Kaili Formation (Yuan et al., 2001, 2002, 2009; Zhao et al., 2001a, 2007) differ from the type material (Naimark et al. 2011) in having a longer (exsag.) posterior area of the fixigena, shorter (exsag.) palpebral lobe placed more anteriorly, longitudinal glabellar furrows connecting the glabellar furrows, and a more prominent 53 transglabellar furrow. As a result, the specimens previously reported from the “Ovatoryctocara granulata-Bathynotus holopygus Zone” are assigned to O. cf. granulata.

Specimens of Ovatoryctocara spp. illustrated by Yuan et al. (1997, pl. 3, figs 11, 12; re-illustrated in Yuan et al. 2002, pl. 31, figs 7, 8) are either too poorly preserved or too small to accurately assign to O. cf. granulata. The specimen illustrated by Yuan et al. (2002, pl. 31, fig. 9) can be assigned to this species.

Ovatoryctocara yaxiensis Yuan et al., 2009, from the Aoxi Formation differs from O. cf. granulata primarily in it more posterior placed palpebral lobes. The glabellar shape and presence of transglabellar furrows are also present in O. cf. granulata specimens from the Kaili Formation (Fig. 15C). Ovatoryctocara cf. granulata differs from O. doliformis Shabanov & Korovnikov in Shabanov et al., 2008b, in having smaller granuals on the cranidia, longitudinal furrows connecting the glabellar furrows, narrower (tr.) width of the librigena between the palpebral lobes and glabella, wider pygidial axis, and fewer pygidial segments.

Occurrence. – Kaili Formation, Ovatoryctocara cf. granulata-Bathynotus holopygus Zone: Wuliu Quarry levels FZX29, 31, 34, 36, 37, 42, 43, 45; Wuliu-Zengjiayan and Miaobanpo sections, China.

Remarks. – Revision of the ptychopariid families is out of the scope of this paper, thus the species are listed alphabetically.

Genus Balangcunaspis Yuan & Zhao (in Yuan et al., 1997)

Type species. – Paraantagmus (Balangcunaspis) subcylindricus Yuan & Zhao (in Yuan et al., 1997).
Remarks. – The two subgenera assigned to this genus by Yuan & Zhao (in Yuan et al., 1997, 2002), *Balangcunaspis* and *Taijiangia*, are distinctly different and should be considered different genera. *Balangcunaspis* has palpebral lobes that are longer, short (exsag.) posterior areas of the fixigena and pygidium with the anterolateral margins adjacent to the posterior end of the axis. *Taijiangia* Yuan & Zhao (in Yuan et al., 2002) has palpebral lobes that are shorter, a posterior area of the fixigena that is longer (exsag.), and the pygidial anterolateral margins adjacent to the anterior of the axis. *Balangcunaspis* is found in the *Ovatoryctocara cf. granulata-Bathynotus holoptygus* Zone at the Wuliu-Zengjiayan section, where *Taijiangia* is found in the basal beds of the overlying *Oryctocephalus indicus* Zone at the Miaobanpo section (Yuan et al. 2002).

Balangcunaspis subcylindricus Yuan & Zhao (in Yuan et al., 1997)

Figure 16A–P

1997 Paraantagmus (*Balangcunaspis*) subcylindricus Yuan & Zhao (in Yuan et al.); p. 508, pl. 5, figs 6, 7.
1997 Balangcunaspis (Balangcunaspis) transversus Yuan & Zhao (in Yuan et al., 1997), p. 508, pl. 5, figs 4, 5.
1999 Balangcunaspis transversus Yuan & Zhao (in Yuan et al., 1997). – Yuan et al., p. 27, pl. 1, fig. 1.
2002 Balangcunaspis (Balangcunaspis) subcylindricus Yuan & Zhao (in Yuan et al., 1997). – Yuan et al., pp. 148, 149, 262, pl. 43, figs 7–12.
2002 Balangcunaspis (Balangcunaspis) transversus Yuan & Zhao (in Yuan et al., 1997). – Yuan et al., pp. 149, 149, 262, pl. 43, figs 7–12.
2010b Balangcunaspis transversus Yuan & Zhao (in Yuan et al., 1997). – Sundberg et al., fig. 1.

Material. – 147 cranidia, 14 pygidia, 8 partial or complete shields.

Emended diagnosis. – Balangcunaspis with palpebral lobes nearly one and a half as long as posterior area of the fixigena (150%); ocular ridges directed moderately postero-laterally, of moderate strength; glabellar length approximately 80–85% of cranidial length; preglabellar field length nearly absent in front of glabella; anterior border slightly convex, flat to upturned; facial sutures slightly divergent anterior of palpebral lobes, very strongly divergent (approx. 90°) from the posterior end of the palpebral lobes.

Remarks. – The difference between B. subcylindricus and B. transversus Yuan & Zhao in Yuan et al., 1997, can easily be explained due to specimen distortion. Balangcunaspis subcylindricus is sagittally elongated (e.g., Fig. 16E–G) whereas B. transversus is transversely elongated (e.g., Fig. 16B–D). Both species have been reported to occur together in the Wuliu-Zengjiayan section (Yuan et al. 2002).
Cranidia with a relatively small frontal area (Fig. 16J, L, M) and at times almost no preglabellar field (Fig. 16I, K) and long palpebral lobes belong only to a limited number of genera from the Kaili Formation, *i.e.*, *Balangcunaspis* Yuan & Zhao in Yuan et al., 1997, *Nangaoia* Zhou in Lu et al., 1974a, and *Parashuiyuella* Yuan & Zhao in Yuan et al., 1997. In both *Nangaoia* and *Parashuiyuella* the fixigena at the center of the palpebral lobes is less than half the width of the glabella, where as *Balangcunaspis* has the width nearly equal or slightly greater than half of the width of the glabella. The glabella of *Balangcunaspis* subcylindricus is more quadrate than tapered, although this is a dangerous character to use based on the specimen distortion. *Balangcunaspis subcylindricus* is represented by mostly small specimens.

Both *B. subcylindricus* and *B. transverses* have been recorded only from in the *Ovatoryctocarida* cf. *granulata*-*Bathynotus holopygus* by Zhao et al. (2005a, p. 66); but also from the *Oryctocephalus indicus* Zone by Zhao et al. (2007, fig. 1).

Genus Danzhaiaspis Yuan & Zhou (in Zhang et al., 1980)

Type species. — *Danzhaiaspis quadratus* Yuan & Zhou (in Zhang et al., 1980).

Danzhaiaspis quadratus Yuan & Zhou (in Zhang et al., 1980)

Figure 17A–O

1980 *Danzhaiaspis latilimbatus* Yuan (in Zhang et al.), p. 356, pl. 125, fig. 6.

1980 *Danzhaiaspis brevicus* Yuan (in Zhang et al.), pp. 356, 357, pl. 125, fig. 7–9.

1999 *Danzhaiaspis quadratus* Yuan & Zhou (in Zhang et al., 1980). — Yuan et al., pl. 1, fig. 8.

2002 *Danzhaiaspis quadratus* Yuan & Zhou (in Zhang et al., 1980). — Yuan et al., pp. 202, 281, pl. 64, figs 1–8, pl. 67, figs 7–9.

2002 *Danzhaiaspis elongatus* Yuan & Zhao (in Yuan et al.), pp. 202, 203, 281, pl. 54, figs 11, pl. 61, figs 3–8, pl. 65, fig. 10, pl. 67, fig. 3.

2002 *Danzhaiaspis brevis* Yuan (in Zhang et al.), pp. 203, 204, 281, pl. 64, fig. 4.

2002 *Danzhaiaspis rarus* Yuan & Zhao (in Yuan et al.), pp. 204, 281, 282, pl. 61, fig. 9.

2010b *Kutsingocephalus* qianmanensis Yuan & Zhou (in Yuan et al., 2002). — Sundberg et al., fig. 1.

not 2010b *Danzhaiaspis quadratus* Yuan & Zhou (in Zhang et al., 1980). — Sundberg et al., fig. 1 = *Miabanpoia angustilimbata* (Yuan in Zhang et al., 1980).

Material. — 57 cranidia, 3 pygidia, 4 partial or complete shields.

Emended diagnosis. — *Danzhaiaspis* with the palpebral lobes longer than the posterior portion of the fixigena (150%); ocular ridges slightly to moderately directed posterior-laterally; glabellar length approximately 65–70% of cranidial length; fixigena narrower than glabella at center of palpebral lobes; anterior border approximately 100% of preglabellar field, flat to very slightly convex, slightly to moderately upturned; facial sutures moderately divergent anterior of palpebral lobes, strongly divergent (approx. 90°) from the posterior end of palpebral lobes. Pygidium transversely elongated with anterior lateral corners located adjacent to nearly the end of the axis, and well developed border widening laterally. Fine granules on the glabella and librigena occur on the latex casts of the better-preserved specimens (Fig. 17F, K).

Remarks. — This species is difficult to identify due to its general cranidial characteristics similar to *Xingrenaspis xingrenensis*. *Danzhaiaspis quadratus* differs in the length ratio of the preglabellar area and the anterior border being nearly equal as opposed to the preglabellar area being twice as long; the anterior border is upturned to level, possibly as the result of compaction; and the palpebral lobe length is nearly 150% the length of the posterior area of the fixigena.

The differences of the various species included to *D. quadratus* are relatively minor and can be contributed to tectonic distortion. In addition, stratigraphic evidence supporting the synonymy of *D. quadratus* and *D. elongatus* Yuan & Zhao in *Yuan et al.*, 2002, is that the two species occur together in the Miaobanpo section (Yuan et al. 2002). In the Wuliu-Zengjiayan section, the different species occur at different levels, one directly above the other in the ascending order of *D. quadratus*, *D. brevis* Yuan in *Zhang et al.*, 1980, *D. elongatus* and *D. rarus* Yuan & Zhao in *Yuan et al.*, 2002 (Yuan et al. 2002).

The cranidia of this species is very similar to compressed specimens of *M. angustilimbata*, but differs in a more latterly projected ocular ridge, which is difficult to determine in the deformed specimens from the quarry. The
pygidium is the most diagnostic character to distinguish the two species. *Danzhaiaspis quadratus* has a wide relatively flat pygidal margin that widens significantly laterally and a similar doublure. A shield from FZX20 (Fig. 17F) has a pygidium that indicates that this specimen is *Danzhaiaspis quadratus* and not *M. angustilimbata* even though the cranidia are very similar. This indicates the importance of having associated sclerites in addition to cranidia.

Occurrence. – Kaili Formation, *Oryctocephalus indicus*
Zone: Wuliu Quarry levels FZX1–6, 9–17, 19–22, 24, 25; Wuliu-Zengjiayan and Miaobanpo sections, China.

Genus *Miabanpoia* Yuan & Zhao (in Yuan et al., 2002)

Type species. – *Miabanpoia typica* Yuan & Zhao (in Yuan et al., 2002) [= *Miabanpoia angustilimbata* (Yuan in Zhang et al., 1980)].

Remarks. – The differences between *M. typica*, *M. triangulata* Yuan & Zhao in Yuan et al., 2002, and *M. angustilimbata* are minor and could easily be due to tectonic distortion; the three specimens occur together in the Miaobanpo section. *Miabanpoia angustilimbata* has priority.

Miabanpoia angustilimbata (Yuan in Zhang et al., 1980)

Figure 18A–V

- 1980 *Meitiania angustilimbata* Yuan (in Zhang et al.); p. 349, pl. 119, figs 21, 22.
- 2002 *Miabanpoia typica* Yuan & Zhao (in Yuan et al.), pp. 205, 283, pl. 68, fig. 7.

2002 Miabanpoia triangulata Yuan & Zhao (in Yuan et al.), pp. 206, 207, 283, pl. 63, fig. 11, pl. 65, figs 5–7, pl. 66, figs 5–10, pl. 67, figs 5, 6, pl. 68, figs 2–6.

Material. – 348 cranidia, 6 pygidia, 5 partial or complete shields.

Emended diagnosis. – Miabanpoia with palpebral lobes nearly twice to twice as long as the posterior area of the fixigena (180–200%); ocular ridges moderately strong posterior-laterally; glabellar length approximately 68–73% of cranidal length; anterior border approximately 100–150% of preglabellar field; anterior border slightly convex to flat (could be influenced by compaction), strongly upturned, slightly tapering laterally; facial sutures moderately divergent anterior of palpebral lobes, very strongly divergent (approx. 90°) from the posterior end of palpebral lobes. Pygidium transversely elongated with anterior lateral corners located near the mid-length of the pygidium; doublure narrow at posterior margin, nearly uniform to the anterior margin; pleural furrows prominent, interpleural furrows moderately developed; axis with 4 rings, width about ½ pleural field width, rounded terminal piece that nearly reaches the posterior border. Granular exoskeleton is present in latex casts (Fig. 18M).

Remarks. – The strongly upturned anterior border is one of the most distinct features of this species, along with the palpebral lobes being nearly twice as long as the posterior area of the fixigena. The difference in the pygidium is the nearly twice as long as the posterior area of the fixigena. The most distinct features of this species, along with the palpebral lobes being nearly twice as long as the posterior area of the fixigena.

Genus Nangaoia Zhou (in Lu et al., 1974a)

Type species. – Nangaoia megaceps Zhou (in Lu et al., 1974a).

Remarks. – Three subgenera have been recognized in Nangaoia (Yuan et al. 1997), Nangaoia, Shilengshuia Zhou & Yin in Yin et al., 1978, and Gedongaspis Yuan & Zhao in Yuan et al., 1997. Yuan et al. (2002, p. 263) elevated Gedongaspis to generic level. Gedongaspis granulosa Yuan & Zhao in Yuan et al., 1997 (type species) and G. oblonga Yuan & Zhao in Yuan et al., 1997, occur together (Yuan et al. 2002) implies one species with a variation in the density of granules. However, the pygidia of the two species are different in the strength of the interpleural furrows, border width and location of the anterior lateral corners relative to the axis. Nangaoia (Nangaoia) triangularis Yuan & Zhao in Yuan et al., 2002 (pl. 42, figs 3, 4), have a pygidium similar to Xingrenaspis with a wide border narrowing posterior of the axis. The post cranial material of Nangaoia (Shilengshuia) is unknown, thus a comparison cannot be made; however, the cranial features of this subgenus differs from N. (Nangaoia) in having a more tapered glabella, narrower (tr.) fixigena and convergent anterior branches of the facial sutures. However, N. (N.) triangularis (Yuan et al. 2002, pl. 42, fig. 2) illustrates the same features, but with wider fixigena.

Subgenus Nangaoia (Shilengshuia) Zhou & Yin (in Yin & Lee, 1978)

Type species. – Shilengshuia jiubaensis Zhou & Yin (in Yin & Lee, 1978).

Nangaoia (Shilengshuia) conica Yuan & Zhao (in Yuan et al., 2002)

Figure 19A–I, J?

2002 Nangaoia (Shilengshuia) conica Yuan & Zhao (in Yuan et al.), pp. 147, 261, pl. 42, figs 5, 6, 8–10.

2010b Gedongaspis granulosa Yuan & Zhao (in Yuan et al., 1997). – Sundberg et al., fig. 1.

2010b Nangaoia triangularis Yuan & Zhao (in Yuan et al., 2002). – Sundberg et al., fig. 1.

Material. – 35 cranidia.

Emended diagnosis. – Nangaoia with relatively large glabella extending nearly to the anterior border, palpebral lobes of moderate length, narrow fixigenae, scattered...
granules on the cranidia, and anterior border that is convex, upturned and slightly curved.

Remarks. – *Nangaoia (Shilengshuia) conica* Yuan & Zhao in Yuan et al., 2002, appears to be quite different, especially in the curvature of the anterior border and the tapering of the glabella. However, it is unsure if the *N. (N.) triangularis* form may be more the result of tectonic deformation given that almost all specimens looked laterally compressed. It is possible that *N. (S.) conica* in Yuan et al., 2002, figs 8, 10 could be a highly distorted specimen of *N. (N.) triangularis*. The specimens of *N. (N.) triangularis* are questionably assigned to *N. (S.) conica* until more data on the two taxa can be accumulated to show that they are different taxa.

A single large specimen (Fig. 19J, level FZX9) illustrates a more tapered glabella, presence of a preglabellar area, more convergent anterior portion of the facial suture, and an anterior border that is longer (sag.) and more tapered than in the other specimens. However, these features are also present in some specimens of *N. (S.) conica* (Yuan et al., 2002, pl. 42, figs 8, 10). This larger specimen is questionably assigned to the species.

Occurrence. – Kaili Formation, *Oryctocephalus indicus* Zone: Wuliu Quarry levels FZX1, 3, 4, 7, 8, 10, 13–16, 18–22, 28, 29; Wuliu-Zengjiayan and Miaobanpo sections, China.

Genus *Nangaops* Yuan & Sun (in Zhang et al., 1980)

Type species. – *Nangaops elongatus* Yuan & Sun (in Zhang et al., 1980), “Middle” Cambrian, Chongyang, Hubei, China; [= to *Elrathina danzhaiensis* Zhou (in Lu et al., 1974a)].

Remarks. – According to Yuan et al. (2002), the genus was originally named in a manuscript Yuan & Sun (M.S. 1978). However, the first published description of *Nangaops* is in Zhang et al. (1980, pp. 317, 436). If the synonymy presented below is correct, *N. elongatus* is a junior synonym of *N. danzhaiensis*.
Nangaops danzhaiensis (Zhou in Lu et al., 1974a)
Figure 20A–X

1974a Elrathina danzhaiensis Zhou (in Lu et al.); p. 99, pl. 38, fig. 11.
1980 Nangaops brevicus Yuan & Sun (in Zhang et al.), p. 319, fig. 89, pl. 106, figs 8–11.
1980 Nangaops rara Yuan (in Zhang et al.), pp. 319, 320, pl. 106, fig. 12.
1983 Nangaops yuanyanensis Ju, p. 84, pl. 27, fig. 3.
1999 Nangaops elongatus Yuan & Sun (in Zhang et al., 1980). – Yuan et al., pl. 1, fig. 2.
2002 Nangaops elongatus Yuan & Sun (in Zhang et al., 1980). – Yuan et al., p. 193, pl. 60, figs 9–11.
2002 Nangaops brevis Yuan & Sun (in Zhang et al., 1980). – Yuan et al., p. 194, pl. 60, figs 2–4, 6–8.
2002 Nangaops danzhaiensis (Zhou in Lu et al., 1974a). – Yuan et al., p. 194, pl. 60, figs 1, 5.
2010b Nangaops brevis Yuan & Sun (in Zhang et al., 1980). – Sundberg et al., fig. 1.
2010b Eosoptychoparia conica Yuan (in Zhang et al., 1980). – Sundberg et al., fig. 1.

Material. – 130 cranidia, 36 pygidia, 11 partial or complete shields.

Emended diagnosis. – Nangaops with short palpebral lobes; ocular ridges that project at nearly 90° from the glabella; posterior portion of the fixigena exsagittally long; preglabellar area about 25% of cranidial length; convergent anterior branches of the facial sutures, divergent posterior branches of the facial sutures at nearly 45°; and anterior border relatively short (sag.) and slightly convex.

Remarks. – The type specimens of Nangaops elongatus, type species, are clearly tectonically distorted, being elongated sagittally. The distortion of the specimens from the Wuliu Quarry falls within the range of the previously named species of Nangaops. Nangaops brevis is transversely elongated, N. danzhaiensis appears to have proper dimensions, N. nangaoensis has been sagittally elongated and N. rara Yuan in Zhang et al., 1980, and N. latilimbatus are similar to N. brevis. Whereas most of the species have a tapering glabella, N. elongatus has a more parallel sided glabella; this again can be the result of the tectonic stretching. In addition, Zhao et al. (2001a, fig. 4; 2005a, fig. 7) list N. brevicus (= N. brevis), N. danzhaiensis, N. latilimbatus, and/or N. nangaoensis from the same horizons within 3 meters below the FAD of Oryctotecephalus indicus. These co-occurrences suggest that the different species are just different tectonic distortions and/or morphological variations of a single species.

Sundberg et al. (2010a, b) assigned several specimens of N. danzhaiensis (listed as N. brevis) to Eosoptychoparia conica Yuan (in Zhang et al., 1980), because of the elongated cranidia and more parallel-sided glabella. However, based on the anterior border, convergent anterior facial sutures, short palpebral lobes, and lack of a pygidium similar to E. conica, these specimens are regarded here as sagittally elongated specimens of N. danzhaiensis. These specimens were also found in the same horizons as N. danzhaiensis.

Occurrence. – Kaili Formation, Ovatortycocara cf. granulata-Bathynotus holopygus Zone: Wuliu Quarry levels FZX29–46; Wuliu-Zengjiayan and Miaobanpo sections, China.

Genus Probowmania Kobayashi, 1935

Type species. – Ptychoparia ligea Walcott, 1905.

Remarks. – Yuan et al. (1997, 2002) placed three genera into subgenera of Probowmania, Probowmania, Mufushania Lin, 1965, and Gunnia Gatehouse, 1968. Peng et al. (2009, pp. 49, 59) discussed the subgenera Gunnia and Mufushania and re-elevated them to generic rank. The differences between Probowmania and Mufushania listed by Peng et al. (2001) are inconsistent in the samples from the Wuliu Quarry and those illustrated by Yuan et al. (1997, 2002). Thus Probowmania is retained and Mufushania is considered a junior synonym.

Probowmania nankingensis Lin, 1965

Figure 21A–T

1965 Probowmania (Mufushania) nankingensis Lin; pp. 554, 555, 558, 559, pl. 1, fig. 6–11.
Remarks. – This species has a relatively truncate glabella with long palpebral lobes and strong ocular ridges directed nearly straight outwards. It is most similar to *Parashuiyella* Yuan & Zhao in *Yuan et al.*, 1997, but differs in having a narrower anterior border, more segments in the pygidium, wider preglabellar area and wider fixigena. This species is also similar to *Kaotaia* Lu 1962, but differs in its stronger ocular ridges, longer palpebral lobes, elongated, less rectangular pygidium, less pronounced doublure on the thoracic segments and pygidium, and less tapered shield. Specimens of *Kaotaia magna* (Lu, 1945) are similar, but the anterior border is less convex and possibly upturned. *Kaotaia* typically includes a medial swelling in the preglabellar field, but is not always apparent on some specimens. Some specimens of *Probowmania* also have these swellings (Fig. 21F, K, P), but it cannot be established if they are the result of tectonic distortion and/or compaction.

Illustrated specimens of *Probowmania (Probowmania) balangensis* Yuan & Zhao in *Yuan et al.*, 1997 (pl. 6, fig. 2, Yuan et al. 2002, pl. 44, figs 1–6, 11) fall within the morphological range of the species found in the quarry section and the specimens of *Probowmania (Mufushania) nankingensis* illustrated by Peng et al. (2001, pl. 1, figs 1–7, pl. 2, figs 1–3, 5–10) and Yuan et al. (2002, pl. 44, figs 1–10). These two species also occur in the same horizons in the Wuliu-Zengjiayan section (*Yuan et al.* 2002).

The type specimens of *Psychoparia? himalaica* Reed (Lu, 1962, illustrated as *Shantungaspis himalaica* (Reed) in *Jell & Hughes* 1997, pl. 11, figs 1–4, fig. 4 is the lectotype), are similar to *Probowmania balangensis*, but differ in the more rectangular glabella. If this shape of the glabella is reliable in the tectonically distorted specimens, then *S. himalaica* is a different species. Peng et al. (2009) placed *S. himalaica* into *Douposiella* *Lu & Chang in Lu et al.*, 1974a. If the specimens preserved in limestone illustrated by Peng...
et al. (2009, fig. 29) are conspecific, then Douposiella himalaica is a distinct genus from Probowmania in its glabellar outline, rounded termination of the posterior area of the fixigena, and narrow (tr.) genal area of the librigena. However, the specimens of Probowmania himalaica illustrated by Yuan et al. (2002, pl. 11, figs 12, 13, pl. 45, figs 2.3) could be tectonically stretched representatives of P. nankinensis and are thus included into this species.

Probowmania (Gunnia?) quadrata Yuan & Zhou in Zhang et al., 1980, illustrated by Yuan et al. (2002) is questionable assigned to P. nankinensis. It has a wider fixigena and more quadrate glabella, although these could be the result of tectonic distortion. Probowmania quadrata occurs stratigraphically above P. nankinensis in the upper portion of the O. indicus Zone (= O. orientalis Zone of Yuan et al. 2002). Xingrenaspis quadratus Yuan & Zhou in Zhang et al., 1980 (pl. 109, figs 14–19) has upturned anterior borders, narrower palpebral lobes, and weaker ocular ridges and is not considered conspecific with P. nankinensis.

Occurrence. – Kaili Formation, Ovatoryctocara cf. granulata-Bathynotus holopygus Zone: Wuliu Quarry levels FZX31, 32, 35, 36, 40, 41, 43–46; Wuliu-Zengjiayan and Miaobanpo sections, China.

Genus Xingrenaspis Yuan & Zhou (in Zhang et al., 1980)

Type species. – Xingrenaspis xingrenensis Yuan & Zhou (in Zhang et al., 1980).

Remarks. – Peng et al. (2009, pp. 63–65) synonymized the type species with X. hoboi (Resser & Endo 1937). This reassignment of the type species to X. hoboi we consider an error, see discussion below.

Xingrenaspis xingrenensis Yuan & Zhou (in Zhang et al., 1980)

Figure 22A–Y

1980 Xingrenaspis xingrenensis Yuan & Zhou (in Zhang et al.), pp. 330, 331, fig. 94, pl. 108, figs 19, 20, pl. 109, figs 1–12, pl. 110, figs 5.6.

1980 Xingrenaspis quadratus Yuan & Zhou (in Zhang et al.), p. 331, pl. 109, figs 1B–19.

1980 Xingrenaspis rectangularis Yuan & Zhou (in Zhang et al.), p. 331, pl. 109, figs 1–16.

1983 ?Xingrenaspis politus Lu & Qian, p. 39, pl. 4, fig. 11.

1997 ?Xingrenaspis dardapurensis (Reed, 1934). – Jell & Hughes, pp. 66, 67 (see for further synonymy of this species), pl. 18, figs 1–11, pl. 26, figs 1–11, not pl. 19, figs 1–2.

2002 Xingrenaspis xingrenensis Yuan & Zhou (in Zhang et al., 1980). – Yuan et al., pp. 186, 274, pl. 45, fig. 10, pl. 46, figs 5–7, pl. 47, fig. 6, pl. 48, figs 1–10, pl. 49, figs 2–7.

2002 ?Xingrenaspis politus Lu & Qian, 1983 – Yuan et al., pp. 187, 274, pl. 45, fig. 12, pl. 47, figs 3–5, pl. 49, figs 8.9.

2002 ?Xingrenaspis granulosa Yuan & Zhao (in Yuan et al.), pp. 188, 275, pl. 57, fig. 10.

2009 Xingrenaspis hoboi (Resser & Endo in Endo & Resser, 1937). – Peng et al., pp. 65, 66, fig. 42.1–42.5.

2010b Douposiella guizhouensis Yuan & Zhou (in Yuan et al., 2002). – Sundberg et al., fig. 1.

Material. – 489 cranidia, 54 pygidia, 11 partial or complete shields.

Emended diagnosis. – Xingrenaspis has palpbral lobes slightly shorter than the posterior area of the fixigena (85–95%); ocular ridges directed moderately posterior laterally; glabellar length approximately 70% of craniad length; anterior border approximately 60–75% of preglabellar field, slightly convex (could be influenced

Figure 22. Xingrenaspis xingrenensis Yuan & Zhou in Zhang et al., 1980, all figures × 5 unless otherwise noted. • A – cranidium, exfoliated, Gk B3 0203, FZX11, × 10. • B – cranidium, not exfoliated, Gk B3 0204, latex cast, FZX10. • C – cranidium, exfoliated, Gk B3 0205, FZX16. • D – cranidium, not exfoliated, Gk B3 0206, FZX13. • E – cranidium, not exfoliated, Gk B3 0207, latex cast, FZX13. • F – cranidium, partially exfoliated, Gk B3 0208, FZX11. • G – cranidium, mostly exfoliated, Gk B3 0209, FZX13. • H – cranidium, exfoliated, Gk B3 0210, FZX16. • I – cranidium, partially exfoliated, Gk B3 0211, FZX6. • J – cranidium, partially exfoliated, Gk B3 0212, FZX13. • K – cranidium, exfoliated, Gk B3 0213, FZX6. • L – M – cranidium, not exfoliated, Gk B3 0214, latex cast, FZX2. • M – closeup showing fine granules, × 10. • N – cranidium, exfoliated, Gk B3 0215, FZX9. • O – cranidium, not exfoliated, Gk B3 0216, FZX15. • P – cranidium, not exfoliated, Gk B3 0217, FZX6. • Q – cranidium, not exfoliated, Gk B3 0218, FZX16; latex cast. • R – shield, not exfoliated, Gk B3 0219, latex cast, FZX6. • S – cranidium, not exfoliated, Gk B3 0220, FZX2. • T – shield, exfoliated, internal mold, Gk B3 0223, FZX3. • U – cranidium, not exfoliated, Gk B3 0221, FZX9. • V – pygidium, not exfoliated, Gk B3 0222, latex cast, FZX9. • W – pygidium, not exfoliated, Gk B3 0224, FZX9. • X – pygidium, partially exfoliated, Gk B3 0225, FZX9. • Y – pygidium, not exfoliated, Gk B3 0226, FZX15.
by compaction), level to upturned, slightly tapering laterally; facial sutures moderately divergent anterior of palpebral lobes, strongly divergent (approximately 45°) from the posterior end of the palpebral lobes. Pygidium transversely elongated with anterior lateral corners located about the mid-length of the pygidium and doublure narrow at posterior margin, but nearly $\frac{1}{3}$ to $\frac{1}{2}$ of the anterior margin.

Remarks. – Because of the distortion, the relative length/width ratio of the cranidium and glabella varies considerably, ranging in morphology between X. rectangulis Yuan & Zhou in Zhang et al., 1980, to X. quadratus, to X. elongatus Yuan & Zhou in Zhang et al., 1980. Included in this range of morphologies is X. jialaoensis Yuan & Zhou in Zhang et al., 1980. These species are probably synonymous with X. xingrenensis. The anterior border ranges from very slightly to moderately concave and can be level to upturned. These features could also be the result of tectonic distortion and lithologic compaction of the mudstones. The anterior border furrow is also variable. In several specimens it is well defined, although shallow. Other specimens with more upturned anterior borders have furrows that are very shallow.

Peng et al. (2009) synonymized X. xingrenensis with X. hoboi, however the two species differ. Based on the illustration of the type material in Zhang & Jell (1987, pl. 83, figs 4–6, 6 is lectotype), X. hoboi differs from the type material of X. xingrenensis and the material found in the Wuliu Quarry in having longer palpebral lobes that have anterior and posterior ends aligning exsagittally and a stronger curvature; ocular ridges that are stronger and directly nearly at 90° to the glabella; posterior facial sutures that are more divergent; and pleural lobes and pygidium with a narrower doublure and the anterior-lateral corners nearly parallel with the anterior margin of the pygidium. However, the specimens illustrated by Peng et al. (2009, fig. 42.1–42.5) as X. hoboi match the characteristics of the type and quarry material of X. xingrenensis and are reassigned here.

Xingrenaspis brevicus Yuan & Zhou in Zhang et al., 1980, and X. curvis Yuan & Zhou in Zhang et al., 1980 are very similar species and may represent a single taxon. These species are preserved in limestone and differ from the specimens of X. xingrenensis in having a more strongly curved anterior border and wider preglabellar area. In contrast, X. primus Yuan & Zhao in Yuan et al., 2002, and X. politus Lu & Qian, 1983 are preserved in shale and their strongly curved anterior border and wider preglabellar areas may be the result of tectonics. These two species are questionably included here to X. xingrenensis.

Xingrenaspis dardapurensis (Reed, 1934) is questionably assigned to this species because the specimens from India are strongly tectonically deformed and lack pygidia. The cranidia of Xingrenaspis dardapurensis illustrated by Jell & Hughes (1997) are very similar to X. xingrenensis with the exception of the specimen illustrated in plate 19, figures 1 and 2 (Jell & Hughes 1997), which has a very conical shaped glabella. If X. dardapurensis is the same species as that from the Kaili Formation, then it would be the senior synonym.

Zhang & Jell (1987) and Peng et al. (2009) placed Eosopytoparphina conica and E. intermedia into X. hoboi. If the specimens of E. conica and E. intermedia illustrated by Yuan et al. (2002, pl. 52, figs 1–9, pl. 53, figs 7–9, pl. 54, fig. 10) are conspecific with the type material, differences in the pygidium shape and absence of a wide marginal border would indicate that these species do not belong in Xingrenaspis. This does not, however, state that E. conica, E. intermedia, and E. guizhouensis are different species. These and E. lilia (Yuan in Zhang et al., 1980), E. mesembrina Yuan & Zhao in Yuan et al., 2002, and E. typica (Yuan in Zhang et al., 1980) may be conspecific.

Onchocephalus? sanwanensis (Zhang et al. 1980, pl. 102, figs 3, 20) differs from X. xingrenensis in have longer palpebral lobes, ocular ridges nearly 90 degrees to the glabellar axis and a relatively narrow posterior area of the fixigena. Ptychoparia? nitida (Zhang et al., 1980, pl. 107, fig. 17) differs from X. xingrenensis in its more hour-glass shaped glabella. Wuxunaspis deltoidea (Zhang et al., 1980, pl. 107, figs 10–12), W.? deflecta (Zhang et al., 1980, pl. 107, figs 13, 14), and W.? guizhouensis (Zhang et al., 1980, pl. 107, fig. 15) generally have longer palpebral lobes and a narrower, parallel sided posterior area of the fixigena. Other sclerites of these taxa are unknown. Wuxunaspis subquadrata Yuan in Zhang et al., 1980 is questionably assigned to X. xingrenensis based on its overall shape, but the material is poorly preserved and has deeper glabellar furrows. Elrathiella kailiensis (Zhang et al., 1980, pl. 118, figs 7, 8) and Elrathiella? bella (Zhang et
al., 1980, pl. 118, figs 9–12) are also not included into *X. xingrenensis* due to their longer and wider palpebral lobes and narrower (exsag.) posterior area of the fixigena. *Xingrenaspis shymalae* and *X. parthiva*, both named by Peng et al. (2009), are two closely related species, but are not *Xingrenaspis* based on the pygidia having a short bluntly rounded axis with only two segments, stronger interpleural furrows [similar to Alokistocaridae as revised by Sundberg 1999 (= Ehmaniellidae Sundberg, 1994)], and narrow margins and matching narrow doublure.

Occurrence. – Kaili Formation, Ovatoryctocara cf. granulata-Bathynotus holopygus to Oryctocephalus indicus zones: Wuliu Quarry levels FZX32, 25–1; Wuliu-Zengjiayan and Miaobanpo sections, China. Parahio Formation, Oryctocephallites salleri Zone: Parahio River section, India.

Acknowledgments

A special thanks to Peng Jin, Yang Xinglian, Yin Leming, and Tai Tongshu and our local Balang villagers Liu Feng, Liu Zefu, Liu Zebiao, Wan Kai, Zhang Lelei, and Tai Gulong for their help with the field work. Pete Scholten assisted in the counting of trilobite and brachiopod specimens. Elena Naimark and Anna Zylińska provided valuable comments to this paper. This research was supported, in part, by grants form the National Natural Science Foundations of China (40672018), the Ministry of Technology and Science of China (2006CB806401), the Foundation of Chinese Committee of Stratigraphy, the Foundation of International Cooperation of Guizhou and Technology (Gui:[2010]7001), the Foundation of Paleontological Museum of Shenzhen, Xianhu Botanical Garden, special Science and Technology Foundation of Guizhou (Gui. Sci. Ji 2007–4004), and International cooperation of Guizhou Science and Technology (G[2008]700110, G[2010]7001) to Zhao and the Project-Oriented Hundred Talents Programme (KZCX2-YW-BR-23) of the Chinese Academy of Sciences to Lin.

References

Hall, J. 1860. Annual report of the New York State Cabinet of Natural History 13, 1–118.

KOBAYASHI, T. 1935. The Cambro-Ordovician formations and faunas of South Chosen. Palaeontology, part 3: Cambrian faunas of South Chosen with special study on the Cambrian trilobite genera and families. Journal of the Faculty of Science, Imperial University of Tokyo, Section II 4(2), 49–344.

KOBAYASHI, T. 1944. On the eodiscids. Journal of the Faculty of Science, Tokyo University, Section 2(7), 1–74.

KOBAYASHI, T. 1967. The Cambro-Ordovician formations and faunas of South Korea, Part X Stratigraphy of the Chosen Group in Korea and South Manchuria and its relation to the Cambro-Ordovician formations of other areas. Journal of the Faculty of Science, Tokyo University, Section 2(16), 381–535.

LIN, J.-P. 2008. From a Fossil Assemblage to a Palaeoecological Community: Time, Organism and Environment based on the Kaili Lagerstätte (Cambrian), South China and Coeval Deposits of Exceptional Preservation. 416 pp. VDM Verlag Dr. Müller, Saarbrücken.

